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Cantor functions associated with generalized expansions
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Abstract. The goal of this note is to propose an expansion of real numbers, which generalizes the binary
and ternary expansions. As an application of this expansion, the ternary Cantor function is generalized
to the one adapted to the expansion. This generalized Cantor function can be adjusted to have the set of
discontinuity of any Hausdorff dimension.

Keywords. Cantor function, expansion, discontinuity, Hausdorff dimension.

Mathematics Subject Classification (2010): 2010 Mathematics Subject Classification: 26A33, 42B35

1 Introduction

The aim of this paper is to show that the following expansion theorem is useful to construct
various Hölder continuous functions, where [·] denotes the Gauss function.

Theorem 1.1 Let {hn}∞n=1 be a sequence of positive integers such that hn ≥ 2 for all
n ∈ N. Then for any x ∈ [0, 1], there exists a sequence {an}∞n=1 of integers such that

x =
∞∑
n=1

an
h1h2 · · ·hn

, 0 ≤ an ≤ hn − 1 (n = 1, 2, . . .).

More precisely, we have the following algorithm to find each an: If x = 1, then simply set
an = hn − 1 for all n ∈ N. If x ∈ [0, 1) instead, define

a1 = [h1x], an+1 =

h1h2 · · ·hnhn+1

x− n∑
j=1

aj
h1h2 · · ·hj

 .
Then 0 ≤ an ≤ hn − 1 for all n ∈ N and x =

∞∑
n=1

an
h1h2 · · ·hn

.
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A direct consequence of Theorem 1.1 is that any x ∈ [0, 1) has an expansion

x =

∞∑
n=1

an
h1h2 · · ·hn

for some sequence {an}∞n=1 of integers satisfying 0 ≤ an ≤ hn − 1 for all n ∈ N. As an
application, we generalize the ternary Cantor function f .

Theorem 1.2 Let {hn}∞n=1 be a sequence of positive integers such that hn ≥ 2. There exists
uniquely a non-decreasing continuous function f : [0, 1]→ [0, 1] such that

f

(
N∑
n=1

an
h1h2h3 · · ·hn

)
=

N∑
n=1

1

2n

[
an

hn − 1

]
,

if N ∈ N and an ∈ {0, hn − 1} for all n = 1, 2, . . . , N .

Ikeda considered the case of hn = n, 2n, 2n− 1 in [2].
Note that the Cantor function can be obtained as a special case of hn = 3 for each n. We

refer to [1] for a detailed account of the Cantor function. The Cantor function, named after
Georg Cantor, is an example of a function which has a remarkable property: Its derivative
vanishes almost everywhere. This applies to the function f above. To this end, we specify
the points where f is not differentiable.

Theorem 1.3 Assume that

lim
N→∞

2N

h1h2 · · ·hN
= 0 (1.1)

Then the set C of all points where f is not differentiable takes the form:

C =

{ ∞∑
n=1

an
h1h2 · · ·hn

: an ∈ {0, hn − 1} (n = 1, 2, . . .)

}
.

We recall the notion of the Hausdorff dimension according to [1]. First for an interval
I , we write `(I) to denote its length. Let A ⊂ R be an arbitrary set. Its δ-covering is the
collection of open intervals having radius less than δ whose union covers A. Let s ≥ 0.
Then define

Hsδ(A) ≡ inf


∞∑
j=1

ωs`(Ij)
s : {Ij}∞j=1 is a δ-covering of A

 .

Here ωs is a constant given by ωs ≡ π
s
2Γ

(
s+ 2

2

)−1
, where Γ denotes the Gamma func-

tion. Let s ≥ 0 again. Then define Hs(A) ≡ lim
δ↓0
Hsδ(A). Finally its Hausdorff dimension

is given by dimH(A) ≡ inf{s ≥ 0 : Hs(A) = 0}. Thanks to the result in the book [1, p.
72], we see that the Hausdorff dimension is

dimH(C) = lim inf
N→∞

N

log2(h1h2 · · ·hN )
,

as long as {hN}∞N=1 is a sequence in N ∩ [3,∞) satisfying (1.1).
Let α ∈ [0, n] be arbitrary. In view of this formula, we see that if we choose hj’s suitably,

then we can arrange dimH(C) = α. The rest of the paper is devoted to the proof of these
theorems.
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2 Proofs

