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1 Introduction

Let M,, be an n—dimensional differentiable manifold of class C'*° and finite dimension
n, and T* (M,,) the cotangent bundle determined by a natural projection (submersion) 7y :
T* (M,) — M,,. We use the notation (z') = (z%, %), where the indices 1, j, ... have range
in {1,2,...,2n}, the indices «, 3, ... have range in {1, 2, ..., n} and the indices @, 3, ...have
range in {n + 1,n + 2,...,2n}, z* are coordinates in M, % = p,, are fiber coordinates
of the cotangent bundle T*(M,,). If (z') = (z® ,2®) is another system of local adapted
coordinates in the cotangent bundle 7 (M, ), then we have

a _ 0zP
{x , a8 (1.1)
xo&

= z® (azﬁ) .

The Jacobian of (1.1)) has components

, i B B po
(AZ' ) = 781} - = Aa/ pJAB / Blot )
J oxJ 0 A

5 g 2,0 .
where Ag, = g;a, s Ao = %. Let T,(M,,) be the tangent space at a point p of M,
(p= m1(p),p = (2%, 2%) € T* (M,)). If 2% = dax*(x?) are components of x in tangent
space Tp,(M,,) with respect to the natural base {0} (0n = %), then by definition the

set t(My) of all points (z!) = (2@, 2, 2%), 2® = y*; I, J,... = 1, ..., 3n with projection
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mo : t(My) — T*(M,) (e m : (2% 2% 2%) — (2% 2%)) is a semi-tangent [1I], [7],
[9] (pullback) bundle of the tangent bundle by submersion w1 : T (M,,) — M,, (for the
pullback bundle, see [2], [3l], [5], [8]). It is clear that the pullback bundle ¢(M,,) of the
tangent bundle 7'(M,,) also has the natural bundle structure over M, its bundle projection
7 t(M,) — M, being defined by 7 : (2%, 2%, 2%) — (x%), and hence ™ = 71 o 7o. Thus
(t(M,y,), w1 o ) is the step-like bundle [4] or composite bundle [[6], p.9]. The main aim of
this paper is to study complete and horizontal lifts of vector fields and tensor fields of type
(1,1) from cotangent bundle 7™ (M,,) to semi-tangent (pullback) bundle (¢(M,,), m2).

We denote by S5(T* (M,,)) and 3% (M,,) the modules over F' (T* (M,,)) and F (M,,)
of all tensor fields of type (p, ¢) on T*(M,,) and M,, respectively, where F' (T™* (M,,)) and
F (M,,) denote the rings of real-valued C~ —functions on T*(M,,) and M,,, respectively

To a transformation of local coordinates of 7*(M,,), there corresponds on t(M,,)
the coordinate transformation

— B
xOél = g;vfll/pﬂ7

z® =z (2P), (1.2)
= _ oz Ié;
— oxP I

The Jacobian of (1.2) is given by
(A AT AL, O
A=ADy=1 o0 AS 0 1. (1.3)
0 Ay AY
where

49— dx® A oz o _ % o _ 02z
B oxP’ o T Ppa’ Be ™ DxBoxe’ B! = 5B oxe’

From Det(Ag/) # 0, we see that

Det A # 0.
2 Vertical Lifts

Let X € S{(T*(M,,)), i.e. X = X“0,. On putting

0
WX = (WX = ( 0 > 2.1)
Xa

from , we easily see that "V X’ = A("" X). The vector field " X is called the vertical
lift of X to t(M,,).

Let w be an 1-form with local components w, on M, so that w is a 1-form with local
expression w = wydz®. On putting

"w=(0, wa, 0), (2.2)
we have a vector field "w on ¢(M,,). In fact, from (1.3) we easily see that ("Yw)" =

(Z)_l (“w), where (A4) ™! = (AZ,) is the inverse matrix of A.
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The covector field thus introduced is called the vertical lift of the 1-form w to t(M,,).
For the natural coframe {dz®} in each U, from (2.2)) we have in 7=1(U)

" (dz®) = dx“
)-

QH

with respect to the coordinates (z%, 2%, =

3 ~+— Operator

Forany F € $}(T*(M,,)), if we take account of (1.3)), we can prove that (yF)' = A(yF),
where vF' is a vector field defined by

_poFg
VF = (yF*4) = ( E% > (3.1)
(s

with respect to the coordmates (m Lz, %),
Ifwe Y(M,) and F € 3}H(T*(M,)) then

Yw(yF) = 0.
Let T € 33(M,,). On putting
0 —psTga 0
YT =0T =10 0o o],
0 I O

from li we easily see that ’yTg,/ = Aﬁ/Ag/’yTg, where (A)~! = (AB)) is the
inverse matrix of A.
If X € S§(T*(My,)) and T € 33(M,,), then

(vT)"" X = 0.

