Horizontal lift in the semi-tangent bundle and its applications

Furkan Yildirim

Received: 26.02.2021 / Revised: 23.04.2021 / Accepted: 15.05.2021

Abstract

The main aim of the present paper is to study, using the pullback bundle, the complete and horizontal lifts of vector and affinor (tensor of type (1,1)) fields and to investigate their applications.

Keywords. Vector field, complete lift, horizontal lift, pullback bundle, cotangent bundle, semi-tangent bundle

Mathematics Subject Classification (2010): 53A45, 53C55, 55R10.

1 Introduction

Let M_{n} be an n-dimensional differentiable manifold of class C^{∞} and finite dimension n, and $T^{*}\left(M_{n}\right)$ the cotangent bundle determined by a natural projection (submersion) π_{1} : $T^{*}\left(M_{n}\right) \rightarrow M_{n}$. We use the notation $\left(x^{i}\right)=\left(x^{\bar{\alpha}}, x^{\alpha}\right)$, where the indices i, j, \ldots have range in $\{1,2, \ldots, 2 n\}$, the indices α, β, \ldots have range in $\{1,2, \ldots, n\}$ and the indices $\bar{\alpha}, \bar{\beta}, \ldots$ have range in $\{n+1, n+2, \ldots, 2 n\}, x^{\alpha}$ are coordinates in $M_{n}, x^{\bar{\alpha}}=p_{\alpha}$ are fiber coordinates of the cotangent bundle $T^{*}\left(M_{n}\right)$. If $\left(x^{i^{\prime}}\right)=\left(x^{\bar{\alpha}^{\prime}}, x^{\alpha^{\prime}}\right)$ is another system of local adapted coordinates in the cotangent bundle $T^{*}\left(M_{n}\right)$, then we have

$$
\left\{\begin{array}{l}
x^{\bar{\alpha}^{\prime}}=\frac{\partial x^{\beta}}{\partial x^{\alpha^{\prime}}} p_{\beta} \tag{1.1}\\
x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{\beta}\right)
\end{array}\right.
$$

The Jacobian of (1.1) has components

$$
\left(A_{j}^{i^{\prime}}\right)=\left(\begin{array}{c}
\frac{\partial x^{i^{\prime}}}{\partial x^{j}}
\end{array}\right)=\left(\begin{array}{cc}
A_{\alpha^{\prime}}^{\beta} p_{\sigma} A_{\beta}^{\beta^{\prime}} A_{\beta^{\prime} \alpha^{\prime}}^{\sigma} \\
0 & A_{\beta}^{\alpha^{\prime}}
\end{array}\right)
$$

where $A_{\alpha^{\prime}}^{\beta}=\frac{\partial x^{\beta}}{\partial x^{\alpha^{\prime}}}, A_{\beta^{\prime} \alpha^{\prime}}^{\sigma}=\frac{\partial^{2} x^{\sigma}}{\partial x^{\beta^{\prime}} \partial x^{\alpha^{\prime}}}$. Let $T_{\mathrm{p}}\left(M_{n}\right)$ be the tangent space at a point p of M_{n} $\left(\mathrm{p}=\pi_{1}(\widetilde{\mathrm{p}}), \widetilde{\mathrm{p}}=\left(x^{\bar{\alpha}}, x^{\alpha}\right) \in T^{*}\left(M_{n}\right)\right)$. If $x^{\alpha}=d x^{\alpha}\left(x^{\beta}\right)$ are components of x in tangent space $T_{\mathrm{p}}\left(M_{n}\right)$ with respect to the natural base $\left\{\partial_{\alpha}\right\}\left(\partial_{\alpha}=\frac{\partial}{\partial x^{\alpha}}\right)$, then by definition the set $t\left(M_{n}\right)$ of all points $\left(x^{I}\right)=\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}}\right), x^{\bar{\alpha}}=y^{\alpha} ; I, J, \ldots=1, \ldots, 3 n$ with projection

[^0]
F. Yildirim

Department of Mathematics, Faculty of Sci. Atatürk University, Narman Vocational Training School, 25530, Erzurum Turkey
E-mail: furkan.yildirim@atauni.edu.tr
$\pi_{2}: t\left(M_{n}\right) \rightarrow T^{*}\left(M_{n}\right)$ (i.e. $\left.\pi_{2}:\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\overline{\bar{\alpha}}}\right) \rightarrow\left(x^{\bar{\alpha}}, x^{\alpha}\right)\right)$ is a semi-tangent [1], [7], [9] (pullback) bundle of the tangent bundle by submersion $\pi_{1}: T^{*}\left(M_{n}\right) \rightarrow M_{n}$ (for the pullback bundle, see [2], [3], [5], [8]). It is clear that the pullback bundle $t\left(M_{n}\right)$ of the tangent bundle $T\left(M_{n}\right)$ also has the natural bundle structure over M_{n}, its bundle projection $\pi: t\left(M_{n}\right) \rightarrow M_{n}$ being defined by $\pi:\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}}\right) \rightarrow\left(x^{\alpha}\right)$, and hence $\pi=\pi_{1} \circ \pi_{2}$. Thus $\left(t\left(M_{n}\right), \pi_{1} \circ \pi_{2}\right)$ is the step-like bundle [4] or composite bundle [[6], p.9]. The main aim of this paper is to study complete and horizontal lifts of vector fields and tensor fields of type $(1,1)$ from cotangent bundle $T^{*}\left(M_{n}\right)$ to semi-tangent (pullback) bundle $\left(t\left(M_{n}\right), \pi_{2}\right)$.

We denote by $\Im_{q}^{p}\left(T^{*}\left(M_{n}\right)\right)$ and $\Im_{q}^{p}\left(M_{n}\right)$ the modules over $F\left(T^{*}\left(M_{n}\right)\right)$ and $F\left(M_{n}\right)$ of all tensor fields of type (p, q) on $T^{*}\left(M_{n}\right)$ and M_{n} respectively, where $F\left(T^{*}\left(M_{n}\right)\right)$ and $F\left(M_{n}\right)$ denote the rings of real-valued C^{∞}-functions on $T^{*}\left(M_{n}\right)$ and M_{n}, respectively

To a transformation (1.1) of local coordinates of $T^{*}\left(M_{n}\right)$, there corresponds on $t\left(M_{n}\right)$ the coordinate transformation

$$
\left\{\begin{array}{l}
x^{\bar{\alpha}^{\prime}}=\frac{\partial x^{\beta}}{\partial x^{\alpha^{\prime}}} p_{\beta} \tag{1.2}\\
x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{\beta}\right) \\
x^{\overline{\bar{\alpha}}^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}} y^{\beta}
\end{array}\right.
$$

The Jacobian of 1.2 is given by

$$
\bar{A}=\left(A_{J}^{I^{\prime}}\right)=\left(\begin{array}{ccc}
A_{\alpha^{\prime}}^{\beta} & p_{\sigma} A_{\beta}^{\beta^{\prime}} A_{\beta^{\prime} \alpha^{\prime}}^{\sigma} & 0 \tag{1.3}\\
0 & A_{\beta}^{\alpha^{\prime}} & 0 \\
0 & A_{\beta \varepsilon}^{\alpha^{\prime}} y^{\varepsilon} & A_{\beta}^{\alpha^{\prime}}
\end{array}\right)
$$

where

$$
A_{\beta}^{\alpha^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}}, \quad A_{\alpha^{\prime}}^{\beta}=\frac{\partial x^{\beta}}{\partial x^{\alpha^{\prime}}}, \quad A_{\beta \varepsilon}^{\alpha^{\prime}}=\frac{\partial^{2} x^{\alpha^{\prime}}}{\partial x^{\beta} \partial x^{\varepsilon}}, \quad A_{\beta^{\prime} \alpha^{\prime}}^{\alpha}=\frac{\partial^{2} x^{\alpha}}{\partial x^{\beta^{\prime}} \partial x^{\alpha^{\prime}}}
$$

From $\operatorname{Det}\left(A_{\beta}^{\alpha^{\prime}}\right) \neq 0$, we see that

$$
\operatorname{Det} \bar{A} \neq 0
$$

2 Vertical Lifts

Let $X \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$, i.e. $X=X^{\alpha} \partial_{\alpha}$. On putting

$$
{ }^{v v} X=\left({ }^{v v} X^{\alpha}\right)=\left(\begin{array}{c}
0 \tag{2.1}\\
0 \\
X^{\alpha}
\end{array}\right)
$$

from 1.3 , we easily see that ${ }^{v v} X^{\prime}=\bar{A}\left({ }^{v v} X\right)$. The vector field ${ }^{v v} X$ is called the vertical lift of X to $t\left(M_{n}\right)$.

Let ω be an 1-form with local components ω_{α} on M_{n}, so that ω is a 1-form with local expression $\omega=\omega_{\alpha} d x^{\alpha}$. On putting

$$
\begin{equation*}
{ }^{v v} \omega=\left(0, \omega_{\alpha}, 0\right) \tag{2.2}
\end{equation*}
$$

we have a vector field ${ }^{v v} \omega$ on $t\left(M_{n}\right)$. In fact, from 1.3 we easily see that $\left({ }^{v v} \omega\right)^{\prime}=$ $(\bar{A})^{-1}\left({ }^{v v} \omega\right)$, where $\left.\overline{(A}\right)^{-1}=\left(A_{J^{\prime}}^{I}\right)$ is the inverse matrix of \bar{A}.

