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Abstract. We consider the differential equation —y" + ze'®y + q (x)y = k%y. Using transformation
operators, we obtain representations of solutions of this equation with conditions at infinity. Estimates for
the kernels of the transformation operators are obtained.
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1 Introduction and main results

In many aspects of the theory of inverse problems of spectral analysis, an important role is
played by so-called transformation operators. The latter first appeared in the theory of gen-
eralized translation operators of J. Delsarte [1] and B.M. Levitan [5]. For arbitrary Sturm-
Liouville equations, transformation operators were constructed by A.Ya. Povzner [9]. V.A.
Marchenko [6] used transformation operators for studying inverse spectral problems and
the asymptotic behavior of the spectral function of the singular Sturm-Liouville operator. It
should be remarked that in the effective solution of various inverse problems of scattering
theory, an important role is played by the transformation operators with a conditional which
were discovered by B.Ya. Levin [4] Similar problems for the Schrodinger equation with
unbounded potentials were considered in [3,8, 10].
We consider the differential equation

—y" +zey +q(x)y = k?y, (1.1)
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where ¢(z) is a continuously differentiable function with bounded support and is a complex
parameter. If ¢(x) = 0, then from [2], the equation (1.1) has unique solution fy(x, k), which
can be given as a series

o0 n
folw,k) = e* £33 " pe (k) a”e TR, (1.2)
n=1 s=0
Here p,,s(k) is a regular rational function with poles at the points k = — % ,i=1,2,...n

and multiplicities at most 7 + 1, while the series (1.2) admits term-by-term differentiation
with respect to « any number of times for & # —5,n = 1,2, .... It was proved in [2] (see
also [7]), for any k& with Imk > 0, the function fy(x, k) belongs to Ly (0, +00) and the
function belongs to Ly (—00, 0). Moreover, the functions fo(z, k) and fo(z, —k) form the
fundamental system of solutions of equation (1.1) for £ # 0 when ¢(z) = 0.

This paper is devoted to the study of the solutions of (1.1) with asymptotic conditions

fx(z, k) = fo(x,+k) +0(1), 2 — Fo0.

We shall derive the integral representation, which is usually called the Jost translation rep-
resentation between f1 (x, k) and fo (z, £k). The obtained results can be used to study the
spectral properties of the non-self-adjoint differential operator L, generated by the differen-
tial expression [(y) = —y  + ze*"y + q(z)y in the space Lo (—o0, +00) .

The main result of the present paper is as follows.

Theorem 1.1 For any k # —5,n = 1,2,... from the complex plane, equation (1.1) has
solutions f1 (x,k) and f_ (x, k), which can be represented in the form

Fo (@ k) = fo (@, k) + ;OOK(J:,t) fo (4, k) dt (13)
and
£ (k) = fo (x,—k)%—/_x A1) fo (t,—k) dt. (1.4)
Moreover, )
K (2,2) = ;/x+ooq(t) dt, (15)
Az, z) = ;/:Oq(t) dt. (1.6)

2 Proof of the theorem

Without loss of generality, we consider the case ” + ” and assume that x > 0. We shall
use the following notation

. +oo
p@) e o) =5 [ la)]d

We first consider the following lemmas before turning to the proof of the theorem.
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Lemma 2.1 [fq(z) is a continuously differentiable function with bounded support, then the
integral equation

+o0o
Uteom) =5 [ ateds

o
[ [T n-plern o @
has one and only one solution U (§y,n0) . Furthermore, if ¢(x) = 0 when x > a, then

U (§0,m0) = 0 when &y > a. (2.2)

Proof. Using the method of successive approximation, let

+o00
Uotom) =5 [ a(e)ds .3

70 +o0
U (€0,110) = /0 /E PE—m) —p(E+n)+q(E— ) Unr (€0 dedn.  (24)

Because the function ¢(z) with bounded support, there exists an @ > 0 such that ¢(x) =
0 for > a. By induction with respect to n , we have

Un, (&o,m0) for & > 2a,n =0,1,2,.... (2.5)
For any R > 0, suppose that 0 < g < R, 0 < &y < +00. By (2.3), we have

U (&o0,m0) | < (o).