4 Complete Lift of Vector Fields

Let X € S(T*(My)), ie. X = X%O,. The complete lift °X of X to cotangent bundle is
defined by X = X9, — pg(@aXﬁ)ﬁa [[10Q], p.236]. On putting

_pa(aaXE)
CCX — (CCXOf) — Xa ,
yaaEXoc

4.1

from (1.3)), we easily see that “X’ = A (“°X). The vector field “X is called the com-
plete lift of °X € I (T*(M,,)) to t(M,,).

Theorem 4.1 Let X, Y € 34(T*(M,,)). For the Lie product, we have
(i) X, Y] = [X,Y] (ie. L e Y =" (LxY)),

X
(i1) [CCX Wyl =" [X,Y],
(131) [""X,"YY] =0,
(iv) [“X,AF] = ~y(Lx F)

forany F € 31(T*(M,)), where Lx the operator of Lie derivation with respect to X.
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[CCX,CC Y]
Proof. (i) If X,Y € S{(T*(M,)) and | [“X, Y]
[CCX,CC Y]

are components of [“ X, Y] with

Sl ™ o

respect to the coordinates (27, 2, .%E) on t(M,), then we have
[ch’cc Y]J — (CCX)Ial(ch)J _ (ch)IaI(ch)J‘
As the first coordinate, if J = 3, we obtain
[ch’cc Y}E — (ch)Ial (ccy)ﬁ _ (CCY)Ia[ (ch)B
= (XY )+ (X)%0u(“Y )7 + (“X)To(Y)
7(CCY)585(CCX)IB . (CCY)aaa(ch)B . (ch)Eaa(ch)
=0 X (08Y ) — X0ape(08Y°) — pe0aY (05X ) + Y Oup:(0X°)
= p(05Y 00 X" — X0003Y° — 95X 0,Y° + Y0,05X°)
= —p:(05(X0,Y" —Y?0,X%))
= —p=(9p[X, YT)
by virtue of (@.I). As the second coordinate, if J = 3, we obtain
[ch7cc Y]ﬁ — (ch)Ial(ccy),B o (ccy)IaI(CCX),B
— (CCX)E%(CCY)ﬁ + (ch)aaa(ccy),B + (ch)E%(c )
_(ch)Eaa(ch)ﬁ o (ch)aaa(ch)ﬁ o (ch)Eaa(ch)
— (ch)aaa (ch)B . (ch)aaa (ch)B
= X9,Y" —Y*0,X"
= [X, Y]B

by virtue of li As the third coordinate, if J = E, then we obtain

(X)1 0y (<Y)7 = (¥ ) oy ()7
(X VEOR(Y )P + (X )0 (Y )P + (X )F=(CY )P
(V)X = (V)00 X)T = (Y O X)
= X% (y°0:YP) + y°0. X 0=y 9, V"
Y ®0,(y°0:-XP) — y*0:Y *0=y° 0, X
= T X0,0.Y P + 4 (0.X7) (agyﬂ) Y90, X5 — 4 (8.Y7) (agxﬁ)
=y 0.[X,Y)
by virtue of (.1). On the other hand, we know that ““[X, Y] have components

_p£<aﬁ [X7 Y]S)
“IX,Y] = [(X,Y)P
yaae [Xa Y]ﬁ

[ch’cc Y]E

with respect to the coordinates (27, 2%, 2%) on ¢(M,,). Thus, we have (i) of Theorem .
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[CCX VU Y]

(id) If X, Y € S3(T*(M,,)) and | [“X,"VY]
[CCX VU Y]

respect to the coordinates (2, 2, :rE) on t(M,,), then we have

[CCX,M) Y]J — (ch)Ial(vvy)J _ ('va)la[(ch)J.

are components of [“X,"” Y] with

| ™ @

As the first coordinate, if J = 3, we obtain
[ch’vv Y]E _ (ch)IaI(vv )* . (vvy)lal(ch)E
—("Y)T0a(“X)7 = (V)0 (“X)7 — (Y ) (< X)”
= (") 0p- (00 X°)
=0
by virtue of and . As the second coordinate, if J = 3, we obtain