2.1 Proof of Theorem 1.1
If x = 1, then the conclusion is trivial; assume otherwise. We induct on N to show that

aN , whose definition is as in Theorem 1.1, fulfills aN ∈ {0, 1, . . . , hN − 1}. In the base
case of N = 1, the conclusion follows from the fact that 0 ≤ h1x < h1. Suppose that the
conclusion holds for some N = N0 ≥ 1. We observe that

0 ≤ h1h2 · · ·hN0

(
x−

N0−1∑
n=1

an
h1h2 · · ·hn

)
− aN0 < 1

from the definition of aN0 . Hence,

0 ≤ h1h2 · · ·hN0hN0+1

(
x−

N0∑
n=1

an
h1h2 · · ·hn

)
< hN0+1,

implying that aN0+1 ∈ {0, 1, 2, . . . , hN0+1 − 1}.
It remains to establish that x can be expanded as above. But this is a direct consequence

of the inequality:

0 ≤ x−
N0∑
n=1

an
h1h2 · · ·hn

<
1

h1h2 · · ·hN0

.

2.2 Proof of Theorem 1.2
Fix N first. Let fN be a non-decreasing piecewise linear function interpolating linearly

between the points (
N∑
n=1

an
h1h2 · · ·hn

,
N∑
n=1

1

2n

[
an

hn − 1

])
, (1, 1),

where each an moves over the set {0, hn − 1}. For the proof of Theorem 1.2, we need the
following observation:
Lemma 2.1 For all N ∈ N and x ∈ [0, 1], |fN (x)− fN+1(x)| ≤ 2−N .

Proof. We may assume 0 < x < 1; otherwise the conclusion is trivial. Let [2Nf(x)] = k.
Then k < 2N , since f(x) < 1. With this in mind, let x−N = f−1N (k · 2−N ) and x+N =

f−1N ((k + 1)2−N ). We claim that x±N takes the form

x±N =
N∑
n=1

a±n
h1h2 · · ·hn

, a±n ∈ {0, hn − 1} (n = 1, 2, . . . , N).

In fact, there exists a subset A of {1, 2, . . . , n} such that

k · 2−N =
∑
n∈A

1

2n
.

If we set
a−n = χA(n)(hn − 1) (n = 1, 2, . . . , N),

then we have the desired sequence. We can go through the same argument as x−N for x+N .
Since

fN (x
−
N ) = fN+1(x

−
N ) =

k

2N
≤ fN (x), fN+1(x) ≤ fN+1(x

−
N ) = fN+1(x

+
N ) =

k + 1

2N
,

we obtain the desired result.



128 Cantor functions associated with generalized expansions

We prove Theorem 1.2.
We start with the existence. Thanks to Lemma 2.1, the limit f = lim

N→∞
fN exists in

L∞([0, 1]). Since each fN is continuous, so is f . Since

fM

(
N∑
n=1

an
h1h2h3 · · ·hn

)
=

N∑
n=1

1

2n

[
an

hn − 1

]
,

if M,N ∈ N satisfies M ≥ N and an ∈ {0, hn−1} for all n = 1, 2, . . . , N , letting
M →∞, we obtain the desired function f .

We prove the uniqueness. Choose any continuous function g : [0, 1] → [0, 1] with the
same property as g. Let x ∈ [0, 1) and define x+N = f−1N (2−N [2Nf(x) + 1]) and x−N =

f−1N (2−N [2Nf(x)]) as in the proof of Lemma 2.1. Then since we know the value of f(x±N )
and g(x±N ), we have f(x−N ) = g(x−N ) ≤ f(x), g(x) ≤ f(x+N ) = g(x+N ) = f(x−N ) + 2−N .
Letting N →∞, we obtain g(x) = lim

N→∞
g(x−N ) = lim

N→∞
f(x−N ) = f(x). Thus f ≡ g.

3 Non-differentiablilty points of f in Theorem 1.2

Here and below it is understood that
0∑

n=1
xn = 0 for any sequnce {xn}∞n=1. We start with

an additional property of f .

Proposition 3.1 The function f in Theorem 1.2 satisfies

f

(
N∑
n=1

an
h1h2h3 · · ·hn

+
1

h1h2 · · ·hN+1

)
=

N∑
n=1

1

2n

[
an

hn − 1

]
+

1

2N+1
,

if N ∈ N and an ∈ {0, hn − 1} for all n = 1, 2, . . . , N .

