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Abstract. We consider the differential equation −y′′ + xeixy + q (x) y = k2y. Using transformation
operators, we obtain representations of solutions of this equation with conditions at infinity. Estimates for
the kernels of the transformation operators are obtained.
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1 Introduction and main results

In many aspects of the theory of inverse problems of spectral analysis, an important role is
played by so-called transformation operators. The latter first appeared in the theory of gen-
eralized translation operators of J. Delsarte [1] and B.M. Levitan [5]. For arbitrary Sturm-
Liouville equations, transformation operators were constructed by A.Ya. Povzner [9]. V.A.
Marchenko [6] used transformation operators for studying inverse spectral problems and
the asymptotic behavior of the spectral function of the singular Sturm-Liouville operator. It
should be remarked that in the effective solution of various inverse problems of scattering
theory, an important role is played by the transformation operators with a conditional which
were discovered by B.Ya. Levin [4] Similar problems for the Schrödinger equation with
unbounded potentials were considered in [3,8,10].

We consider the differential equation

−y′′ + xeixy + q (x) y = k2y, (1.1)
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where q(x) is a continuously differentiable function with bounded support and is a complex
parameter. If q(x) = 0, then from [2], the equation (1.1) has unique solution f0(x, k), which
can be given as a series

f0 (x, k) = eikx +
∞∑
n=1

n∑
s=0

pns (k)x
sei(n+k)x. (1.2)

Here pns(k) is a regular rational function with poles at the points k = − j
2 , j = 1, 2, ..., n

and multiplicities at most j + 1, while the series (1.2) admits term-by-term differentiation
with respect to x any number of times for k 6= −n

2 , n = 1, 2, .... It was proved in [2] (see
also [7]), for any k with Imk > 0, the function f0(x, k) belongs to L2 (0,+∞) and the
function belongs to L2 (−∞, 0). Moreover, the functions f0(x, k) and f0(x,−k) form the
fundamental system of solutions of equation (1.1) for k 6= 0 when q(x) = 0.

This paper is devoted to the study of the solutions of (1.1) with asymptotic conditions

f± (x, k) = f0 (x,±k) + o (1) , x→ ±∞.

We shall derive the integral representation, which is usually called the Jost translation rep-
resentation between f± (x, k) and f0 (x,±k). The obtained results can be used to study the
spectral properties of the non-self-adjoint differential operator L, generated by the differen-
tial expression l(y) = −y′′

+ xeixy + q(x)y in the space L2 (−∞,+∞) .
The main result of the present paper is as follows.

Theorem 1.1 For any k 6= −n
2 , n = 1, 2, ... from the complex plane, equation (1.1) has

solutions f+ (x, k) and f− (x, k), which can be represented in the form

f+ (x, k) = f0 (x, k) +

∫ +∞

x
K (x, t) f0 (t, k) dt (1.3)

and

f− (x, k) = f0 (x,−k) +
∫ x

−∞
A (x, t) f0 (t,−k) dt. (1.4)

Moreover,

K (x, x) =
1

2

∫ +∞

x
q (t) dt, (1.5)

A (x, x) =
1

2

∫ x

−∞
q (t) dt. (1.6)

2 Proof of the theorem

Without loss of generality, we consider the case ” + ” and assume that x ≥ 0. We shall
use the following notation

p (x) = xeix, σ (x) =
1

2

∫ +∞

x
|q (t)| dt.

We first consider the following lemmas before turning to the proof of the theorem.
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Lemma 2.1 If q(x) is a continuously differentiable function with bounded support, then the
integral equation

U (ξ0, η0) =
1

2

∫ +∞

ξ0

q (ξ) dξ

+

∫ η0

0

∫ +∞

ξ0

[p (ξ − η)− p (ξ + η) + q (ξ − η)]U (ξ, η) dξdη (2.1)

has one and only one solution U (ξ0, η0) . Furthermore, if q(x) = 0 when x > a, then

U (ξ0, η0) = 0 when ξ0 ≥ a. (2.2)

Proof. Using the method of successive approximation, let

U0 (ξ0, η0) =
1

2

∫ +∞

ξ0

q (ξ) dξ, (2.3)

Un (ξ0, η0) =

∫ η0

0

∫ +∞

ξ0

[p (ξ − η)− p (ξ + η) + q (ξ − η)]Un−1 (ξ, η) dξdη. (2.4)

Because the function q(x) with bounded support, there exists an a > 0 such that q(x) =
0 for x > a. By induction with respect to n , we have

Un (ξ0, η0) for ξ0 > 2a, n = 0, 1, 2, .... (2.5)

For any R > 0, suppose that 0 < η0 < R, 0 < ξ0 < +∞. By (2.3), we have

|U (ξ0, η0) | ≤ σ(ξ0).

