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Abstract. In this paper we consider a discontinuous Dirac operator on the interval (0, 2π). It is assumed
that the coefficient (potential) is a complex valued matrix-function summable on(0, 2π). In the case of
a potential from Lp (0, 2π) ⊗ C2×2, p > 2, was established necessary and sufficient conditions of
componentwise equiconvergence on a compact with trigonometric series of expansions in biorthogonal
series of an arbitrary vector-function f ∈ L2

2 (0, 2π) by the system of root vector-functions of the given
operator.
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1 Main notions and formulation of results.

In this paper we study uniform equiconvergence on a compact with trigonometric series of
spectral expansions in root functions of a discontinuous Dirac operator. The root vector-
functions are understood in the generalized setting, i.e. regardless to boundary conditions
(see [2]). With such a generalized understanding of them, V.A. Il’in [2-3] established neces-
sary and sufficient conditions of uniform equiconvergence on a compact with trigonometric
series of expansions in root functions of differential operators with smooth coefficients.
Uniform equiconvergence and uniform equiconvergence rate for differential operators with
non-smooth coefficients were thoroughly studied in [11-15], while equiconvergence in in-
tegral metrics (i.e. in the metrics Lp, 1 ≤ p <∞) was studied in [13-18].

Componentwise uniform equiconvergence on a compact for the Dirac operator was stud-
ied in [10], and a theorem on componentwise uniform equiconvergence for an arbitrary
vector-function f ∈ L2

2 (a, b) was proved, where (a, b) is an arbitrary interval of a real
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straight line. Componentwise equiconvergence on the metrics Lp, 1 ≤ p ≤ ∞ and compo-
nentwise uniform equiconvergence rate on a compact were studied in [1,7], respectively.

Let the interval (0, 2π) be divided by the points {ξi}mi=0 , 0 = ξ0 < ξ1 < ... <
ξm = 2π, into the intervals Gl = (ξl−1, ξl) , l = 1,m. Denote by Al a class of absolutely
continuous two-component vector-functions on the segment Gl. Define the class A (0, 2π)
as follows: if f ∈ A (0, 2π), then for every l, l = 1,m there exists such a vector-function
fl(x) ∈ Al that f(x) = fl(x) for ξl−1 < x < ξl.

Let us consider the Dirac operator

Ly ≡ Bdy
dx

+ P (x)y, x ∈
m⋃
l=1

Gl = G,

where B = (bij)
2
i,j=1 , bii = 0, bi,3−i = (−1)i−1 , y(x) = (y1(x), y2(x))

T , P (x) =

= diag (p(x), q(x)) and p(x), q(x) are summable complex-valued functions on (0, 2π).
Following [3] we will understand root (i.e. eigen and associated) vector-functions of

the operator L regardless to the form of boundary conditions and “transmission” condi-
tions namely; under the eigen vector-function of the operator L, responding to the complex
eigenvalue λ we will understand any not identically zero complex valued vector-function
0
y(x) ∈ A (0, 2π) satisfying almost everywhere inG the equation L

0
y = λ

0
y. Then, by induc-

tion: under the associated vector-function of order r, r ≥ 1 responding to the same λ and

the eigen-function
0
y(x), we will understand any complex valued vector-function

r
y(x) ∈

∈ A (0, 2π) satisfying almost everywhere on G the equation

L
r
y = λ

r
y +

r−1
y .

Let {uk(x)}∞k=1 be an arbitrary system composed of the root (eigen and associated)
vector-functions of the operator L, while {λk}∞k=1 be the corresponding system of eigen-
values. In what follows, we assume that each vector-function uk(x) enters into the system
{uk(x)}∞k=1 together with all its lower order associated functions, and the lengths of the
chains of the root vector-functions are uniformly bounded. This means that each vector-
function uk(x) almost everywhere in G satisfies the equation

Luk = λkuk + θkuk−1 ,

where θk equals either zero (in this case uk(x) is an eigen vector-function), or one (in this
case uk(x) is an associated vector-function λk = λk−1).