The covector field thus introduced is called the vertical lift of the 1-form ω to $t\left(M_{n}\right)$.
For the natural coframe $\left\{d x^{\alpha}\right\}$ in each U, from 2.2 we have in $\pi^{-1}(U)$

$$
v v\left(d x^{\alpha}\right)=d x^{\alpha}
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\overline{\bar{\alpha}}}\right)$.

3γ - Operator

For any $F \in \Im_{1}^{1}\left(T^{*}\left(M_{n}\right)\right)$, if we take account of 1.3 , we can prove that $(\gamma F)^{\prime}=\bar{A}(\gamma F)$, where γF is a vector field defined by

$$
\gamma F=\left(\gamma F^{A}\right)=\left(\begin{array}{c}
-p_{\sigma} F_{\alpha}^{\sigma} \tag{3.1}\\
0 \\
y^{\varepsilon} F_{\varepsilon}^{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\overline{\bar{\alpha}}}\right)$.
If $\omega \in \Im_{1}^{0}\left(M_{n}\right)$ and $F \in \Im_{1}^{1}\left(T^{*}\left(M_{n}\right)\right)$ then

$$
{ }^{v v} \omega(\gamma F)=0
$$

Let $T \in \Im_{2}^{1}\left(M_{n}\right)$. On putting

$$
\gamma T=\left(\gamma T_{B}^{A}\right)=\left(\begin{array}{ccc}
0 & -p_{\sigma} T_{\beta}^{\sigma} & 0 \\
0 & 0 & 0 \\
0 & y^{\varepsilon} T_{\varepsilon \beta}^{\alpha} & 0
\end{array}\right)
$$

from 1.3 , we easily see that $\gamma T_{B^{\prime}}^{A^{\prime}}=A_{A}^{A^{\prime}} A_{B^{\prime}}^{B} \gamma T_{B}^{A}$, where $\left.\overline{(A}\right)^{-1}=\left(A_{B^{\prime}}^{B}\right)$ is the inverse matrix of \bar{A}.

If $X \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$ and $T \in \Im_{2}^{1}\left(M_{n}\right)$, then

$$
(\gamma T)^{v v} X=0
$$

4 Complete Lift of Vector Fields

Let $X \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$, i.e. $X=X^{\alpha} \partial_{\alpha}$. The complete lift ${ }^{c} X$ of X to cotangent bundle is defined by ${ }^{c} X=X^{\alpha} \partial_{\alpha}-p_{\beta}\left(\partial_{\alpha} X^{\beta}\right) \partial_{\bar{\alpha}}$ [[10], p.236]. On putting

$$
{ }^{c c} X=\left({ }^{c c} X^{\alpha}\right)=\left(\begin{array}{c}
-p_{\varepsilon}\left(\partial_{\alpha} X^{\varepsilon}\right) \tag{4.1}\\
X^{\alpha} \\
y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}
\end{array}\right)
$$

from (1.3), we easily see that ${ }^{c c} X^{\prime}=\bar{A}\left({ }^{c c} X\right)$. The vector field ${ }^{c c} X$ is called the complete lift of ${ }^{c} X \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$ to $t\left(M_{n}\right)$.
Theorem 4.1 Let $X, Y \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$. For the Lie product, we have
(i) $\left[{ }^{c c} X,{ }^{c c} Y\right]={ }^{c c}[X, Y]$ (i.e. $L^{c c}{ }^{c c} Y={ }^{c c}\left(L_{X} Y\right)$),
(ii) $\left[{ }^{c c} X,{ }^{v v} Y\right]={ }^{v v}[X, Y]$,
(iii) $\left[{ }^{v v} X,{ }^{v v} Y\right]=0$,
(iv) $\left[{ }^{c c} X, \gamma F\right]=\gamma\left(L_{X} F\right)$
for any $F \in \Im_{1}^{1}\left(T^{*}\left(M_{n}\right)\right)$, where L_{X} the operator of Lie derivation with respect to X.

Proof. (i) If $X, Y \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$ and $\left(\begin{array}{l}{\left[{ }^{c c} X,{ }^{c c} Y\right]^{\bar{\beta}}} \\ {\left[{ }^{c c} X,{ }^{c c} Y\right]^{\beta}} \\ {\left[{ }^{c c} X,{ }^{c c} Y\right]^{\bar{\beta}}}\end{array}\right)$ are components of $\left[{ }^{c c} X,{ }^{c c} Y\right]$ with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\overline{\bar{\beta}}}\right)$ on $t\left(M_{n}\right)$, then we have

$$
\left[{ }^{[c} X,{ }^{c c} Y\right]^{J}=\left({ }^{c c} X\right)^{I} \partial_{I}\left({ }^{(c} Y\right)^{J}-\left({ }^{c c} Y\right)^{I} \partial_{I}\left({ }^{c c} X\right)^{J} .
$$

As the first coordinate, if $J=\bar{\beta}$, we obtain

$$
\begin{aligned}
{\left[{ }^{c c} X,{ }^{c c} Y\right]^{\bar{\beta}}=} & \left({ }^{c c} X\right)^{I} \partial_{I}\left({ }^{c c} Y\right)^{\bar{\beta}}-\left({ }^{c c} Y\right)^{I} \partial_{I}\left({ }^{c c} X\right)^{\bar{\beta}} \\
= & \left.\left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} Y\right)^{\bar{\beta}}+\left({ }^{c c} X\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} Y\right)^{\bar{\beta}}+\left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}{ }^{(c c} Y\right)^{\bar{\beta}} \\
& \left.-\left({ }^{c c} Y\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} X\right)^{\bar{\beta}}-\left({ }^{c c} Y\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} X\right)^{\bar{\beta}}-\left({ }^{c c} Y\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}{ }^{c c} X\right)^{\bar{\beta}} \\
= & p_{\varepsilon} \partial_{\alpha} X^{\varepsilon}\left(\partial_{\beta} Y^{\alpha}\right)-X^{\alpha} \partial_{\alpha} p_{\varepsilon}\left(\partial_{\beta} Y^{\varepsilon}\right)-p_{\varepsilon} \partial_{\alpha} Y^{\varepsilon}\left(\partial_{\beta} X^{\alpha}\right)+Y^{\alpha} \partial_{\alpha} p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right) \\
= & p_{\varepsilon}\left(\partial_{\beta} Y^{\alpha} \partial_{\alpha} X^{\varepsilon}-X^{\alpha} \partial_{\alpha} \partial_{\beta} Y^{\varepsilon}-\partial_{\beta} X^{\alpha} \partial_{\alpha} Y^{\varepsilon}+Y^{\alpha} \partial_{\alpha} \partial_{\beta} X^{\varepsilon}\right) \\
= & -p_{\varepsilon}\left(\partial_{\beta}\left(X^{\alpha} \partial_{\alpha} Y^{\varepsilon}-Y^{\alpha} \partial_{\alpha} X^{\varepsilon}\right)\right) \\
= & -p_{\varepsilon}\left(\partial_{\beta}[X, Y]^{\varepsilon}\right)
\end{aligned}
$$

by virtue of (4.1). As the second coordinate, if $J=\beta$, we obtain

$$
\begin{aligned}
{\left[{ }^{c c} X,{ }^{c c} Y\right]^{\beta}=} & \left({ }^{c c} X\right)^{I} \partial_{I}\left({ }^{\left({ }^{c}\right.} Y\right)^{\beta}-\left({ }^{c c} Y\right)^{I} \partial_{I}\left({ }^{c c} X\right)^{\beta} \\
= & \left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c} Y\right)^{\beta}+\left({ }^{c c} X\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} Y\right)^{\beta}+\left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}\left({ }^{c c} Y\right)^{\beta} \\
& \left.-\left({ }^{c c} Y\right)^{\alpha} \partial_{\bar{\alpha}}\left({ }^{c c} X\right)^{\beta}-\left({ }^{(c} Y\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} X\right)^{\beta}-\left({ }^{c c} Y\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}{ }^{c c} X\right)^{\beta} \\
= & \left({ }^{c c} X\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} Y\right)^{\beta}-\left({ }^{c c} Y\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} X\right)^{\beta} \\
= & X^{\alpha} \partial_{\alpha} Y^{\beta}-Y^{\alpha} \partial_{\alpha} X{ }^{\beta} \\
= & {[X, Y]^{\beta} }
\end{aligned}
$$

by virtue of 4.1. As the third coordinate, if $J=\overline{\bar{\beta}}$, then we obtain

$$
\begin{aligned}
{\left[{ }^{c c} X,{ }^{c c} Y\right]^{\overline{\bar{\beta}}}=} & \left({ }^{c c} X\right)^{I} \partial_{I}\left({ }^{(c c} Y\right)^{\overline{\bar{\beta}}}-\left({ }^{c c} Y\right)^{I} \partial_{I}\left({ }^{c c} X\right)^{\overline{\bar{\beta}}} \\
= & \left.\left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} Y\right)^{\bar{\beta}}+\left({ }^{c c} X\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} Y\right)^{\bar{\beta}}+\left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}{ }^{c c} Y\right)^{\overline{\bar{\beta}}} \\
& \left.-\left({ }^{c c} Y\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} X\right)^{\bar{\beta}}-\left({ }^{c c} Y\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} X\right)^{\overline{\bar{\beta}}}-\left({ }^{c c} Y\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}{ }^{c c} X\right)^{\overline{\bar{\beta}}} \\
= & X^{\alpha} \partial_{\alpha}\left(y^{\varepsilon} \partial_{\varepsilon} Y^{\beta}\right)+y^{\varepsilon} \partial_{\varepsilon} X^{\alpha} \partial_{\overline{\bar{\alpha}}} y^{\sigma} \partial_{\sigma} Y^{\beta} \\
& -Y^{\alpha} \partial_{\alpha}\left(y^{\varepsilon} \partial_{\varepsilon} X^{\beta}\right)-y^{\varepsilon} \partial_{\varepsilon} Y^{\alpha} \partial_{\overline{\bar{\alpha}}} y^{\sigma} \partial_{\sigma} X^{\beta} \\
= & y^{\varepsilon} X^{\alpha} \partial_{\alpha} \partial_{\varepsilon} Y^{\beta}+y^{\varepsilon}\left(\partial_{\varepsilon} X^{\sigma}\right)\left(\partial_{\sigma} Y^{\beta}\right)-y^{\varepsilon} Y^{\alpha} \partial_{\alpha} \partial_{\varepsilon} X^{\beta}-y^{\varepsilon}\left(\partial_{\varepsilon} Y^{\sigma}\right)\left(\partial_{\sigma} X^{\beta}\right) \\
= & y^{\varepsilon} \partial_{\varepsilon}[X, Y]^{\beta}
\end{aligned}
$$