[ch’vv Y],B — (ch)I (vvy)ﬁ _ (vvy)lal(ch)ﬂ
— ( )7aa(CCX) _ (vvy)aaa(ch)ﬁ . (vvy)a&a(ch),B
= —("Y)0:Xx"
=0

by virtue of and (4 l As the third coordinate, if .J = 3, then we obtain

[ch’vv Y]E — (ch)Ial(vvy)B _ (vvy)lal(ch)E
_ (CCX)E%(UUY)B + (ch)oca (vvy)B + (CCX)E%(U’“Y)B
_(vvy)aaa(ch)B (vvy)aaa(ch)B (vvy)i a(ch)B
= (“X)*0, (vvy)B _ (UUY)EGE(CCX)B
= X0, YP + Y0y 0. X"
= X20,YP + Y0, X"

by virtue of (2.1) and (4.1). On the other hand, we know that the vertical lift "[X, Y] of
[X, Y] has components of the form

0
wix,y]=| 0
[X. Y]’

with respect to the coordinates (xﬁ, P, CCE) on t(M,). Thus, we have (ii) of Theoremu
[U’UX’U’U Y]B
(idd) If X,V € SY(T*(M,,)) and | [""X," Y]? | are components of [*VX,"" Y] with
[U’UX’U’U Y]B
respect to the coordinates (27, 2, :UE) on t(M,), then we have

[fqu’vv Y]J — (UUX)Iaj(UUY)J _ (U”Y)Iﬁl(”vX)J.
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As the first coordinate, if J = /3, we obtain

[va’vv Y} (U’UX)Ia (vvy) . (vvy)lal(va)B

by virtue of (2.1)). As the second coordinate, if J = (3, we obtain

[va7vv Y},B _ (UUX)IaI(vvy),B _ (va)lal(va),B
=0

by virtue of li As the third coordinate, if J = E, then we obtain

[U’UX”U’U Y]E — (va)Ia (vvy)g _ (vvy)lal(va)E

= (X)) + (VXN 0a(Y) + (VXY )

e

('U’UY)OL@E(’U'UX) _ ('U’UY)Q@Q('UUX)E . ('U'UY)E@E('L)’UX)E

=0
by virtue of (2.1). Thus, we have (i) of Theorem[4.1]
X,y F)P
(i) If F € SHT*(My)), X € S{(T*(M,)) and | [“X, 'yF]E are components of
X,y F)?

[« X, ~F] with respect to the coordinates (xﬁ, zP, xB) on t(M,,), then we have

X,y F)? = (“X)101(vF)” — (vF)'91(*°X)”.

As the first coordinate, if J = /3, we obtain

(““X)'or(y )7 (vF) 0 (" Xx)? - B

(““X)*0a(vF)" +(*X)%0a (vF)? j(CCX)ifH F)ﬁi
—(vF)*0a( 7) — (YF)*0a(“X)7 = (v F)af%(“){)ﬁ

= (“X)"0z(vF ) (CCX)“C’) (VF)? — (YF)"0s(“X)"

= Po(0aX7)0x — X0apoF§ — poFg Oaps(05X7)

:pa(aaXU)Fﬁ fXaaangﬁ PoFI(95X%)

= —po(X0aFg — 0a X F§ + 0 X“F7)

= —pa(LXF)E

by virtue of (3.1) and (4.I). As the second coordinate, if J = /3, we obtain

[CCX, ,YF]B

(X AF)? = (“X) 01(yF)? — (vF) o (“X)"
— (ch)aaE(,yF)ﬁ + (ch)aaa(,yF)B + (ch)Eaa( F)ﬁ
~(YF)70(*X)° = (YF)*0a(“X)? — (7F)705(“X)’
=0

by virtue of and (4 | As the third coordinate, if J = j, then we obtain
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[“X,~F)P = (“X) 0;(vF)? — (vF)9;(<X)?
= (““X)"05(vF)7 + (“X)*0a(YF)? + (“X)70(vF)?
—(VF)705(“X)7 — (yF)"0a(*X)? — (1F)70=(“X)7
_ X“@ayaFf + yaagXaagyEFf _ yEFgagyaanﬁ
= Y X 0uF, + Y 0 XOF] — Y FL0a X"
— 7 (0 X F] + X 0uFf — FE0,X")