Let L2
p(0, 2π), p ∈ [1,∞] , be a space of two-component vector-functions and f(x) =

(f1(x), f2(x))
T with the norm

‖f‖p ≡ ‖f‖p,[0,2π] =
(∫ 2π

0
|f(x)|p dx

)1/p

, if p 6=∞,

while in the case p =∞ with the norm

‖f‖∞ ≡ ‖f‖∞,[0,2π] = ess sup
x∈[0,2π]

|f(x)|.

Obviously, the “inner product”

(f, g) =

∫ 2π

0

2∑
j=1

fj(x) gj(x) dx
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was determined for the vector-functions f ∈ L2
p(0, 2π), g ∈ L2

q(0, 2π), 1/p + 1/q = 1,
p ≥ 1.

Let the considered system {uk(x)}∞k=1 satisfy the condition B2:
1) the system {uk(x)}∞k=1 is complete and minimal in L2

2 (0, 2π);
2) the system of eigenvalues {λk}∞k=1 satisfies the two inequalities

|Imλk| ≤ C1, k = 1, 2, ..., (1.1)∑
t≤|λk|≤t+1

1 ≤ C2, ∀t ≥ 0; (1.2)

3) the system {υk}∞k=1 ⊂ L2
2 (0, 2π) biorthogonally conjugate to the system {uk(x)}∞k=1,

consists of root vector-functions of a formally adjoint operator

L∗ = B
d

dx
+ P (x), i.e., L∗υk = λkυk + θkυk+1.

Note that the second one of the conditions B2 allows to assume that all the elements of the
system {uk(x)}∞k=1 were numbered in non-decreasing order of the value |λk|. For an arbi-
trary vector-function f ∈ L2

2 (0, 2π) we make up n−th order partial sum of biorthogonal
expansion by the system {uk(x)}∞k=1:

σn (x, f) =
n∑
k=1

(f, υk) uk(x), x ∈ G, (1.3)

σn (x, f) =
(
σ1n (x, f) , σ

2
n (x, f)

)T
,

σjn (x, f) =

n∑
k=1

(f, υk) u
j
k(x), j = 1, 2,

uk(x) =
(
u1k(x) , u

2
k(x)

)T
.

We will compare σjn (x, f) , j = 1, 2, with a modified partial sum of trigonometric Fourier
series corresponding to the j−th component fj(x) of the vector-function f(x)

Sν (x, fj) =
1

π

∫ 2π

0

sin ν (x− y)
x− y

fj (y) dy (1.4)

of order ν = |λn|.
Definition. We say that the j−th component of expansion of the vector-function f ∈

L2
2(0, 2π) in biorthogonal series by the system {uk(x)}∞k=1 uniformly equiconverges on

any compact of the set G =
m⋃
l=1

Gl with expansion corresponding to the j−th component

fj(x) of the vector-function f(x) in trigonometric Fourier series if on any compact K ⊂ G

lim
n→∞

∥∥σjn (· , f)− S|λn| (· , f) ∥∥C(K)
= 0 . (1.5)

The following results are proved in the present paper.
Theorem 1.1. Let the potential P (x) belong to the class Lp (0, 2π) ⊗ C2×2, p > 2,

and the system of root vector-functions {uk(x)}∞k=1 satisfy the condition B2. Then for (1.5)
to be fulfilled for an arbitrary vector-function f ∈ L2

2 (0, 2π) on any compact K ⊂ G, it
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is necessary and sufficient that for any compact K0 ⊂ G there exist a constant C (K0),
providing validity for all the numbers k of the inequality

‖uk‖L2
2(K0)

‖ υk ‖L2
2(0, 2π)

≤ C (K0) . (1.6)

Theorem 1.2. If the potential P (x) of the operator L and the system of the root vector
functions {uk(x)}∞k=1 satisfy the same requirements as in theorem 1.1, then subject to con-
dition (1.6) for biorthogonal expansion of an arbitrary vector-function f ∈ L2

2 (0, 2π) the
component principle of localization in G is valid: convergence or divergence of the j−th
component of the mentioned biorthogonal expansion at the point x0 ∈ G depends on the
behavior in small vicinity of the point x0 only of the appropriate j−th component fj(x)
of the decomposable vector-function f(x) (and is independent of the behavior of another
component).