by virtue of 4.1]. On the other hand, we know that ${ }^{c c}[X, Y]$ have components

$$
{ }^{c}[X, Y]=\left(\begin{array}{c}
-p_{\varepsilon}\left(\partial_{\beta}[X, Y]^{\varepsilon}\right) \\
{[X, Y]^{\beta}} \\
y^{\varepsilon} \partial_{\varepsilon}[X, Y]^{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\overline{\bar{\beta}}}\right)$ on $t\left(M_{n}\right)$. Thus, we have (i) of Theorem 4.1.
(ii) If $X, Y \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$ and $\left(\begin{array}{l}{\left[{ }^{[c} X,{ }^{v v} Y\right]^{\bar{\beta}}} \\ {\left[{ }^{c c} X,{ }^{v v} Y\right]^{\beta}} \\ {\left[{ }^{c c} X,{ }^{v v} Y\right]^{\bar{\beta}}}\end{array}\right)$ are components of $\left[{ }^{c c} X,{ }^{v v} Y\right]$ with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(M_{n}\right)$, then we have

$$
\left[{ }^{c c} X,{ }^{v v} Y\right]^{J}=\left({ }^{c c} X\right)^{I} \partial_{I}\left({ }^{v v} Y\right)^{J}-\left({ }^{v v} Y\right)^{I} \partial_{I}\left({ }^{c c} X\right)^{J}
$$

As the first coordinate, if $J=\bar{\beta}$, we obtain

$$
\begin{aligned}
{\left[{ }^{c c} X,{ }^{v v} Y\right]^{\bar{\beta}} } & =\left({ }^{c c} X\right)^{I} \partial_{I}\left({ }^{v v} Y\right)^{\bar{\beta}}-\left({ }^{v v} Y\right)^{I} \partial_{I}\left({ }^{c c} X\right)^{\bar{\beta}} \\
& =-\left({ }^{v v} Y\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} X\right)^{\bar{\beta}}-\left({ }^{v v} Y\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} X\right)^{\bar{\beta}}-\left({ }^{v v} Y\right)^{\overline{\bar{\alpha}}} \partial_{\overline{\bar{\alpha}}}\left({ }^{c c} X\right)^{\bar{\beta}} \\
& =\left({ }^{v v} Y\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}} p_{\varepsilon}\left(\partial_{\alpha} X^{\varepsilon}\right) \\
& =0
\end{aligned}
$$

by virtue of 2.1 and 4.1 . As the second coordinate, if $J=\beta$, we obtain

$$
\begin{aligned}
{\left[{ }^{c c} X,{ }^{v v} Y\right]^{\beta} } & =\left({ }^{c c} X\right)^{I} \partial_{I}\left({ }^{v v} Y\right)^{\beta}-\left({ }^{v v} Y\right)^{I} \partial_{I}\left({ }^{c c} X\right)^{\beta} \\
& =-\left({ }^{v v} Y\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} X\right)^{\beta}-\left({ }^{v v} Y\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} X\right)^{\beta}-\left({ }^{v v} Y\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}\left({ }^{c c} X\right)^{\beta} \\
& =-\left({ }^{v v} Y\right)^{\overline{\bar{\alpha}}} \partial_{\overline{\bar{\alpha}}} X^{\beta} \\
& =0
\end{aligned}
$$

by virtue of 2.1) and 4.1. As the third coordinate, if $J=\overline{\bar{\beta}}$, then we obtain

$$
\begin{aligned}
{\left[{ }^{c c} X,{ }^{v v} Y\right]^{\overline{\bar{\beta}}}=} & \left({ }^{c c} X\right)^{I} \partial_{I}\left({ }^{v v} Y\right)^{\overline{\bar{\beta}}}-\left({ }^{v v} Y\right)^{I} \partial_{I}\left({ }^{c c} X\right)^{\overline{\bar{\beta}}} \\
= & \left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} Y\right)^{\overline{\bar{\beta}}}+\left({ }^{c c} X\right)^{\alpha} \partial_{\alpha}\left({ }^{v v} Y\right)^{\bar{\beta}}+\left({ }^{c c} X\right)^{\overline{\bar{\alpha}}} \partial_{\overline{\bar{\alpha}}}\left({ }^{v v} Y\right)^{\overline{\bar{\beta}}} \\
& -\left({ }^{v v} Y\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} X\right)^{\overline{\bar{\beta}}}-\left({ }^{v v} Y\right)^{\alpha} \partial_{\alpha}\left({ }^{c c} X\right)^{\overline{\bar{\beta}}}-\left({ }^{v v} Y\right)^{\overline{\bar{\alpha}}} \partial_{\overline{\bar{\alpha}}}\left({ }^{c c} X\right)^{\overline{\bar{\beta}}} \\
= & \left({ }^{c c} X\right)^{\alpha} \partial_{\alpha}\left({ }^{v v} Y\right)^{\overline{\bar{\beta}}}-\left({ }^{v v} Y\right)^{\overline{\bar{\alpha}}} \partial_{\overline{\bar{\alpha}}}\left({ }^{c c} X\right)^{\bar{\beta}} \\
= & X^{\alpha} \partial_{\alpha} Y^{\beta}+Y^{\alpha} \partial_{\overline{\bar{\alpha}}} y^{\varepsilon} \partial_{\varepsilon} X^{\beta} \\
= & X^{\alpha} \partial_{\alpha} Y^{\beta}+Y^{\alpha} \partial_{\alpha} X^{\beta} \\
= & {[X, Y]^{\beta} }
\end{aligned}
$$

by virtue of 2.1 and 4.1 . On the other hand, we know that the vertical lift ${ }^{v v}[X, Y]$ of [$X, Y]$ has components of the form

$$
{ }^{v v}[X, Y]=\left(\begin{array}{c}
0 \\
0 \\
{[X, Y]^{\beta}}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(M_{n}\right)$. Thus, we have $(i i)$ of Theorem 4.1.
(iii) If $X, Y \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$ and $\left(\begin{array}{l}\left.{ }^{\left[{ }^{v v}\right.} X,{ }^{v v} Y\right]^{\bar{\beta}} \\ {\left[{ }^{v v} X,{ }^{v v} Y\right]^{\beta}} \\ {\left[{ }^{v v} X,{ }^{v v} Y\right]^{\bar{\beta}}}\end{array}\right)$ are components of $\left[{ }^{v v} X,{ }^{v v} Y\right]$ with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(M_{n}\right)$, then we have

$$
\left[{ }^{v v} X,{ }^{v v} Y\right]^{J}=\left({ }^{v v} X\right)^{I} \partial_{I}\left({ }^{v v} Y\right)^{J}-\left({ }^{v v} Y\right)^{I} \partial_{I}\left({ }^{v v} X\right)^{J}
$$

As the first coordinate, if $J=\bar{\beta}$, we obtain

$$
\begin{aligned}
{\left[{ }^{v v} X,{ }^{v v} Y\right]^{\bar{\beta}} } & =\left({ }^{v v} X\right)^{I} \partial_{I}\left({ }^{v v} Y\right)^{\bar{\beta}}-\left({ }^{v v} Y\right)^{I} \partial_{I}\left({ }^{v v} X\right)^{\bar{\beta}} \\
& =0
\end{aligned}
$$

by virtue of (2.1). As the second coordinate, if $J=\beta$, we obtain

$$
\begin{aligned}
{\left[{ }^{v v} X,{ }^{v v} Y\right]^{\beta} } & =\left({ }^{v v} X\right)^{I} \partial_{I}\left({ }^{v v} Y\right)^{\beta}-\left({ }^{v v} Y\right)^{I} \partial_{I}\left({ }^{v v} X\right)^{\beta} \\
& =0
\end{aligned}
$$

by virtue of 2.1. As the third coordinate, if $J=\overline{\bar{\beta}}$, then we obtain

$$
\begin{aligned}
{\left[{ }^{v v} X,{ }^{v v} Y\right]^{\overline{\bar{\beta}}}=} & \left({ }^{v v} X\right)^{I} \partial_{I}\left({ }^{v v} Y\right)^{\bar{\beta}}-\left({ }^{v v} Y\right)^{I} \partial_{I}\left({ }^{v v} X\right)^{\bar{\beta}} \\
= & \left({ }^{v v} X\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} Y\right)^{\bar{\beta}}+\left({ }^{v v} X\right)^{\alpha} \partial_{\alpha}\left({ }^{v v} Y\right)^{\bar{\beta}}+\left({ }^{v v} X\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}\left({ }^{v v} Y\right)^{\bar{\beta}} \\
& -\left({ }^{v v} Y\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} X\right)^{\overline{\bar{\beta}}}-\left({ }^{v v} Y\right)^{\alpha} \partial_{\alpha}\left({ }^{v v} X\right)^{\overline{\bar{\beta}}}-\left({ }^{v v} Y\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}\left({ }^{v v} X\right)^{\overline{\bar{\beta}}} \\
= & 0
\end{aligned}
$$

by virtue of 2.1 . Thus, we have $(i i i)$ of Theorem 4.1 .
(iv) If $F \in \Im_{1}^{1}\left(T^{*}\left(M_{n}\right)\right), X \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$ and $\left(\begin{array}{c}{\left[{ }^{c c} X, \gamma F\right]^{\bar{\beta}}} \\ {\left[{ }^{c c} X, \gamma F\right]^{\beta}} \\ {\left[{ }^{c c} X, \gamma F\right]^{\bar{\beta}}}\end{array}\right)$ are components of [$\left.{ }^{c c} X, \gamma F\right]$ with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(M_{n}\right)$, then we have

$$
\left.\left.\left[{ }^{[c} X, \gamma F\right]\right]^{J}=\left({ }^{c c} X\right)^{I} \partial_{I}(\gamma F)\right)^{J}-(\gamma F)^{I} \partial_{I}\left({ }^{c c} X\right)^{J} .
$$