=y (LxF)’
by virtue of (3.1) and (4.1)). We know that (L x F') have components
_pO'(LXF)%
WLxF) = 0
v (LxF)!

with respect to the coordinates (xﬁ, zP, xg) on t(My). Thus, we have (iv) of Theorem 4.1
5 Complete Lift of Tensor Fields of Type (1,1)

Suppose now that F' € 31(T*(M,)) and F has local components F 5 in a neighborhood
U of M,, F = Fg@a ® dzP. If we take account of 1} we can prove that ccpll —
A%’A}CCF 1, where “F is an affinor field defined by
FL po(05FS — 0o FZ) 0
“p=(“Fh=1| 0 Fg 0|, (5.1)
0 Yy OFg Fg
with respect to the coordinates (%, 2%, %) on t(M,,). We call “F the complete lift of
the tensor field F of type (1,1) to t(M,,).

Proof. For simplicity we take only CCF?. In fact,

cep@ _ g0l AB ccp@ o/ gB ccpa JECCE
T — AT AL, FT + AT AD, < + A A7, P2

=
Q
S
I8}

o 4B & 48 o 4B
FAY AL, P+ AT AL, <Fg + AT A

gy i

+AZ A, S+ AT A B 4+ AT Ag, .

=

_ o B cc
= Ay A, “FS
= A% AL FY
=F,

(0%

Thus we have “F% = F” ,/. Similarly, we can easily find another components of F},/
ﬁ [e%
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Theorem 5.1 If F and G are affinor fields on T*(M,,), and X € I§(T*(M,,)), then
(1) “F(“X) = “(FX) —y(LxF) +" (v(Lx F)),

(7/1/) CCF( U'UX) — 'UU(F o X)’
(1i1) “F(yG) = y(F o G).

Proof. (i) If X € S{(T*(M,,)) and F € $1(T*(M,,)), from (2.1)), (4.1) and (5.1)), we have

FL po(05FS — 0o FZ) 0O —p-(95X°)
CCFCCX — 0 Fg O Xﬁ
0 Y O:Fg Fg Y0, XP
—p(05X°)FY + po(05F] — 9 Fg)X?
= FEXB

Y O FgXP + Fgy 9. X"

—pe(05X°)FS + po(05F] — 0aFg) X"
= (FX)"
Fgye0-XP + 0. Fg X°

(—%@MFXV> Po(XPOsFT — (0aXP)FG — (95X 7)FY)
= FX)“ + 0
ye0- (FX)“ 0

_paaa (FX)U _pJ(LXF)g 0
(e ) (e )+ (o)

Y= 0 (FX)* y* (LxF)? y* (LxF)?

= “(FX) = v(LxF) +" (v(LxF)),

which prove (i) of Theorem 5.1
(i1) If X € S{(T*(M,,)) and F € SHT*(M,,)), from (2.1) and (5.1), we have

FY pa(95Fg — 8o FZ) 0 0
cpvx =1 0 Fg 0 0
0 YO Fg Fg) \X°

0 0
[ 0 ( 0 )szoX),
FgXP (FoX)~

which gives equation (i) of Theorem[5.1]
(iii) If F, G € 31(T*(M,,)), then, by (3.1) and (5.1), we find

F{ po(05FF — 0aFg) 0\ [ ~PeCY
“R(vG)=1| 0 Fg 0 0
0 yo.Fy  Fg) \ y°GY

= 0 =

~poFi G (—pa (F o G)q
0
B
ygFﬁ G:

) =v(F oQ).
Y (FoG);
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6 Horizontal Lifts of Vector Fields

Let X € S3(T*(My,)), i.e. X = X%, Then we define the horizontal lift 7 X of X by
HEX = X — (VX)

ont(M,,). Where V is a symmetric affine connection in a differentiable manifold M,,. Then,
remembering that ““X and v(V X ) have, respectively, local componenets

P (00 X°) —pe(VaX®)
X = (X)) = ( X ) , WVX) = (n(VX)?) = < 0 )
ysasXa ysnga

with respect to the coordinates (2%, 2, %) on t(M,,). V4 X being the covariant derivative
of X¢4,1ie.,
(VaX®) = 0, X° + XPT5,.