2 Auxiliary statements.

Here are some necessary statements that will be used when proving the theorems formulated
above.

Statement 2.1 [6]. If the functions p (x) and q (x) belong to the class Lloc1 (Gl) and the
points x− t, x, x+ t belong to the interval Gl, then for the root vector-functions uk(x) we
have the mean value formula:

uk (x− t) + uk (x+ t)

2
=

nk∑
i=0

(−1)i t
i

i!
cos
(
λkt+

π

2
i
)
uk−i(x)

+
1

2

nk∑
i=0

(−1)i

i!

∫ t

0
(t− r)i

{
sin
(
λk (t− r) +

π

2

)
× [P (x− r) uk−i (x− r) + P (x+ r) uk−r (x+ r)]

+ B cos
(
λk (t− r) +

π

2
i
)
[P (x+ r) uk−i (x+ r)− P (x− r) uk−i (x− r)]

}
dr ,

(2.1)
where nk is the order of the root vector-function uk(x).

We fix an arbitrary segmentK = [a, b] ⊂ Gl and such a segmentKR = [a+R, b−R]
contained in it that R = dist (KR, ∂K) < (mesK)/2, ∂K = {a, b}.

Statement 2.2 [9]. If the functions p (x) and q (x) belong to the class Lloc1 (Gl), then for
K andKR and there exist such positive constantsCi (K, nk) , i = 1, 3; Ci (K, KR, nk) , i =
4, 5, independent of λk, that the following estimations hold:

C1 ‖uk‖p,K ≤ [1 + |Imλk| ]
1/s−

1/p ‖uk‖s,K ≤ C2 ‖uk‖p,K , 1 ≤ p < s ≤ ∞ ; (2.2)

‖θkuk−1‖p,K ≤ C3 [1 + |Imλk|] ‖uk‖p,K , p ≥ 1 ; (2.3)

C4 [1 + |Imλk|]−nk ‖uk‖p,K ≤ ‖uk‖p,KR
exp (R |Imλk|)

≤ C5 [1 + |Imλk|]nk ‖uk‖p,K , p ≥ 1 , (2.4)

where ‖·‖p,K = ‖·‖L2
p(K).

Provided p, q ∈ L1 (Gl) in the estimates (2.2)-(2.4) the segment K can be replaced
by Gl.
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Note that for p, q ∈ L1 (Gl) , l = 1,m, there exist the limits uk (0+) ,
uk (2π − 0) , uk (ξl ± 0) , l = 1, m− 1. Under uk (ξl) , l = 0, m− 1 , and uk (2π)
we will understand unilateral limits uk (ξl + 0) , l = 0,m− 1, and uk (2π − 0) .

Statement 2.3. Let the potential P (x) belong to the class L1 (0, 2π)⊗C2×2, the system
of the root vector-functions {uk(x)}∞k=1 satisfy the condition B2. Then if inequality (1.6) is
fulfilled for all the numbers k, then each of the systems {uk(x)}∞k=1 and {υk(x)}∞k=1 form

an unconditional basis in L2
2 (0, 2π). Herewith, the systems

{
uk(x) ‖uk(x) ‖−12

}∞
k=1

and{
υk(x) ‖ υk(x) ‖−12

}∞
k=1

are Riesz bases in this space.

Proof. By theorem 2 and remark 1 of the paper [8], it is enough for us to prove that under
the conditions of statement 2.3 the inequality

‖uk‖2 ‖ υk‖2 ≤ const (2.5)

is fulfilled for all the numbers k.
Let K(l) = [al, bl] ⊂ Gl, l = 1,m , 0 < R(l) = dist

(
K(l), ∂ Gl

)
< (mesGl)/2

and K0 =
⋃m
l=1K

(l). Then

‖uk‖L2
2(K

0) ‖υk‖2 ≤ C
(
K0
)
, k = 1, 2, ... (2.6)

is fulfilled due to inequality (1.6).
Estimate from the below the factor ‖uk‖L2

2(K
0):

‖uk‖2L2
2(K

0) =

∫
K0

|uk(x)|2 dx =
m∑
l=1

∫
K(l)

|uk(x)|2 dx =
m∑
l=1

‖uk‖22,K(l) .