Taking the notation

M = max
0≤ξ≤2a
0≤η≤R

|p (ξ − η)− p (ξ + η) + q (ξ − η)|

into account, we obtain
|U1 (ξ0, η0)| ≤ σ (ξ0) (Mη0) .

Using induction, by (2.4) we next prove that

|Un (ξ0, η0)| ≤ σ (ξ0)
1

n!
(Mη0)

n . (2.6)

Hence the series

U (ξ0, η0) =

∞∑
n=0

Un (ξ0, η0) (2.7)

is uniformly and absolutely convergent, so U (ξ0, η0) is the solution of the integral equation
(2.1). From (2.6) and (2.7), it follows that

|U (ξ0, η0)| ≤ σ (ξ0) exp (Mη0) . (2.8)

This implies obviously the uniqueness of the solution to the equation (2.1). The assertion
(2.2) is justified by (2.5) and (2.7).
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Lemma 2.2 Suppose q(x) is a continuously differentiable function with bounded support.
Then the solution U (ξ0, η0) of the integral equation (2.1) satisfies the following differential
equation

∂2U (ξ0, η0)

∂ξ0∂η0
+ [p (ξ − η)− p (ξ + η) + q (ξ − η)]U (ξ0, η0) = 0 (2.9)

and

U (ξ0, 0) =
1

2

∫ +∞

ξ0

q (ξ) dξ. (2.10)

Proof. From (2.1) the differentiability of U (ξ0, η0) is evident. Differentiating equation
(2.1) directly, we get the equation (2.9). Putting ξ0 = 0 in (2.1), we get the result (2.10). We
now let ξ0 = t+x

2 , η0 = t−x
2 and express the function K (x, t) = U (ξ0, η0) as a function

of x, t . Then the function K(x, t) is twice continuously differentiable. Moreover, from the
two preceding lemmas we get the following lemma.

Lemma 2.3 Suppose q(x) is a continuously differentiable function with bounded support.
Then the function K (x, t) = U

(
t+x
2 , t−x2

)
satisfies both the differential equation

∂2K (x, t)

∂x2
− [p (x) + q (x)]K (x, t) =

∂2K (x, t)

∂t2
− p (t)K (x, t) (2.11)

and the condition

K (x, x) =
1

2

∫ +∞

x
q (t) dt.

Furthermore, if q(x) = 0 when x > a , then K (x, t) = 0 when x+ t > 2a.

Now the theorem can be proved. By differentiation from (1.3), we have

f ′+ (x, k) = f ′0 (x, k)−K ′ (x, x) f0 (x, k) +
∫ +∞

x
K ′x (x, t) f0 (t, k) dt (2.12)

f ′′+ (x, k) = f ′′0 (x, k)− dK (x, x)

dx
f0 (x, k)−K (x, x) f ′0 (x, k)

−K ′x (x, t) f0 (x, k) +
∫ +∞

x
K ′′xx (x, t) f0 (t, k) dt. (2.13)

From Lemma 2.3, it is easily seen that when t sufficiently large, K (x, t) = 0, so the last
terms of (1.3), (2.12), (2.13) are integrable. From

−f ′′0 (x, k) + p (x) f0 (x, k) = k2f0 (x, k) (2.14)

and (1.3), we have

k2f+ (x, k) = k2f0 (x, k)

+

∫ +∞

x
K (x, t) p (t) f0 (t, k) dt−

∫ +∞

x
K (x, t) f ′′0 (t, k) dt. (2.15)

Hence, integrating by parts, we obtain∫ +∞

x
K (x, t) f ′′0 (t, k) dt = −K (x, x) f ′0 (x, k)−

∫ +∞

x
K ′t (x, t) f

′
0 (t, k) dt
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= −K (x, x) f ′0 (x, k) +K ′t (x, x) f0 (x, k) +

∫ +∞

x
K ′′tt (x, t) f0 (t, k) dt. (2.16)

By virtue of (1.3) and (2.13)-(2.16), we have

−f ′′+ (x, k) + p (x) f+ (x, k)− k2f+ (x, k)

=

∫ +∞

x

[
K ′′tt (x, t)−K ′′xx (x, t) +K (x, t) (p (x) + q (x)− p (t))

]
f0 (t, k) dt

+

[
2
dK (x, x)

dx
+ q (x)

]
f0 (x, k) .

From the lemma 2.3 and the last relation, f+(x, k) satisfies equation (1.1). Furthermore, by
virtue of (2.8)-(2.14), it follows that f+(x, k) = f0(x, k) when x sufficiently large. Hence,
the f+(x, k) is a Jost solution. Thus, the proof of the theorem is complete.
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