As the first coordinate, if $J=\bar{\beta}$, we obtain

$$
\begin{aligned}
{\left[{ }^{c c} X, \gamma F\right]^{\bar{\beta}}=} & \left({ }^{c c} X\right)^{I} \partial_{I}(\gamma F)^{\bar{\beta}}-(\gamma F)^{I} \partial_{I}\left({ }^{c c} X\right)^{\bar{\beta}} \\
= & \left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}(\gamma F)^{\bar{\beta}}+\left({ }^{c c} X\right)^{\alpha} \partial_{\alpha}(\gamma F)^{\bar{\beta}}+\left({ }^{c c} X\right)^{\overline{\bar{\alpha}}} \partial_{\bar{\alpha}}(\gamma F)^{\bar{\beta}} \\
& \left.-(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} X\right)^{\bar{\beta}}-(\gamma F)^{\alpha} \partial_{\alpha}\left({ }^{c c} X\right)^{\bar{\beta}}-(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}{ }^{c c} X\right)^{\bar{\beta}} \\
= & \left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}(\gamma F)^{\bar{\beta}}+\left({ }^{c c} X\right)^{\alpha} \partial_{\alpha}(\gamma F)^{\bar{\beta}}-(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} X\right)^{\bar{\beta}} \\
= & p_{\sigma}\left(\partial_{\alpha} X^{\sigma}\right) \partial_{\bar{\alpha}} p_{\sigma} F_{\beta}^{\sigma}-X^{\alpha} \partial_{\alpha} p_{\sigma} F_{\beta}^{\sigma}-p_{\sigma} F_{\alpha}^{\sigma} \partial_{\bar{\alpha}} p_{\sigma}\left(\partial_{\beta} X^{\sigma}\right) \\
= & p_{\sigma}\left(\partial_{\alpha} X^{\sigma}\right) F_{\beta}^{\alpha}-X^{\alpha} \partial_{\alpha} p_{\sigma} F_{\beta}^{\sigma}-p_{\sigma} F_{\alpha}^{\sigma}\left(\partial_{\beta} X^{\alpha}\right) \\
= & -p_{\sigma}\left(X^{\alpha} \partial_{\alpha} F_{\beta}^{\sigma}-\partial_{\alpha} X^{\sigma} F_{\beta}^{\alpha}+\partial_{\beta} X^{\alpha} F_{\alpha}^{\sigma}\right) \\
= & -p_{\sigma}\left(L_{X} F\right)_{\beta}^{\sigma}
\end{aligned}
$$

by virtue of (3.1) and (4.1). As the second coordinate, if $J=\beta$, we obtain

$$
\begin{aligned}
{\left[{ }^{c c} X, \gamma F\right]^{\beta}=} & \left({ }^{c c} X\right)^{I} \partial_{I}(\gamma F)^{\beta}-(\gamma F)^{I} \partial_{I}\left({ }^{c c} X\right)^{\beta} \\
= & \left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}(\gamma F)^{\beta}+\left({ }^{c c} X\right)^{\alpha} \partial_{\alpha}(\gamma F)^{\beta}+\left({ }^{c c} X\right)^{\overline{\bar{\alpha}}} \partial_{\overline{\bar{\alpha}}}(\gamma F)^{\beta} \\
& \left.-(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} X\right)^{\beta}-(\gamma F)^{\alpha} \partial_{\alpha}\left({ }^{c c} X\right)^{\beta}-(\gamma F)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}{ }^{c c} X\right)^{\beta} \\
= & 0
\end{aligned}
$$

by virtue of 3.1) and 4.1. As the third coordinate, if $J=\overline{\bar{\beta}}$, then we obtain

$$
\begin{aligned}
{\left[^{c c} X, \gamma F\right]^{\bar{\beta}}=} & \left.\left({ }^{c c} X\right)^{I} \partial_{I}(\gamma F)^{\bar{\beta}}-(\gamma F)^{I} \partial_{I}{ }^{c c} X\right)^{\overline{\bar{\beta}}} \\
= & \left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\bar{\alpha}}(\gamma F)^{\bar{\beta}}+\left({ }^{c c} X\right)^{\alpha} \partial_{\alpha}(\gamma F)^{\bar{\beta}}+\left({ }^{c c} X\right)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}(\gamma F)^{\bar{\beta}} \\
& \left.-(\gamma F)^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{c c} X\right)^{\bar{\beta}}-(\gamma F)^{\alpha} \partial_{\alpha}\left({ }^{c c} X\right)^{\bar{\beta}}-(\gamma F)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}{ }^{c c} X\right)^{\bar{\beta}} \\
= & X^{\alpha} \partial_{\alpha} y^{\varepsilon} F_{\varepsilon}^{\beta}+y^{\varepsilon} \partial_{\varepsilon} X^{\alpha} \partial_{\overline{\bar{\alpha}}} \bar{y}^{\varepsilon} F_{\varepsilon}^{\beta}-y^{\varepsilon} F_{\varepsilon}^{\alpha} \partial_{\overline{\bar{\alpha}}} y^{\varepsilon} \partial_{\varepsilon} X^{\beta} \\
= & y^{\varepsilon} X^{\alpha} \partial_{\alpha} F_{\varepsilon}^{\beta}+y^{\varepsilon} \partial_{\varepsilon} X^{\alpha} F_{\alpha}^{\beta}-y^{\varepsilon} F_{\varepsilon}^{\alpha} \partial_{\alpha} X^{\beta} \\
= & y^{\varepsilon}\left(\partial_{\varepsilon} X^{\alpha} F_{\alpha}^{\beta}+X^{\alpha} \partial_{\alpha} F_{\varepsilon}^{\beta}-F_{\varepsilon}^{\alpha} \partial_{\alpha} X^{\beta}\right) \\
= & y^{\varepsilon}\left(L_{X} F\right)_{\varepsilon}^{\beta}
\end{aligned}
$$

by virtue of (3.1) and 4.1. We know that $\gamma\left(L_{X} F\right)$ have components

$$
\gamma\left(L_{X} F\right)=\left(\begin{array}{c}
-p_{\sigma}\left(L_{X} F\right)_{\beta}^{\sigma} \\
0 \\
y^{\varepsilon}\left(L_{X} F\right)_{\varepsilon}^{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\overline{\bar{\beta}}}\right)$ on $t\left(M_{n}\right)$. Thus, we have $(i v)$ of Theorem 4.1

5 Complete Lift of Tensor Fields of Type (1,1)

Suppose now that $F \in \Im_{1}^{1}\left(T^{*}\left(M_{n}\right)\right)$ and F has local components F_{β}^{α} in a neighborhood U of $M_{n}, F=F_{\beta}^{\alpha} \partial_{\alpha} \otimes d x^{\beta}$. If we take account of 1.3, we can prove that ${ }^{c c} F_{J^{\prime}}^{I^{\prime}}=$ $A_{I}^{I^{\prime}} A_{J^{\prime}}^{J}{ }^{c c} F_{J}^{I}$, where ${ }^{c c} F$ is an affinor field defined by

$$
{ }^{c c} F=\left({ }^{c c} F_{J}^{I}\right)=\left(\begin{array}{ccc}
F_{\alpha}^{\beta} & p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) & 0 \tag{5.1}\\
0 & F_{\beta}^{\alpha} & 0 \\
0 & y^{\varepsilon} \partial_{\varepsilon} F_{\beta}^{\alpha} & F_{\beta}^{\alpha}
\end{array}\right),
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on $t\left(M_{n}\right)$. We call ${ }^{c c} F$ the complete lift of the tensor field F of type $(1,1)$ to $t\left(M_{n}\right)$.