Here we apply the left hand side of the estimate (2.4) for p = 2, K = Gl, KR = K(l),
R = R(l), l = 1,m , and take into account the ratio sup

k
nk = N0 < ∞, that follows from

(1.2). As a result we get

‖uk‖2L2
2(K

0) ≥
m∑
l=1

C2
4

(
Gl, K

(l), nk

)
[1 + |Imλk|]−2nk ·exp

(
−2R(l) |Imλk|

)
‖uk‖2L2

2(Gl)

≥
m∑
l=1

C2
4

(
Gl, K

(l), nk

)
· 1

(1 + |Imλk|)2N0 exp
(
2R(l) |Imλk|

) ‖uk‖2L2
2(Gl)

.

Taking into account conditions (1.1), and denoting

C2
4

(
K0
)
= min

1 ≤ l ≤ m
0 ≤ nk ≤ N0

{
C2
4

(
Gl, K

(l), nk

)} exp (−2π C1)

(1 + C1)
2N0

we arrive at the inequality

‖uk‖2L2
2(K

0) ≥ C
2
4

(
K0
) m∑
l=1

‖uk‖2L2
2(Gl)

= C2
4

(
K0
)
‖uk‖22 .

Consequently, the following estimation is fulfilled

‖uk‖L2
2(K

0) ≥ C4

(
K0
)
‖uk‖2 , k = 1, 2, ... .
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The validity of the relation (2.5) for any number ł follows from the last inequality and from
(2.6). Statement 2.3 is proved.

Denote

δkn = δ (|λn| , λk) =
1

2
[1 + sign (|λn| − |ρk|)] , ρk = Reλk;

Bi (|λn| , λk, R) =
∫ R

0
ti−1 sin (|λn| t) cos

(
λkt+

πi

2

)
dt, i = 1, nk.

Under conditions (1.1) and (1.2) we have the following relations (see [2-3], [10]).∣∣∣∣ 2π
∫ R

0
t−1 sin |λn| t cosλkt dt− δkn

∣∣∣∣ ≤ C (R)

1 + ||λn| − |ρk||
, (2.7)

|Bi (|λn| , λk, R)| ≤
C (R)

1 + ||λn| − |ρk||
, (2.8)

where C (R) is some positive constant, ρk = Reλk, i = 1, nk .

3 Proof of the main results.

Proof of Theorem 1.1. Necessity of condition (1.6) for componentwise uniform equicon-
vergence is justified by the same scheme as in the paper [5], where this scheme was shown
for a Schrodinger operator with a matrix potential. In our case, condition (1.6) is necessary
even for the operator L with the potential P (x) from the class L1 (0, 2π) ⊗ C2×2. There-
fore it remains for us to prove the sufficiency part of theorem 1.1. Without loss of generality
we fix an arbitrary connected compact K ⊂ G =

⋃m
l=1Gl. Then for some l0, 1 ≤ l0 ≤

m, K ⊂ Gl0 . Choose the number R > 0 satisfying the condition R < 1
2 dist (K, ∂Gl0) .

We will compare partial sum σn (x, f) with S̃|λn| (x, f) =
(
S̃|λn| (x, f1) , S̃|λn| (x, f2)

)T
,

where f(x) = (f1(x), f2(x))
T ∈ L2

2 (0, 2π) ,

S̃|λn| (x, fj) =
1

π

∫
|x−y|≤R

sin (|λn| (x− y))
x− y

fj (y) dy, x ∈ K, j = 1, 2 .