We find that the horizontal lift 7/ X of X has the components

XPTg,
—FgXﬁ

with respect to the coordinates (2, 2%, %) on t(M,,). Where
Fg‘ =y I7s, Ipa=Dpelja- (6.2)

Theorem 6.1 If X,Y € S}(T*(M,,)) then
(i) [7X, Y] = PHIX, V] - yR(X,Y),
(“) [HHX’”U'U Y] v (VXY)a

where R is the curvature tensor of the affine connection NV is given by (LxV)y =
VyVX + R(X,Y).

17
HH X HHY}E are com-
1P

ponents of [ 7H X HHYT] with respect to the coordinates (x”, 2%, %) on t(M,,), then by

(6.1), we have
[HHX, HHy]J — HHXIBI( HHy)J _ HHyf8]< HHX)J
— HHXEaaHHYJ—f— HHXaaa HHyJ+ HHXgaEHHYJ
. HHYaaaHHXJ _ HHyaaa HHXJ _ HHYaaEHHXJ
:ngBFgaaaHHYJ+Xaaa HHyJ _ yz-:FsaﬁX,BagHHyJ
_psyﬁrga&a HHXJ _ Yocaa HHXJ +95F35Yﬁ85 HHXJ



162 Horizontal lift in the semi-tangent bundle and its applications

As the first coordinate, if J = 3, we obtain

[ HHX’ HHY]E _ stBFEaaa HHYE + X9, HHYE . y‘gFf‘ﬁXﬂﬁg HHYB
—pY P I T XP — yeg, TXP 4 yeregyPos T x5
= P X T5a0apY  Tos + X004 (pY *T55) — Y I3 X 05pY T
—pY P T50ap- XOT5p — Y00 (p-X*Tig) +y° 25V P05p- XI5
= P X T5Y T5 5+ X 0a(pY *T55) — pYPT5a XT3 — Y 0u p-X T 5)
= p XV, I 5+ p XY 00,55+ p- X (Y ) [ Sp
—p XY, 195 — pYOX00,T5 5 — p Y (00X Es
= [pe(X*(0aY?) = Y¥(0aX))I54]
AP (XY (0ulf 3 — 09T g+ Tool§ s — To I p)]
= pe[X, Y] 55+ pe(R(X,Y))3

by virtue of (6.1). As the second coordinate, if J = 3, we obtain

[HHX, HHy]ﬁ :pEXﬂfga(%HHYﬂ + Xaaa HHyﬁ _ yEF&aﬁXBaE HHyﬁ
—pYPI5005 THXP — v, THXP 4 fregyPos HH xF
= pXPT50aY" + X0,Y? — y I X 0577
—pYPT5,05XP — V0, X7 + yf I3V P0=X"
= X0,Y? — Y0, X"
= [X’ Y]B

by virtue of li As the third coordinate, if J = E, then we obtain

(X, Y] = g D2 X0 T8 oY = X000 (y T2aY®) = peXP IOy T2 0™
—yF Y PO TP X + Y0, <y€FfaX°“) + P YIS0y TP X
— YT X 0y T Y™ = X0 (v TLaY™)
Y POyt TP X + Y00, (gfrfaxa)
— _X°9, (yfrfaya) +yEXPTO Y OBy + YO0, (yarfaXa) — YA, XI8,
= TP X (0aY) — f XY, T . — y*XYOrS, Iy,
FYETE Y (BaXY) + oy XY TP — o XOYOT) . T,
= [V 0 (X2 (0aY ) = Y (X))
" | XV (BaTs = 0T = TR T] . + 1)1 )]

=~ [y I2uX Y] - (RO YL
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by virtue of (6.1). We know that 7#[X Y] — vR(X,Y’) have components

De [X’ Y]apéﬁ —p6<R(X, Y))%
"X, Y] - vR(X,Y) = (X, Y]’ - 0
—yf TP [X, Y] V¥ (R(X,Y))?
Pe[X, Y] IG5 4 pe(R(X, Y))%
= (X, v)?