Proof. For simplicity we take only ${ }^{c c} F_{\bar{\beta}^{\prime}}^{\bar{\alpha}^{\prime}}$. In fact,

$$
\begin{aligned}
{ }^{c c} F_{\bar{\beta}^{\prime}}^{\bar{\alpha}^{\prime}}= & A_{\bar{\alpha}}^{\overline{\alpha^{\prime}}} A_{\overline{\beta^{\prime}}}^{\bar{\beta}}{ }^{c c} F_{\bar{\beta}}^{\bar{\alpha}}+A_{\bar{\alpha}}^{\overline{\alpha^{\prime}}} A_{\overline{\beta^{\prime}}}{ }^{c c} F_{\beta}^{\bar{\alpha}}+A_{\frac{\alpha}{\alpha^{\prime}}}^{\overline{\bar{\beta}}} A_{\bar{\beta}^{\prime}}{ }^{c c} F_{\overline{\bar{\beta}}}^{\bar{\alpha}} \\
& +A_{\alpha}^{\overline{\alpha^{\prime}}} A_{\overline{\beta^{\prime}}}^{\bar{\beta}}{ }^{c c} F_{\bar{\beta}}^{\alpha}+A_{\alpha}^{\overline{\alpha^{\prime}}} A_{\overline{\beta^{\prime}}}^{\beta}{ }^{c c} F_{\beta}^{\alpha}+A_{\alpha}^{\overline{\alpha^{\prime}}} A_{\overline{\beta^{\prime}}}{ }^{c c} F_{\overline{\bar{\beta}}}^{\alpha} \\
& +A_{\overline{\bar{\alpha}}}^{\overline{\alpha^{\prime}}} A_{\overline{\beta^{\prime}}}^{\bar{\beta}}{ }^{c c} F_{\bar{\beta}}^{\overline{\bar{\alpha}}}+A_{\overline{\bar{\alpha}}}^{\overline{\alpha^{\prime}}} A_{\bar{\beta}^{\prime}}^{\beta}{ }^{c c} F_{\beta}^{\overline{\bar{\alpha}}}+A_{\overline{\bar{\alpha}}}^{\overline{\alpha^{\prime}}} A_{\bar{\beta}^{\prime}}^{\overline{\bar{\beta}}}{ }^{c c} F_{\overline{\bar{\beta}}}^{\overline{\bar{\alpha}}} \\
= & A_{\bar{\alpha}}^{\bar{\alpha}^{\prime}} A_{\bar{\beta}^{\prime}}{ }^{c c} F_{\bar{\beta}}^{\bar{\alpha}} \\
= & A_{\alpha^{\prime}}^{\alpha} A_{\beta}^{\beta^{\prime}} F_{\alpha}^{\beta} \\
= & F_{\alpha^{\prime}}^{\beta^{\prime}} .
\end{aligned}
$$

Thus we have ${ }^{c c} F_{\bar{\beta}^{\prime}}^{\bar{\alpha}^{\prime}}=F_{\alpha^{\prime}}^{\beta^{\prime}}$. Similarly, we can easily find another components of ${ }^{c c} F_{J^{\prime}}^{I^{\prime}}$.

Theorem 5.1 If F and G are affinor fields on $T^{*}\left(M_{n}\right)$, and $X \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$, then
(i) ${ }^{c c} F\left({ }^{c c} X\right)={ }^{c c}(F X)-\gamma\left(L_{X} F\right)+{ }^{v v}\left(\gamma\left(L_{X} F\right)\right)$,
(ii) ${ }^{c c} F\left({ }^{v v} X\right)={ }^{v v}(F \circ X)$,
(iii) ${ }^{c c} F(\gamma G)=\gamma(F \circ G)$.

Proof. (i) If $X \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$ and $F \in \Im_{1}^{1}\left(T^{*}\left(M_{n}\right)\right)$, from 2.1], 4.1) and 5.1], we have

$$
\begin{aligned}
{ }^{c c} F^{c c} X & =\left(\begin{array}{ccc}
F_{\alpha}^{\beta} p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & y^{\varepsilon} \partial_{\varepsilon} F_{\beta}^{\alpha} & F_{\beta}^{\alpha}
\end{array}\right)\left(\begin{array}{c}
-p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right) \\
X^{\beta} \\
y^{\varepsilon} \partial_{\varepsilon} X^{\beta}
\end{array}\right) \\
& =\left(\begin{array}{c}
-p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right) F_{\alpha}^{\beta}+p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) X^{\beta} \\
F_{\beta}^{\alpha} X^{\beta} \\
y^{\varepsilon} \partial_{\varepsilon} F_{\beta}^{\alpha} X^{\beta}+F_{\beta}^{\alpha} y^{\varepsilon} \partial_{\varepsilon} X^{\beta}
\end{array}\right) \\
& =\left(\begin{array}{c}
-p_{\varepsilon}\left(\partial_{\beta} X^{\varepsilon}\right) F_{\alpha}^{\beta}+p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) X^{\beta} \\
(F X)^{\alpha} \\
F_{\beta}^{\alpha} y^{\varepsilon} \partial_{\varepsilon} X^{\beta}+y^{\varepsilon} \partial_{\varepsilon} F_{\beta}^{\alpha} X^{\beta}
\end{array}\right) \\
& =\left(\begin{array}{c}
-p_{\sigma} \partial_{\alpha}(F X)^{\sigma} \\
(F X)^{\alpha} \\
y^{\varepsilon} \partial_{\varepsilon}(F X)^{\alpha}
\end{array}\right)+\left(\begin{array}{c}
p_{\sigma}\left(X^{\beta} \partial_{\beta} F_{\alpha}^{\sigma}-\left(\partial_{\alpha} X^{\beta}\right) F_{\beta}^{\sigma}-\left(\partial_{\beta} X^{\sigma}\right) F_{\alpha}^{\beta}\right) \\
0 \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
-p_{\sigma} \partial_{\alpha}(F X)^{\sigma} \\
(F X)^{\alpha} \\
y^{\varepsilon} \partial_{\varepsilon}(F X)^{\alpha}
\end{array}\right)-\left(\begin{array}{c}
-p_{\sigma}\left(L_{X} F\right)_{\alpha}^{\sigma} \\
0 \\
y^{\varepsilon}\left(L_{X} F\right)_{\varepsilon}^{\alpha}
\end{array}\right)+\binom{0}{y^{\varepsilon}\left(L_{X} F\right)_{\varepsilon}^{\alpha}} \\
& ={ }^{c c}(F X)-\gamma\left(L_{X} F\right)+{ }^{v v}\left(\gamma\left(L_{X} F\right)\right),
\end{aligned}
$$

which prove (i) of Theorem 5.1 .
(ii) If $X \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right.$) and $F \in \Im_{1}^{1}\left(T^{*}\left(M_{n}\right)\right)$, from 2.1 and 5.1], we have

$$
\begin{aligned}
{ }^{c c} F^{v v} X & =\left(\begin{array}{ccc}
F_{\alpha}^{\beta} p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & y^{\varepsilon} \partial_{\varepsilon} F_{\beta}^{\alpha} & F_{\beta}^{\alpha}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
X^{\beta}
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
0 \\
F_{\beta}^{\alpha} X^{\beta}
\end{array}\right)=\left(\begin{array}{cc}
0 \\
0 \\
(F \circ X)^{\alpha}
\end{array}\right)={ }^{v v}(F \circ X),
\end{aligned}
$$

which gives equation $(i i)$ of Theorem 5.1 .
(iii) If $F, G \in \Im_{1}^{1}\left(T^{*}\left(M_{n}\right)\right)$, then, by 3.1) and 5.1, we find

$$
\begin{aligned}
{ }^{c c} F(\gamma G) & =\left(\begin{array}{ccc}
F_{\alpha}^{\beta} p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & y^{\varepsilon} \partial_{\varepsilon} F_{\beta}^{\alpha} & F_{\beta}^{\alpha}
\end{array}\right)\left(\begin{array}{c}
-p_{\sigma} G_{\beta}^{\sigma} \\
0 \\
y^{\varepsilon} G_{\varepsilon}^{\beta}
\end{array}\right) \\
& =\left(\begin{array}{c}
-p_{\sigma} F_{\alpha}^{\beta} G_{\beta}^{\sigma} \\
0 \\
y^{\varepsilon} F_{\beta}^{\alpha} G_{\varepsilon}^{\beta}
\end{array}\right)=\left(\begin{array}{c}
-p_{\sigma}(F \circ G)_{\alpha}^{\sigma} \\
0 \\
y^{\varepsilon}(F \circ G)_{\varepsilon}^{\alpha}
\end{array}\right)=\gamma(F \circ G) .
\end{aligned}
$$

6 Horizontal Lifts of Vector Fields

Let $X \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$, i.e. $X=X^{\alpha} \partial_{\alpha}$. Then we define the horizontal lift ${ }^{H H} X$ of X by

$$
{ }^{H H} X={ }^{c c} X-\gamma(\nabla X)
$$

on $t\left(M_{n}\right)$. Where ∇ is a symmetric affine connection in a differentiable manifold M_{n}. Then, remembering that ${ }^{c c} X$ and $\gamma(\nabla X)$ have, respectively, local componenets

$$
{ }^{c c} X=\left({ }^{c c} X^{A}\right)=\left(\begin{array}{c}
-p_{\varepsilon}\left(\partial_{\alpha} X^{\varepsilon}\right) \\
X^{\alpha} \\
y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}
\end{array}\right), \quad \gamma(\nabla X)=\left(\gamma(\nabla X)^{A}\right)=\left(\begin{array}{c}
-p_{\varepsilon}\left(\nabla_{\alpha} X^{\varepsilon}\right) \\
0 \\
y^{\varepsilon} \nabla_{\varepsilon} X^{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\overline{\bar{\alpha}}}\right)$ on $t\left(M_{n}\right) . \nabla_{\alpha} X^{\varepsilon}$ being the covariant derivative of X^{ε}, i.e.,

$$
\left(\nabla_{\alpha} X^{\varepsilon}\right)=\partial_{\alpha} X^{\varepsilon}+X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon}
$$

We find that the horizontal lift ${ }^{H H} X$ of X has the components

$$
{ }^{H H} X=\left({ }^{H H} X^{A}\right)=\left(\begin{array}{c}
X^{\beta} \Gamma_{\beta \alpha} \tag{6.1}\\
X^{\alpha} \\
-\Gamma_{\beta}^{\alpha} X^{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\overline{\bar{\alpha}}}\right)$ on $t\left(M_{n}\right)$. Where

$$
\begin{equation*}
\Gamma_{\beta}^{\alpha}=y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}, \quad \Gamma_{\beta \alpha}=p_{\varepsilon} \Gamma_{\beta \alpha}^{\varepsilon} \tag{6.2}
\end{equation*}
$$

Theorem 6.1 If $X, Y \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$ then
(i) $\left[{ }^{H H} X,{ }^{H H} Y\right]={ }^{H H}[X, Y]-\gamma R(X, Y)$,
(ii) $\left[{ }^{H H} X,{ }^{v v} Y\right]={ }^{v v}\left(\nabla_{X} Y\right)$,
where R is the curvature tensor of the affine connection ∇ is given by $\left(L_{X} \nabla\right)_{Y}=$ $\nabla_{Y} \nabla X+R(X, Y)$.