From the theory of trigonometric series it is known that the difference S|λn| (x, fj) −
S̃|λn| (x, fj) tends to zero with respect to x ∈ K as n → ∞. Therefore it suffices to
set up relation (1.5) for S̃|λn| (x, fj) , j = 1, 2, i.e.

lim
n→∞

∥∥∥σjn ( · , f)− S̃|λn| ( · , fj) ∥∥∥
C(K)

= 0. (3.1)

By virtue of statement 2.3 we can expand the arbitrary vector-function f ∈ L2
2 (0, 2π) into

a biorthogonal series by the system {uk(x)}∞k=1

f(x) =

∞∑
k=1

(f, υk) uk(x) .

With allowance for this expansion, represent the vector-function S̃|λn| (x, f) in the form

S̃|λn| (x, f) =
2

π

∞∑
k=1

(f, υk)

∫ R

0

uk (x− t) + uk (x+ t)

2
· sin |λn| t

t
dt . (3.2)
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Using the mean value formula (2.1) and introducing the notation

A± (P, uk−i, x, r) = P (x+ r) uk−r (x+ r)± P (x− r) uk−i (x− r)

we transform the integral in the representation (3.2)

2

π

∫ R

0

uk (x− t) + uk (x+ t)

2
· sin |λn| t

t
dt =

2

π
uk(x)

∫ R

0

sin |λn| t
t

cosλkt dt

+
2

π

nk∑
i=1

(−1)i

i!
uk−i(x)

∫ R

0
ti−1 sin |λn| t cos

(
λkt+

π

2
i
)
dt

+
1

π

nk∑
i=0

(−1)i

i!

∫ R

0

sin |λn| t
t

∫ t

0
(t− r)i sin

(
λk (t− r) +

π

2
i
)
A+ (P, uk−i, x, r) dr dt

+
1

π

nk∑
i=0

(−1)i

i!
B

∫ R

0

sin |λn| t
t

∫ t

0
(t− r)i cos

(
λk (t− r) +

π

2
i
)
A− (P, uk−i, x, r) dr dt.

Having changed the order of integration in the repeated integrals, in the last two sums we
get

2

π

∫ R

0

uk (x− t) + uk (x+ t)

2
·sin |λn| t

t
dt = δknuk(x)+uk(x)

[
2

π

∫ R

0

sin |λn| t
t

cosλkt dt− δkn
]

+
2

π

nk∑
i=1

(−1)i

i!
uk−i(x)Bi (|λn| , λk, R)+

1

π

nk∑
i=0

(−1)i

i!

{∫ R

0
A+ (P, uk−i, x, r) Φ

i
k1 (r, R, |λn|) dr

+B

∫ R

0
A− (P, uk−i, x, r) Φ

i
k2 (r, R, |λn|) dr

}
, (3.3)

where

Φik1 (r, R, |λn|) =
∫ R

r
(t− r)i sin |λn| t

t
sin
(
λk (t− r) +

π

2
i
)
dt ,

Φik2 (r, R, |λn|) =
∫ R

r
(t− r)i sin |λn| t

t
cos
(
λk (t− r) +

π

2
i
)
dt, i = 0, nk .

Considering representation (3.3) in the equality (3.2) and taking into account definition of
the number δkn for S̃|λn| (x, f) , x ∈ K, we get the equality:

S̃|λn| (x, f)− σn (x, f)

= −1

2

∑
|ρk|=|λn|

(f, υk) uk(x) +

∞∑
k=1

(f, υk)

{[
2

π

∫ R

0

sin |λn| t
t

cosλkt dt− δkn
]
uk(x)

+
2

π

nk∑
i=1

(−1)i

i!
Bi (|λn| , λk, R) uk−i(x)+

1

π

nk∑
i=0

(−1)i

i!

[∫ R

0
A+ (P, uk−i, x, r) Φ

i
k1 (r, R, |λn|) dr

+ B

∫ R

0
A− (P, uk−i, x, r ) Φ

i
k2 (r, R, |λn|) dr

]}
.
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Hence, with allowance for inequality (2.7) we arrive at the inequality∣∣∣S̃|λn| (x, f)− σn (x, f)∣∣∣ ≤ 1

2

∑
|ρk|=|λn|

|(f, υk ‖uk‖2)| |uk(x)| ‖uk‖
−1
2

+C (R)

∞∑
k=1

|(f, υk ‖uk‖2)| ‖uk‖
1
2 |uk(x)| (1 + ||λn| − |ρk||)