— TV a[X, Y]~y (R(X,Y))2
with respect to the coordinates (a;B, zP, xﬁ) on t(M,). Thus, we have [ TH X HHY] —
[ HHX o) Y}B
(ii) If X, Y € S§(T*(M,,)), and [HHX v Y]? | are components of [ 7H X"V Y]
[ HHX VU Y}B
with respect to the coordinates (2%, 2%, o] ) on t(M,,), then by ll and li we have
[HHX,M) Y]J — HHXlaf(UUYJ) _ v YI@[ HHXJ
_ HHXaaa(UUYJ) + HHXaaa(UUYJ) + HHXE%(vvyJ>
_vvya& HHXJ _wwyagy HHXJ _wv YE& HHXJ
(o « '
_ stﬁpgaaﬁ(vaJ) + Xaaa(vvyJ) _ yafngﬂag(““YJ) o Yaag HHXJ_
As the first coordinate, if J = /3, we obtain
[HHX0Y]P = p. XPI5,00Y P + XOOUYP — yf e XPowy? — yoo- X8
= —Y*0=p. X T§,
=0
by virtue of (2.1) and (6.I). As the second coordinate, if J = /3 we obtain
[ HHX’U’U Y]ﬂ — psxﬁpﬁsaaa(vvyﬂ) + Xocaa(v’uyﬁ) _ yEFgﬁXﬁGE(vvyﬂ) o Yaai HHXﬁ
= —Veo-X"
=0
by virtue of and (6 l As the third coordinate, if J = B then we obtain
[ HHX’U’U Y]ﬁ — st/BFEaa&(UUYB) + Xocaa(v’uyﬁ) _ yEFgﬁXﬁai(vvyﬂ) _ YO‘OE HHXB
= X T5a0a("Y?) + X°0a("Y?) = 12 XP05("YP) - Yoo M1 xP
= X0, YP + Y0y TPy X
= X%, yP +vyex0rh,
= X2BpYP + I) . Y*) = (VxY)?

by virtue of (2.1) and (6.1). On the other hand the vertical lift **(VxY') of (VxY') has
components of the form
0
UU(VXY) — 0
(VxY)?

with respect to the coordinates (xﬁ, zP, CCE) on t(My). Thus we have (i7) of Theoremm
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7 Horizontal Lifts of Tensor Fields of Type (1,1)

Suppose now that F' € 31(T*(M,,)) and F has local components F’ i in a neighborhood U
of M,,, F = F g‘@a ® dzP. Then we define the horizontal lift 7H F of F by

HHp = “F —4|VF] (7.1)
on t(M,). Where [V F] is a tensor field of type (1,2) defined by

X and Y being arbitrary elements of S} (T™*(M,,)). From (5.1), (7.1) and (7.2), we see that
the horizontal lift ¥ F' has components of the form

FY —ToFg + TagFg 0
HHEp — (HHpL — | Fg 0 (7.3)
0 —I2F5+I5F> Fg

with respect to the coordinates (2, 2%, z®) on ¢(My,), where Fg are local components of
F, Fga componenets of V on t(M,,) and I g4, I'g" are defined by li

Proof. From (5.1), (7.1) and (7.2)), we have

FY —I'35FS + TagFg 0
HEp = | 0 Fg 0

O _FOCFE FEFQ Fﬁo&
Ff po(95FS — 0aF5) 0
= 0 FO‘ 0
0 y©0 FB Fﬁa
0 P (8aFg + TG4 F) — 05Fg — T§4Fd) 0
0 0
(0-Fg + 1o B} ~I05F2) 0
Fg Do aﬁF — 0o Fg ) 0 _pa([VF]( )) a0
7 0 0 0
=1 o Fg o | -
0 yoEs  FS 0y (VeFg) 0
= “F —4[VF].
Thus we have (7.3).

Theorem 7.1 If F' and X are affinor and vector fields on T*(M,,) then

(i) MHE("X) =" (F 0 X),
(ii) HEp(HHEX) = HH(p X)),
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Proof. (i) If X € S4(T*(M,)), F € SH(T*(M,,)), then, by (2.1) and (7.3), we find

Fl —I35Fg + TagFg 0 0
HEpwxy=1 0 Fg 0 0
0 —I°F5+I5F> Fg) \X°

0 0
[ o :< 0 >:vv<pox>,
Fgx° (F o X)®

which implies (7) of the Theorem|7.1
(23) If F and X are affinor and vector fields on 7%(M,,), then, by (6.1) and (7.3), we
have

“TeF5+I5Fe F5) \ —y I xe
PeXOT5sFs + pol S F5 X7 — ppI§ FE X
— FgXxP
—y TS F5XP + g TEgFeXP — yerfgxng
Po(FX)PIgq (FX)PT 34
= (FX)> = (FX)~ = HH(px).
—y T (FX) —Ig (FX)’

Fi —I'3,FS + TagFg 0 PeX T35
0
0

Thus we have (ii) of the Theorem
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