Proof. Let M ≥ N . Simply observe that

N∑
n=1

an
h1h2h3 · · ·hn

+
1

h1h2 · · ·hn+1
=

N∑
n=1

an
h1h2h3 · · ·hn

+

∞∑
n=N+2

hn − 1

h1h2 · · ·hn

and that

f

(
N∑
n=1

an
h1h2h3 · · ·hn

+
M∑

n=N+2

hn − 1

h1h2 · · ·hn

)
=

N∑
n=1

1

2n

[
an

hn − 1

]
+

M∑
n=N+2

1

2n
.

If we let M →∞, we obtain the desired result.

Corollary 3.1
1) If N ∈ N ∪ {0} and an ∈ {0, hn−1}, t ∈ [1, hN+1 − 1] for all n = 1, 2, . . . , N ,
then

f

(
N∑
n=1

an
h1h2h3 · · ·hn

+
t

h1h2 · · ·hN+1

)
=

N∑
n=1

1

2n

[
an

hn − 1

]
+

1

2N+1

for all.
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2) If N ∈ N∪ {0} and an ∈ {0, hn−1}, t ∈ (1, hN+1− 1) for all n = 1, 2, . . . , N , then

f ′

(
N∑
n=1

an
h1h2h3 · · ·hn

+
t

h1h2 · · ·hN+1

)
= 0.

3) The function f is almost everywhere differentiable if (1.1) holds.

Since hN ≥ 2 for each N , (1.1) fails if and only if hN = 2 with a finite number of
exceptions. So, (1.1) is a natural assumption.

Proof.

1 Simply observe that

f

(
N∑
n=1

an
h1h2h3 · · ·hn

+
1

h1h2 · · ·hN+1

)
= f

(
N∑
n=1

an
h1h2h3 · · ·hn

+
hN+1 − 1

h1h2 · · ·hN+1

)

=
N∑
n=1

1

2n

[
an

hn − 1

]
+

1

2N+1

and that f is non-decreasing.
2 Since f is constant on(

N∑
n=1

an
h1h2h3 · · ·hn

+
1

h1h2 · · ·hN+1
,

N∑
n=1

an
h1h2h3 · · ·hn

+
hN+1 − 1

h1h2 · · ·hN+1

)
,

f ′ vanishes on this interval.
3 Write

I∅ =

(
1

h1
,
h1 − 1

h1

)
and

I(a1,a2,...,an)

=

(
N∑
n=1

an
h1h2h3 · · ·hn

+
1

h1h2 · · ·hN+1
,
N∑
n=1

an
h1h2h3 · · ·hn

+
hN+1 − 1

h1h2 · · ·hN+1

)
.

We remark that

χI∅ +
∞∑
N=1

∑
a1∈{0,h1−1},a2∈{0,h2−1},...,aN∈{0,hN−1}

χI(a1,a2,...,an)
≤ 1,

since

1

h1h2 · · ·hN+1
=

∞∑
n=N+2

hn − 1

h1h2 · · ·hn
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for any n ∈ N ∪ {0}. Meanwhile,

|I∅|+
∞∑
N=1

∑
a1∈{0,h1−1},a2∈{0,h2−1},...,aN∈{0,hN−1}

|I(a1,a2,...,an)|

=
h1 − 2

h1
+
∞∑
N=1

2N (hN+1 − 2)

h1h2 · · ·hN+1

=
h1 − 2

h1
+
∞∑
N=1

(
2N

h1h2 · · ·hN
− 2N+1

h1h2 · · ·hN+1

)
= 1

thanks to our assumption (1.1).
Thus, f is almost everywhere differentiable.

As we saw above, f is almost everywhere differentiable under (1.1).

Proposition 3.2 Assume that (1.1) holds. If x ∈ (0, 1) has an expansion

x =
∞∑
n=1

an
h1h2 · · ·hn

(an ∈ {0, hn − 1}),

then f is non-differentiable at x.

Proof. In fact, we set

x+N =

N∑
n=1

an
h1h2 · · ·hn

+

∞∑
n=N+1

hn − 1

h1h2 · · ·hn
, x−N =

N∑
n=1

an
h1h2 · · ·hn

.

for each N . Thanks to Proposition 3.1, we have

x−N ≤ x ≤ x
+
N = x−1N +

1

h1h2 · · ·hN
, f(x+N )− f(x

−
N ) =

1

2N

for all N ∈ N. Consequently,

lim
N→∞

f(x+N )− f(x
−
N )

x+N − x
−
N

=∞.

Consequently, from Corollary 3.1 and Proposition 3.2, we conclude the proof of Theo-
rem 1.3.
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