−1

+C (R)
∞∑
k=1

|(f, υk ‖uk‖2)|

(
nk∑
i=1

1

i!
|Bi (|λn| , λk, R)|

|uk−i(x)|
‖uk‖2

)

+
1

π

∞∑
k=1

|(f, υk ‖uk‖2)|

(
nk∑
i=0

1

i! ‖uk‖2

∣∣∣∣∫ R

0
A+ (P, uk−i, x, r) Φ

i
k1 (r, R, |λn|) dr

∣∣∣∣
)

+
1

π

∞∑
k=1

|(f, υk ‖uk‖)|

(
nk∑
i=0

1

i! ‖uk‖2

∣∣∣∣∫ R

0
A− (P, uk−i, x, r) Φ

i
k2 (r, R, |λn|) dr

∣∣∣∣
)

= S1(x) + S2(x) + S3(x) + S4(x) + S5(x) .

Prove that the series Sl(x) , l = 1, 5, x ∈ K, uniformly converge and their sum does not
exceed the value C(K) ‖f‖2.

At first we note that by statement 2.3, the system { υk(x) ‖uk‖2}
∞
k=1is also the Riesz

basis in L2
2 (0, 2π). Consequently, this system is a Bessel system in this space, i.e. for the

arbitrary vector-functionf ∈ L2
2 (0, 2π) the following Bessel inequality holds( ∞∑

k=1

|(f, υk ‖uk‖2)|
2

)1/2

≤M‖f‖2 , (3.4)

where the constant M > 0 is independent of f(x).
We also note that the estimation∑

t≤|ρk|≤t+1

1 ≤ const , ∀t ≥ 0 (3.5)

follows from conditions (1.1) and (1.2)
To estimate the sum S1(x) we apply the Bessel inequality (3.4), estimation (2.2) for

s =∞, p = 2, |Imλk| ≤ C1, and inequality (3.5)

S1(x) =
1

2

∑
|ρk|=|λn|

| (f, υk ‖uk‖2) | |uk(x)| ‖uk‖
−1
2

≤ 1

2

 ∑
|ρk|=|λn|

| (f, υk ‖uk‖2) |
2

1/2 ∑
|ρk|=|λn|

|uk(x)|2 ‖uk‖−22

1/2

≤M ‖f‖2C2(K)

 ∑
|ρk|=|λn|

||uk(x)||22, Gl0
‖uk‖−22

1/2
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≤M C2(K) ‖f‖2

 ∑
|ρk|=|λn|

1

1/2

≤ C (K) ‖f‖2 ,

where C(K) > 0 is some constant.
To estimate the series S2(x), x ∈ K, we also apply the Bessel inequality (3.4), estima-

tion (2.2) for s = 0, p = 2, |Imλk| < C1 and inequality (3.5). As a result we have:

S2(x) ≤ C (R)

( ∞∑
k=1

|(f, υk ‖uk‖2)|
2

)1/2( ∞∑
k=1

|uk(x)|2 ‖uk‖−22 (1 + ||λn| − |ρk||)−2
)

≤ C (R)M‖f‖2 · C2(K)

( ∞∑
k=1

‖uk‖22, Gl0
‖uk‖−22 (1 + ||λn| − |ρk||)−2

)1/2

≤ C(K)‖f‖2

( ∞∑
k=1

(1 + ||λn| − |ρk||)−2
)1/2

≤ C(K)‖f‖2

 ∞∑
j=0

(1 + j)−2
∑

j≤||λn|−|ρk||≤j+1

1

1/2

≤ C(K)‖f‖2

( ∞∑
i=1

i−2

)1/2

≤ C(K)‖f‖2.