Proof. (i) If X and Y are vector fields on $T^{*}\left(M_{n}\right)$, and $\left(\begin{array}{l}{\left[{ }^{H H} X,{ }^{H H} Y\right]^{\bar{\beta}}} \\ {\left[{ }^{H H} X,{ }^{H H} Y\right]^{\beta}} \\ {\left[{ }^{H H} X,{ }^{H H} Y\right]^{\bar{\beta}}}\end{array}\right)$ are components of $\left[{ }^{H H} X,{ }^{H H} Y\right.$] with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\overline{\bar{\beta}}}\right)$ on $t\left(M_{n}\right)$, then by (6.1), we have

$$
\begin{aligned}
{\left[{ }^{H H} X,{ }^{H H} Y\right]^{J}=} & { }^{H H} X^{I} \partial_{I}\left({ }^{H H} Y\right)^{J}-{ }^{H H} Y^{I} \partial_{I}\left({ }^{H H} X\right)^{J} \\
= & { }^{H H} X^{\bar{\alpha}} \partial_{\bar{\alpha}}{ }^{H H} Y^{J}+{ }^{H H} X^{\alpha} \partial_{\alpha}{ }^{H H} Y^{J}+{ }^{H H} X^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}{ }^{H H} Y^{J} \\
& -{ }^{H H} Y^{\bar{\alpha}} \partial_{\bar{\alpha}}{ }^{H H} X^{J}-{ }^{H H} Y^{\alpha} \partial_{\alpha}{ }^{H H} X^{J}-{ }^{H H} Y^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}{ }^{H H} X^{J} \\
= & p_{\varepsilon} X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}}{ }^{H H} Y^{J}+X^{\alpha} \partial_{\alpha}{ }^{H H} Y^{J}-y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\beta} \partial_{\overline{\bar{\alpha}}}{ }^{H H} Y^{J} \\
& -p_{\varepsilon} Y^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}}{ }^{H H} X^{J}-Y^{\alpha} \partial_{\alpha}{ }^{H H} X^{J}+y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} Y^{\beta} \partial_{\overline{\bar{\alpha}}}{ }^{H H} X^{J}
\end{aligned}
$$

As the first coordinate, if $J=\bar{\beta}$, we obtain

$$
\begin{aligned}
{\left[{ }^{H H} X,{ }^{H H} Y\right]^{\bar{\beta}}=} & p_{\varepsilon} X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}}{ }^{H H} Y^{\overline{\bar{\beta}}}+X^{\alpha} \partial_{\alpha}{ }^{H H} Y^{\bar{\beta}}-y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\beta} \partial_{\overline{\bar{\alpha}}}{ }^{H H} Y^{\bar{\beta}} \\
& -p_{\varepsilon} Y^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}}{ }^{H H} X^{\bar{\beta}}-Y^{\alpha} \partial_{\alpha}{ }^{H H} X^{\bar{\beta}}+y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} Y^{\beta} \partial_{\overline{\bar{\alpha}}}{ }^{H H} X^{\bar{\beta}} \\
= & p_{\varepsilon} X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}} p_{\varepsilon} Y^{\alpha} \Gamma_{\alpha \beta}^{\varepsilon}+X^{\alpha} \partial_{\alpha}\left(p_{\varepsilon} Y^{\alpha} \Gamma_{\alpha \beta}^{\varepsilon}\right)-y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\beta} \partial_{\overline{\bar{\alpha}}} p_{\varepsilon} Y^{\alpha} \Gamma_{\alpha \beta}^{\varepsilon} \\
& -p_{\varepsilon} Y^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}} p_{\varepsilon} X^{\alpha} \Gamma_{\alpha \beta}^{\varepsilon}-Y^{\alpha} \partial_{\alpha}\left(p_{\varepsilon} X^{\alpha} \Gamma_{\alpha \beta}^{\varepsilon}\right)+y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} Y^{\beta} \partial_{\bar{\alpha}} p_{\varepsilon} X^{\alpha} \Gamma_{\alpha \beta}^{\varepsilon} \\
= & p_{\varepsilon} X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} Y^{\theta} \Gamma_{\theta \beta}^{\alpha}+X^{\alpha} \partial_{\alpha}\left(p_{\varepsilon} Y^{\alpha} \Gamma_{\alpha \beta}^{\varepsilon}\right)-p_{\varepsilon} Y^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} X^{\theta} \Gamma_{\theta \beta}^{\alpha}-Y^{\alpha} \partial_{\alpha}\left(p_{\varepsilon} X^{\alpha} \Gamma_{\alpha \beta}^{\varepsilon}\right) \\
= & p_{\varepsilon} X^{\alpha} Y^{\theta} \Gamma_{\alpha \sigma}^{\varepsilon} \Gamma_{\theta \beta}^{\sigma}+p_{\varepsilon} X^{\alpha} Y^{\theta} \partial_{\alpha} \Gamma_{\theta \beta}^{\varepsilon}+p_{\varepsilon} X^{\alpha}\left(\partial_{\alpha} Y^{\alpha}\right) \Gamma_{\alpha \beta}^{\varepsilon} \\
& -p_{\varepsilon} X^{\alpha} Y^{\theta} \Gamma_{\theta \sigma}^{\varepsilon} \Gamma_{\alpha \beta}^{\sigma}-p_{\varepsilon} Y^{\alpha} X^{\theta} \partial_{\alpha} \Gamma_{\theta \beta}^{\varepsilon}-p_{\varepsilon} Y^{\alpha}\left(\partial_{\alpha} X^{\alpha}\right) \Gamma_{\alpha \beta}^{\varepsilon} \\
= & {\left[p_{\varepsilon}\left(X^{\alpha}\left(\partial_{\alpha} Y^{\alpha}\right)-Y^{\alpha}\left(\partial_{\alpha} X^{\alpha}\right)\right) \Gamma_{\alpha \beta}^{\varepsilon}\right] } \\
& +p_{\varepsilon}\left[X^{\alpha} Y^{\theta}\left(\partial_{\alpha} \Gamma_{\theta \beta}^{\varepsilon}-\partial_{\theta} \Gamma_{\alpha \beta}^{\varepsilon}+\Gamma_{\alpha \sigma}^{\varepsilon} \Gamma_{\theta \beta}^{\sigma}-\Gamma_{\theta \sigma}^{\varepsilon} \Gamma_{\alpha \beta}^{\sigma}\right)\right] \\
= & p_{\varepsilon}[X, Y]^{\alpha} \Gamma_{\alpha \beta}^{\varepsilon}+p_{\varepsilon}(R(X, Y))_{\beta}^{\varepsilon}
\end{aligned}
$$

by virtue of 6.1). As the second coordinate, if $J=\beta$, we obtain

$$
\begin{aligned}
{\left[{ }^{H H} X,{ }^{H H} Y\right]^{\beta}=} & p_{\varepsilon} X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}}{ }^{H H} Y^{\beta}+X^{\alpha} \partial_{\alpha}{ }^{H H} Y^{\beta}-y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\beta} \partial_{\overline{\bar{\alpha}}}{ }^{H H} Y^{\beta} \\
& -p_{\varepsilon} Y^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}}{ }^{H H} X^{\beta}-Y^{\alpha} \partial_{\alpha}{ }^{H H} X^{\beta}+y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} Y^{\beta} \partial_{\overline{\bar{\alpha}}}{ }^{H H} X^{\beta} \\
= & p_{\varepsilon} X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}} Y^{\beta}+X^{\alpha} \partial_{\alpha} Y^{\beta}-y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\beta} \partial_{\overline{\bar{\alpha}}} Y^{\beta} \\
& -p_{\varepsilon} Y^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}} X^{\beta}-Y^{\alpha} \partial_{\alpha} X^{\beta}+y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} Y^{\beta} \partial_{\overline{\bar{\alpha}}} X^{\beta} \\
= & X^{\alpha} \partial_{\alpha} Y^{\beta}-Y^{\alpha} \partial_{\alpha} X^{\beta} \\
= & {[X, Y]^{\beta} }
\end{aligned}
$$

by virtue of 6.1). As the third coordinate, if $J=\overline{\bar{\beta}}$, then we obtain