Taking the notation

Mzogng; p(E—mn) —pE+n)+q—n)

0<n<R

into account, we obtain
U1 (€0, m0)| < o (&) (Mno) -
Using induction, by (2.4) we next prove that

|Un (&0,m0)| < (50) (MTIO)- (2.6)

Hence the series

U (&0, 70) Z Un (€0, m0) 2.7

is uniformly and absolutely convergent, so U (£, 7o) is the solution of the integral equation
(2.1). From (2.6) and (2.7), it follows that

|U (0,m0)| < o (o) exp (Mnp) - (2.8)

This implies obviously the uniqueness of the solution to the equation (2.1). The assertion
(2.2) is justified by (2.5) and (2.7).
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Lemma 2.2 Suppose q(x) is a continuously differentiable function with bounded support.
Then the solution U (£y, o) of the integral equation (2.1) satisfies the following differential
equation

azU (507 770)

26omy T p(E—=n) —pE+n)+q(E—n]U(&,n0) =0 2.9)

and

+oo
U (&,0) = ;/g q (&) dg. (2.10)

Proof. From (2.1) the differentiability of U (&, 1) is evident. Differentiating equation
(2.1) directly, we get the equation (2.9). Putting £y = 0 in (2.1), we get the result (2.10). We
now let § = t*%, no = “Tx and express the function K (z,t) = U (&0, 7o) as a function
of x,t . Then the function K (x, t) is twice continuously differentiable. Moreover, from the

two preceding lemmas we get the following lemma.

Lemma 2.3 Suppose q(x) is a continuously differentiable function with bounded support.
Then the function K (z,t) = U (t‘%‘”, t_Tx) satisfies both the differential equation

0?K (z,t)
0x?

and the condition

O’K (z,t)

(@) +a @) K (2,0) =

—p(t) K (z,t) (2.11)

+oo
K(a:,:n):;/ ¢ (t) dt.

Furthermore, if ¢(x) = 0 when x > a, then K (z,t) = 0 when  +t > 2a.

Now the theorem can be proved. By differentiation from (1.3), we have

+oo

xT

d
2 ak) = £ k) - P o by K (o) £ ()
+oo
—K! (x,t) fo (z, k) +/ K (z,t) fo (t, k) dt. (2.13)

From Lemma 2.3, it is easily seen that when ¢ sufficiently large, K (x,t) = 0, so the last
terms of (1.3), (2.12), (2.13) are integrable. From

— [ (@, k) +p (@) fo (2, k) = K> fo (2, k) (2.14)
and (1.3), we have

k2f+ (l‘, k) = kaO (]J, k)
+ +OOK (2, t)p(t) fo (t, k)dt — +OoK(:z;,t) o (t k) dt. (2.15)

€T x
Hence, integrating by parts, we obtain
+o00 400
K (z,t) fi (t,k)dt = =K (x,2) f} (v, k) — K (x,t) f (k) dt

x T



Kh.E. Abbasova, A.Kh. Khanmamedov, S.M. Bagirova 7

+o0
=—K (z,2) f} (z, k) + K} (x,2) fo (z, k) + Kjp (x,t) fo (t, k) dt. (2.16)

T

By virtue of (1.3) and (2.13)-(2.16), we have
- —/ii (.TL‘, k) +p($) f+ (.Z‘, k) - k2f+ (l‘,k‘)

= [T Rl )~ KL ) 4 K (0 () + ) —p )] fo 0,

5 dK (z,x)
dx
From the lemma 2.3 and the last relation, f (x, k) satisfies equation (1.1). Furthermore, by

virtue of (2.8)-(2.14), it follows that f (z, k) = fo(z, k) when z sufficiently large. Hence,
the f4 (x, k) is a Jost solution. Thus, the proof of the theorem is complete.

+ +q(x)| fo(z, k).
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