Inequalities (2.2), (2.3), (1.1) and (1.2) for x ∈ K yield

|uk−i(x)|
‖uk‖2

≤ ‖uk−i‖∞,K ‖uk‖
−1
2 ≤ C2 ‖uk−i‖2,K ‖uk‖

−1
2 (1 + |Imλk|)1/2

≤ C2C
nk
3 (1 + |Imλk|)nk+

1
2 ‖uk‖2,K ‖uk‖

−1
2 ≤ C2C

N0
3 (1 + C1)

N0+
1
2 = C(K) ,

i.e. it is fulfilled the estimation

‖uk−i‖∞,K ≤ C(K) ‖uk‖2 , (3.6)

where C(K) > 0 is some constant.
We now estimate the series S3(x), x ∈ K. By inequalities (3.6) and (2.8)

S3(x) = C (R)

∞∑
k=2

|(f, υk ‖uk‖2)|

(
nk∑
i=1

1

i!
|Bi (|λn| , λk, R)| ‖uk‖∞,K ‖uk‖

−1
2

)

≤ C(K)C (R)
∞∑
k=1

|(f, υk ‖uk‖2)|

(
N0∑
i=1

1

i!
Ci (R)

)
(1 + ||λn| − |ρk||)−1

≤ C(K)

∞∑
k=1

|(f, υk ‖uk‖2)| (1 + ||λn| − |ρk||)
−1 .

Hence, by virtue of the Bessel inequality and estimate (3.5) we get (see estimation for
S2(x))

S3(x) ≤ C(K) ‖f‖2.
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We now estimate the series S4(x) and S5(x). Since they are estimated by a unique
scheme, we estimate only the series S4(x). The expression A+ (P, un−i, x, r) , x ∈
K, 0 ≤ r ≤ R and estimation (2.2), (2.3) imply the inequality∣∣A+ (P, un−i, x, r)

∣∣ ≤ C (Gl0) A (x, r)·‖uk‖2, Gl0
≤ C (Gl0) A (x, r) ‖uk‖2 ≤ constA (x, r) ‖uk‖2 ,

where
A (x, r) = |p (x− r)|+ |q (x− r)|+ |p (x+ r)|+ |q (x+ r)| .

The estimation

‖A (x, ·)‖p, [0,R] =

(∫ R

0
Ap (x, r) dr

)1/p

≤ const
(
‖p‖p + ‖q‖p

)
is fulfilled at each fixed x ∈ K for A (x, r).

Therefore, by the Holder inequality we get∣∣∣∣∫ R

0
A+ (P, uk−i, x, r) Φ

i
k1 (r, R, |λn|) dr

∣∣∣∣ ≤ const ‖uk‖2
∫ R

0
A (x, r)

∣∣Φik1 (r,R, |λn|)∣∣ dr
≤ const ‖A (x, ·)‖p, [0,R]

∥∥Φik1 (·, R, |λn|)∥∥q, [0,R]
‖uk‖2 .

Taking into account the obtained inequalities in the series S4(x) we get

S4(x) =
1

π

∞∑
k=1

|(f, υk ‖uk‖2)|

(
nk∑
i=0

1

i! ‖uk‖2

∣∣∣∣∫ R

0
A+ (P, uk−i, x, r) Φ

i
k1 (r, R, |λn|) dr

∣∣∣∣
)

≤ const
(
‖p‖p + ‖q‖p

) ∞∑
k=1

|(f, υk ‖uk‖)|
nk∑
i=0

∥∥Φik1 (·, R, |λn|)∥∥q, [0,R]
.

Hence, by the Bessel property it follows

S4(x) ≤ const ‖f‖2


∞∑
k=1

(
nk∑
i=1

∥∥Φik1 (·, R, |λn|)∥∥q, [0, R]

)2


1/2

≤ const‖f‖2


∞∑
k=1

(
N0∑
i=1

∥∥Φik1 (·, R, |λn|)∥∥q, [0, R]

)2


1/2

. (3.7)

Prove that the series in curly brackets converges, and estimate its sum. For the integrals
Φikj · (r,R, |λn|), j = 1, 2 the following estimation is valid (see [10])

∣∣Φikj∣∣ ≤ Ci (R, α)

||λn| − |ρk||−α r−α for ||λn| − |ρk|| ≥ 1, i = 0,
max {|ln r| , |ln R|} for ||λn| − |ρk|| < 1, i = 0,

||λn| − |ρk||−1 for ||λn| − |ρk|| ≥ 1, i 6= 0,

(R− r)i for ||λn| − |ρk|| < 1, i 6= 0,

where α ∈ (0, 1] .