$$
\begin{aligned}
{\left[{ }^{H H} X,{ }^{H H} Y\right]^{\bar{\beta}}=} & y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\beta} \partial_{\bar{\alpha}} y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} Y^{\alpha}-X^{\alpha} \partial_{\alpha}\left(y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} Y^{\alpha}\right)-p_{\varepsilon} X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}} y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} Y^{\alpha} \\
& -y^{\varepsilon} \Gamma_{\varepsilon \beta}^{\alpha} Y^{\beta} \partial_{\bar{\alpha}} y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} X^{\alpha}+Y^{\alpha} \partial_{\alpha}\left(y^{\varepsilon} \Gamma_{\varepsilon \alpha}^{\beta} X^{\alpha}\right)+p_{\varepsilon} Y^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\overline{\bar{\alpha}}} y^{\varepsilon} \Gamma_{\varepsilon \alpha}^{\beta} X^{\alpha} \\
= & y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\beta} \partial_{\bar{\alpha}} y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} Y^{\alpha}-X^{\alpha} \partial_{\alpha}\left(y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} Y^{\alpha}\right) \\
& -y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} Y^{\beta} \partial_{\bar{\alpha}} y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} X^{\alpha}+Y^{\alpha} \partial_{\alpha}\left(y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} X^{\alpha}\right) \\
= & -X^{\alpha} \partial_{\alpha}\left(y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} Y^{\alpha}\right)+y^{\varepsilon} X^{\beta} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} Y^{\theta} \Gamma_{\alpha \theta}^{\beta}+Y^{\alpha} \partial_{\alpha}\left(y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} X^{\alpha}\right)-y^{\varepsilon} Y^{\beta} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\theta} \Gamma_{\alpha \theta}^{\beta} \\
= & -y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} X^{\alpha}\left(\partial_{\alpha} Y^{\alpha}\right)-y^{\varepsilon} X^{\alpha} Y^{\theta} \partial_{\alpha} \Gamma_{\theta}^{\beta}{ }^{\varepsilon}-y^{\varepsilon} X^{\alpha} Y^{\theta} \Gamma_{\alpha}^{\beta}{ }_{\gamma} \Gamma_{\theta}^{\gamma}{ }^{\varepsilon} \\
& +y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} Y^{\alpha}\left(\partial_{\alpha} X^{\alpha}\right)+y^{\varepsilon} X^{\alpha} Y^{\theta} \partial_{\theta} \Gamma_{\alpha}^{\beta}-y^{\varepsilon} X^{\alpha} Y^{\theta} \Gamma_{\theta}^{\beta}{ }_{\gamma} \Gamma_{\alpha}^{\gamma} \\
= & -\left[y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha}\left(X^{\alpha}\left(\partial_{\alpha} Y^{\alpha}\right)-Y^{\alpha}\left(\partial_{\alpha} X^{\alpha}\right)\right)\right] \\
& -y^{\varepsilon}\left[X^{\alpha} Y^{\theta}\left(\partial_{\alpha} \Gamma_{\theta}^{\beta}{ }^{\beta}-\partial_{\theta} \Gamma_{\alpha}^{\beta}-\Gamma_{\alpha \gamma}^{\beta} \Gamma_{\theta}^{\gamma}{ }^{\beta}+\Gamma_{\theta}^{\beta}{ }_{\gamma} \Gamma_{\alpha}^{\gamma}\right)\right] \\
= & -\left[y^{\varepsilon} \Gamma_{\varepsilon \alpha}^{\beta}[X, Y]^{\alpha}\right]-y^{\varepsilon}(R(X, Y))_{\varepsilon}^{\beta}
\end{aligned}
$$

by virtue of 6.1]. We know that ${ }^{H H}[X, Y]-\gamma R(X, Y)$ have components

$$
\begin{aligned}
{ }^{H H}[X, Y]-\gamma R(X, Y) & =\left(\begin{array}{c}
p_{\varepsilon}[X, Y]^{\alpha} \Gamma^{\varepsilon}{ }^{\varepsilon} \beta \\
{[X, Y]^{\beta}} \\
-y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha}[X, Y]^{\alpha}
\end{array}\right)-\left(\begin{array}{c}
-p_{\varepsilon}(R(X, Y))_{\beta}^{\varepsilon} \\
0 \\
y^{\varepsilon}(R(X, Y))_{\varepsilon}^{\beta}
\end{array}\right) \\
& =\left(\begin{array}{c}
p_{\varepsilon}[X, Y]^{\alpha} \Gamma_{\alpha \beta}^{\varepsilon}+p_{\varepsilon}(R(X, Y))_{\beta}^{\varepsilon} \\
{[X, Y]^{\beta}} \\
-y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha}[X, Y]^{\alpha}-y^{\varepsilon}(R(X, Y))_{\varepsilon}^{\beta}
\end{array}\right)
\end{aligned}
$$

with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\overline{\bar{\beta}}}\right)$ on $t\left(M_{n}\right)$. Thus, we have $\left[{ }^{H H} X,{ }^{H H} Y\right]=$ ${ }^{H H}[X, Y]-\gamma R(X, Y)$.
(ii) If $X, Y \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$, and $\left(\begin{array}{l}{\left[{ }^{H H} X,{ }^{v v} Y\right]^{\bar{\beta}}} \\ {\left[{ }^{H H} X,{ }^{v v} Y\right]^{\beta}} \\ {\left[{ }^{H H} X,{ }^{v v} Y\right]^{\bar{\beta}}}\end{array}\right)$ are components of $\left[{ }^{H H} X,{ }^{v v} Y\right]$
with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\overline{\bar{\beta}}}\right)$ on $t\left(M_{n}\right)$, then by 2.1) and 6.1, we have

$$
\begin{aligned}
{\left[{ }^{H H} X,{ }^{v v} Y\right]^{J}=} & { }^{H H} X^{I} \partial_{I}\left({ }^{v v} Y^{J}\right)-{ }^{v v} Y^{I} \partial_{I}{ }^{H H} X^{J} \\
= & \left.{ }^{H H} X^{\bar{\alpha}} \partial_{\bar{\alpha}}\left({ }^{v v} Y^{J}\right)+{ }^{H H} X^{\alpha} \partial_{\alpha}\left({ }^{v v} Y^{J}\right)+{ }^{H H} X^{\bar{\alpha}} \partial_{\bar{\alpha}}{ }^{v v} Y^{J}\right) \\
& -{ }^{v v} Y^{\bar{\alpha}} \partial_{\bar{\alpha}}{ }^{H H} X^{J}-{ }^{v v} Y^{\alpha} \partial_{\alpha}{ }^{H H} X^{J}-{ }^{v v} Y^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}{ }^{H H} X^{J} \\
= & p_{\varepsilon} X^{\beta} \Gamma_{\beta}^{\varepsilon} \partial_{\bar{\alpha}}\left({ }^{v v} Y^{J}\right)+X^{\alpha} \partial_{\alpha}\left({ }^{v v} Y^{J}\right)-y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\beta} \partial_{\overline{\bar{\alpha}}}\left({ }^{v v} Y^{J}\right)-Y^{\alpha} \partial_{\overline{\bar{\alpha}}}{ }^{H H} X^{J} .
\end{aligned}
$$

As the first coordinate, if $J=\bar{\beta}$, we obtain

$$
\begin{aligned}
{\left[{ }^{H H} X,{ }^{v v} Y\right]^{\bar{\beta}} } & =p_{\varepsilon} X^{\beta} \Gamma_{\beta}^{\varepsilon} \partial_{\bar{\alpha}}^{v v} Y^{\bar{\beta}}+X^{\alpha} \partial_{\alpha}^{v v} Y^{\bar{\beta}}-y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\beta} \partial_{\bar{\alpha}}^{v v} Y^{\bar{\beta}}-Y^{\alpha} \partial_{\overline{\bar{\alpha}}}{ }^{H H} X^{\bar{\beta}} \\
& =-Y^{\alpha} \partial_{\bar{\alpha}} p_{\varepsilon} X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \\
& =0
\end{aligned}
$$

by virtue of (2.1) and (6.1). As the second coordinate, if $J=\beta$ we obtain

$$
\begin{aligned}
{\left[{ }^{H H} X,{ }^{v v} Y\right]^{\beta} } & =p_{\varepsilon} X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}}\left({ }^{v v} Y^{\beta}\right)+X^{\alpha} \partial_{\alpha}\left({ }^{v v} Y^{\beta}\right)-y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\beta} \partial_{\overline{\bar{\alpha}}}\left({ }^{v v} Y^{\beta}\right)-Y^{\alpha} \partial_{\overline{\bar{\alpha}}}{ }^{H H} X^{\beta} \\
& =-Y^{\alpha} \partial_{\overline{\bar{\alpha}}} X^{\beta} \\
& =0
\end{aligned}
$$

by virtue of 2.1) and 6.1. As the third coordinate, if $J=\overline{\bar{\beta}}$, then we obtain

$$
\begin{aligned}
{\left[{ }^{H H} X,{ }^{v v} Y\right]^{\overline{\bar{\beta}}} } & =p_{\varepsilon} X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}}\left({ }^{v v} Y^{\overline{\bar{\beta}}}\right)+X^{\alpha} \partial_{\alpha}\left({ }^{v v} Y^{\overline{\bar{\beta}}}\right)-y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha} X^{\beta} \partial_{\overline{\bar{\alpha}}}\left({ }^{v v} Y^{\overline{\bar{\beta}}}\right)-Y^{\alpha} \partial_{\overline{\bar{\alpha}}}{ }^{H H} X^{\overline{\bar{\beta}}} \\
& =p_{\varepsilon} X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} \partial_{\bar{\alpha}}\left({ }^{v v} Y^{\bar{\beta}}\right)+X^{\alpha} \partial_{\alpha}\left({ }^{v v} Y^{\bar{\beta}}\right)-y^{\varepsilon} \Gamma_{\varepsilon}^{\alpha}{ }_{\beta} X^{\beta} \partial_{\overline{\bar{\alpha}}}\left({ }^{v v} Y^{\overline{\bar{\beta}}}\right)-Y^{\alpha} \partial_{\overline{\bar{\alpha}}}{ }^{H H} X^{\bar{\beta}} \\
& =X^{\alpha} \partial_{\alpha} Y^{\beta}+Y^{\alpha} \partial_{\bar{\alpha}} y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\theta} X^{\theta} \\
& =X^{\theta} \partial_{\theta} Y^{\beta}+Y^{\alpha} X^{\theta} \Gamma_{\alpha}^{\beta} \theta \\
& =X^{\theta}\left(\partial_{\theta} Y^{\beta}+\Gamma_{\theta}^{\beta}{ }_{\alpha} Y^{\alpha}\right)=\left(\nabla_{X} Y\right)^{\beta}
\end{aligned}
$$

by virtue of (2.1) and (6.1). On the other hand the vertical lift ${ }^{v v}\left(\nabla_{X} Y\right)$ of $\left(\nabla_{X} Y\right)$ has components of the form

$$
{ }^{v v}\left(\nabla_{X} Y\right)=\left(\begin{array}{c}
0 \\
0 \\
\left(\nabla_{X} Y\right)^{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t\left(M_{n}\right)$. Thus we have $(i i)$ of Theorem 6.1.

7 Horizontal Lifts of Tensor Fields of Type (1,1)

Suppose now that $F \in \Im_{1}^{1}\left(T^{*}\left(M_{n}\right)\right)$ and F has local components F_{β}^{α} in a neighborhood U of $M_{n}, F=F_{\beta}^{\alpha} \partial_{\alpha} \otimes d x^{\beta}$. Then we define the horizontal lift ${ }^{H H} F$ of F by

$$
\begin{equation*}
{ }^{H H} F={ }^{c c} F-\gamma[\nabla F] \tag{7.1}
\end{equation*}
$$

on $t\left(M_{n}\right)$. Where $[\nabla F]$ is a tensor field of type $(1,2)$ defined by

$$
\begin{equation*}
[\nabla F](X, Y)=-\nabla_{X}(F Y)+\nabla_{Y}(F X), \tag{7.2}
\end{equation*}
$$

X and Y being arbitrary elements of $\Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$. From (5.1], 7.1] and $\sqrt[7.2]{ }$, we see that the horizontal lift ${ }^{H H} F$ has components of the form

$$
{ }^{H H} F=\left({ }^{H H} F_{J}^{I}\right)=\left(\begin{array}{ccc}
F_{\alpha}^{\beta} & -\Gamma_{\beta \sigma} F_{\alpha}^{\sigma}+\Gamma_{\alpha \sigma} F_{\beta}^{\sigma} & 0 \tag{7.3}\\
0 & F_{\beta}^{\alpha} & 0 \\
0 & -\Gamma_{\varepsilon}^{\alpha} F_{\beta}^{\varepsilon}+\Gamma_{\beta}^{\varepsilon} F_{\varepsilon}^{\alpha} & F_{\beta}^{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on $t\left(M_{n}\right)$, where F_{β}^{α} are local components of $F, \Gamma_{\beta \alpha}^{\varepsilon}$ componenets of ∇ on $t\left(M_{n}\right)$ and $\Gamma_{\beta \alpha}, \Gamma_{\beta}^{\alpha}$ are defined by 6.2.

Proof. From (5.1), (7.1) and (7.2), we have

$$
\begin{aligned}
{ }^{H H} F= & \left(\begin{array}{ccc}
F_{\alpha}^{\beta}-\Gamma_{\beta \sigma} F_{\alpha}^{\sigma}+\Gamma_{\alpha \sigma} F_{\beta}^{\sigma} & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & -\Gamma_{\varepsilon}^{\alpha} F_{\beta}^{\varepsilon}+\Gamma_{\beta}^{\varepsilon} F_{\varepsilon}^{\alpha} & F_{\beta}^{\alpha}
\end{array}\right) \\
= & \left(\begin{array}{ccc}
F_{\alpha}^{\beta} p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & y^{\varepsilon} \partial_{\varepsilon} F_{\beta}^{\alpha} & F_{\beta}^{\alpha}
\end{array}\right) \\
& -\left(\begin{array}{ccc}
0-p_{\sigma}\left(\partial_{\alpha} F_{\beta}^{\sigma}+\Gamma_{\alpha \gamma}^{\sigma} F_{\beta}^{\gamma}-\partial_{\beta} F_{\alpha}^{\sigma}-\Gamma_{\beta}^{\sigma} F_{\alpha}^{\gamma}\right) & 0 \\
0 & 0 & 0 \\
0 & y^{\varepsilon}\left(\partial_{\varepsilon} F_{\beta}^{\alpha}+\Gamma_{\varepsilon}^{\alpha}{ }_{\gamma} F_{\beta}^{\gamma}-\Gamma_{\varepsilon}^{\gamma}{ }_{\beta} F_{\gamma}^{\alpha}\right) & 0
\end{array}\right) \\
= & \left(\begin{array}{ccc}
F_{\alpha}^{\beta} p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & y^{\varepsilon} \partial_{\varepsilon} F_{\beta}^{\alpha} & F_{\beta}^{\alpha}
\end{array}\right)-\left(\begin{array}{ccc}
0-p_{\sigma}([\nabla F](X, Y))_{\beta}^{\sigma} & 0 \\
0 & 0 & 0 \\
0 & y^{\varepsilon}\left(\nabla_{\varepsilon} F_{\beta}^{\alpha}\right) & 0
\end{array}\right) \\
= & { }^{c c} F-\gamma[\nabla F] .
\end{aligned}
$$

Thus we have (7.3).
Theorem 7.1 If F and X are affinor and vector fields on $T^{*}\left(M_{n}\right)$ then
(i) ${ }^{H H} F\left({ }^{v v} X\right)={ }^{v v}(F \circ X)$,
(ii) ${ }^{H H} F\left({ }^{H H} X\right)={ }^{H H}(F X)$.

Proof. (i) If $X \in \Im_{0}^{1}\left(T^{*}\left(M_{n}\right)\right), F \in \Im_{1}^{1}\left(T^{*}\left(M_{n}\right)\right)$, then, by 2.1 and 7.3 , we find

$$
\begin{aligned}
{ }^{H H} F\left({ }^{v v} X\right) & =\left(\begin{array}{ccc}
F_{\alpha}^{\beta} & -\Gamma_{\beta \sigma} F_{\alpha}^{\sigma}+\Gamma_{\alpha \sigma} F_{\beta}^{\sigma} & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & -\Gamma_{\varepsilon}^{\alpha} F_{\beta}^{\varepsilon}+\Gamma_{\beta}^{\varepsilon} F_{\varepsilon}^{\alpha} & F_{\beta}^{\alpha}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
X^{\beta}
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
0 \\
F_{\beta}^{\alpha} X^{\beta}
\end{array}\right)=\left(\begin{array}{cc}
0 \\
0 \\
(F \circ X)^{\alpha}
\end{array}\right)={ }^{v v}(F \circ X),
\end{aligned}
$$

which implies (i) of the Theorem 7.1 .
(ii) If F and X are affinor and vector fields on $T^{*}\left(M_{n}\right)$, then, by 6.1$)$ and $\sqrt{7.3}$, we have

$$
\left.\begin{array}{rl}
{ }^{H H} F\left({ }^{H H} X\right) & =\left(\begin{array}{cc}
F_{\alpha}^{\beta} & -\Gamma_{\beta \sigma} F_{\alpha}^{\sigma}+\Gamma_{\alpha \sigma} F_{\beta}^{\sigma} \\
0 & 0 \\
F_{\beta}^{\alpha} & 0 \\
0 & -\Gamma_{\varepsilon}^{\alpha} F_{\beta}^{\varepsilon}+\Gamma_{\beta}^{\varepsilon} F_{\varepsilon}^{\alpha}
\end{array} F_{\beta}^{\alpha}\right.
\end{array}\right)\left(\begin{array}{c}
p_{\sigma} X^{\alpha} \Gamma_{\alpha \beta}^{\sigma} \\
X^{\beta} \\
-y^{\varepsilon} \Gamma_{\varepsilon}^{\beta}{ }_{\alpha} X^{\alpha}
\end{array}\right) .
$$

Thus we have (ii) of the Theorem 7.1.

References

1. Duc, T.V.: Structure presque-transverse. J. Diff . Geom., 14 (2), 215-219 (1979).
2. Husemoller, D.: Fibre Bundles. Springer, New York (1994).
3. Lawson, H.B. and Michelsohn,, M.L.: Spin Geometry. Princeton University Press., Princeton (1989).
4. Ostianu, N.M.: Step-fibred spaces, Tr. Geom. Sem., 5, VINITI, Moscow, 259-309 (1974).
5. Pontryagin, L.S.: Characteristic cycles on differentiable manifolds. Amer. Math. Soc. Translation, 1950 (32), 72p. (1950).
6. Poor, W.A.: Differential Geometric Structures, McGraw-Hill, New York (1981).
7. Salimov, A.A. and Kadiouglu, E.: Lifts of Derivations to the Semitangent Bundle, Turk J. Math. 24 (3), 259-266 (2000).
8. Steenrod, N.: The Topology of Fibre Bundles. Princeton University Press., Princeton (1951).
9. Vishnevskii, V.V.: Integrable affinor structures and their plural interpretations. Geometry, 7.J. Math. Sci. (New York) 108 (2), 151-187 (2002).
10. Yano, K. and Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York (1973).

[^0]: The paper was supported by TUBITAK project MFAG-118F176.