Apply these estimations for p > 2, α ∈
(
1
2 ,

p−1
p

)
,

∞∑
k=1

(
N0∑
i=0

∥∥Φik1 (·, R, |λn|)∥∥q, [0, R]

)2
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≤ C (N0, R, α)

 ∑
||λn|−|ρk||<1

(∫ R

0
(max {|ln r| , |ln R|})q dr

)2/q

+
∑

||λn|−|ρk||≥1

||λn| − |ρk||−2α
∥∥r−α∥∥2

q, [0, R]


= C (N0, R, α)


(∫ R

0
(max {|ln r| , |ln R|})q dr

)2/q ∑
||λn|−|ρk||<1

1

+
∥∥r−α∥∥2

q, [0, R]

∑
||λn|−|ρk||≥1

||λn| − |ρk||−2α
 , 1/p+ 1/q = 1.

Since qα < 1, then by the condition (1.2) we get

∞∑
k=1

(
N0∑
i=0

∥∥Φik1 (·, R, |λn|)∥∥q, [0, R]

)2

≤ C1 (N0, R, α)

1 +
∑

||λn|−|ρk||≥1

||λn| − |ρk||−2α


≤ C2 (N0, R, α)

1 +

∞∑
l=1

l−2α

 ∑
l≤||λn|−|ρk||≤l+1

1


≤ C2 (N0, R, α) C2

{
1 +

∞∑
l=1

l−2α

}
<∞ .

Consequently, the last relation and (3.7) imply the inequality

S4(x) ≤ C(K) ‖f‖2. (3.8)

The series S5(x) is estimated in the same way, and estimation (3.8) for it is fulfilled as
well.

From the estimations obtained for Sj(x) , j = 1, 5 , it follows that for an arbitrary
vector-function f ∈ L2

2 (0, 2π) the following estimation is valid:∥∥∥S̃|λn| (· , f)− σn (· , f)∥∥∥
C(K)

≤ C1(K) ‖f‖2, (3.9)

where C1(K) > 0 is a constant independent of f .
Now from estimation (3.9) we derive relation (3.1). From the completeness of the system

{uk(x)}∞k=1 in the space L2
2 (G) it follows that for an arbitrary f ∈ L2

2 (G) and for any
ε > 0 there exist such constants αl, l = 1, n (ε, f) that

‖f − g‖2 <
ε

(2C1(K))
, g(x) =

n(ε,f)∑
l=1

αlul(x),

where C1(K) is a constant from the inequality (3.9).
Obviously, for sufficiently large n we have the equality σn (x, g) = g(x). Therefore, for

large n∥∥∥S̃|λn| (· , f)− σn (· , f)∥∥∥
C(K)

≤
∥∥∥S̃|λn| (· , f − g)− σn (· , f − g)∥∥∥

C(K)
+
∥∥∥g − S̃ν (· , g)∥∥∥

C(K)
.
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The estimation (3.9) and the last relation imply that for sufficiently large n∥∥∥S̃|λn| (· , f)− σn (· , f)∥∥∥
C(K)

≤ C1(K) ‖f − g‖2 +
∥∥∥S̃|λn| (· , g)− g∥∥∥

C(K)
<
ε

2
+
∥∥∥S̃|λn| (· , g)− g∥∥∥

C(K)
.

The value
∥∥S|λn| (· , gj)− gj(x)∥∥C(K)

, where g(x) = (g1(x) , g2(x))
T , tends to zero as

n→∞, because gj(x) ∈W 1
p (Gl0) , p > 2.

Consequently for sufficiently large n∥∥∥S̃|λn| (· , f)− σn (· , f)∥∥∥
C(K)

<
ε

2
+
ε

2
= ε.

Relation (3.1) is proved. Theorem 1.1 is proved.
The statement of Theorem 1.2 follows from the statement of Theorem 1.1 and localiza-

tion principle for trigonometric series.
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