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1 Introduction

The study of the g-Littlewood-Paley theory enjoys a naturel motivation and arises a great
interest. Many works and topic have been studied. For Euclidian analysis it is investigated
by Stein. In his study of these operators, Stein uses two approaches. The first is the theory
of singular integrals in the context of Hilbert space-valued functions, and the second in the
theory of harmonics functions. Next, these operators play an important role in questions
related to multipliers, Sobelev spaces and Hardy spaces.

The classical Morrey spaces were originally introduced by Morrey in [24] to study
the local behavior of solutions of second-order elliptic partial differential equations. For
the properties and applications of classical Morrey spaces, we refer the readers to [1,24].
Guliyev, Mizuhara and Nakai [8,25,26] introduced generalized Morrey spaces Mp,w(Rn)
(see also [9,10,28]).

Over the past 20 years considerable effort has been made to extend the classical opera-
tors of harmonic analysis on the Bessel-Kingman hypergroups, the Laguerre hypergroups,
the Chebli-Trimeche hypergroups, and complete Riemannian manifolds.

* Corresponding author

A. Akbulut
Ahi Evran University, Department of Mathematics, Kirsehir, Turkey
E-mail: aakbulut@ahievran.edu.tr

M. Dziri
Department of Mathematics, Faculty of Sciences of Bizerte, Tunisia
E-mail: Moncef.Dziri @iscae.rnu.tn

I. Ekincioglu

Istanbul Medeniyet University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
Dumlupinar University, Department of Mathematics, Kutahya, Turkey

E-mail: ismail.ekincioglu@dpu.edu.tr



A. Akbulut, M. Dziri, I. Ekincioglu 9

In this paper we consider harmonic analysis associated with the following system of
partial differential operators

{Dj =2, 1<j<n,

6:)3]"
_ 0? 2a+1 0 n 9?
An,a — W + or + ijl 8%2

1.1

- , (r,7) €]0, 50| xR, (1.1)

Some problems of harmonic analysis that are associated with Laplace-Bessel operator
Ay o are investigated [5,7,3,12-14,19]. In [7] was proved the (LP, L?)-boundedness of the
B-potentials and in [13] the author proved the (L?, L?)-boundedness of the B-fractional
maximal operators, and proved Sobolev theorem in a limit case. The maximal operator,
fractional integral operator and related topics associated with the Laplace-Bessel differential
operator A,, , have been investigated by many researchers, see B. Muckenhoupt and E.
Stein [23], I. Kipriyanov [21], K. Trimeche [31], L. Lyakhov [19], K. Stempak [30], A.D.
Gadjiev and L.A. Aliev [3,7], LA. Aliev and S. Bayrakci [2], V.S. Guliyev [12,13], V.S.
Guliyev and J.J. Hasanov [15], V.S. Guliyev, A. Serbetci and 1. Ekincioglu [16], A. Serbetci
and I. Ekincioglu [27] and others.

In this paper we consider the generalized shift operator, generated by the LaplaceBessel
differential operator A, ,, in terms of which the B-maximal operator and the B-Riesz po-
tential are investigated in the generalized B-Morrey space. We obtain sufficient conditions

for the operator I/s to be bounded from B-Morrey space M, o to My, o and from B-
Morrey space M , o to weak B-Morrey space WM, , .. Also, using the boundedness of
the B-maximal operator on generalized B-Morrey spaces and the same techniques as [13]
we have defined and studty the boundedness of the g-function on generalized B-Morrey
spaces.

The article is organized as follows: In section 2 we include definitions and auxiliary
results of harmonic analysis associated with the Laplace-Bessel differential operator. In
section 3 we define the generalized B-Morrey spaces and the B-maximal function we give
also some results linked with B-Morrey spaces. In section 4 the boundedness of the B-
maximal operator on B-Morrey spaces M, , o is proved. The main result of the paper is
the inequality of Sobolev-Morrey type for the B-Riesz potentials, established in Section
5. Section 6 deals with the boundedness of the g-function in generalized B-Morrey spaces.
Throughout the paper C' denotes a positive constant whose value may vary from line to line.

2 Harmonic analysis related with A,,

In this section we recall first basic definition and some facts. We consider the system of
partial differential operators

R ;

Apa=loa+ A
Where [, is the Bessel operator with respect to the first variable r given by

i?+2a+1g
or? r  Or

lo =

and A is the Laplacian operator on R", A = Z}l:l 82—2_2. On the other hand if A =
J

(A1, A2, .., Ap) € C"and z = (21, %2, ..., xn) € R, weput < X,z >=>"" Ny, |A|| =

VLA

By [ 13, 14 ] we have



10 Maximal function and fractional integral associated with ...

Proposition 2.1 For (u, ) € R x R", the following system of equations

Djv(r,x) = —i\ju(r, x),

An,oﬂ)(ﬂ .ZL‘) = _(M2 + )\2)’[}(7’, JI),
@
or

has a unique infinitely differentiable solution on RxR"™ even with respect to the first variable
given by

v(0,0) =1; —(0,2) = 0. (2.2)

QDM,A(T? :L') = ja(r“)e_i<>\7x>v (2'3)

where

2T (0 + 1)Ja(s)

Ja($) , if s£0,1, if s=0
with J,, is the Bessel function of first kind and order «.
We have for all (¢, \) € R x R™,

sup  [pua(rz)| = 1.
(r,x)ERXR™

The shift operator 7, ;) associated with Laplace Bessel operator A, , is defined on the
space of continuous functions even with respect to the first variable by

Ty f(s,y) = \/m /0 f(\/r2 + 52 + 2rscosf, x + y)sin®* 0dh.  (2.4)

Denote by
o dv,(r, ) the measure defined on [0, co[xR™ by

dve(r, ) = r**dr @ du. (2.5)
° Lp’a(R’f’l), 1 < p < 0, the space of measurable functions f on [0, co[xR" satisfying
00 1
= ([ [ 150 )Pdva(r)” <o, fort<p <o
Rm JO
and

||f||00,04 = HfHOO = esssup(r,a:)e[O,oo[xR”|f(r7 1’)‘ < oo for p = oco.

It is naturel to define the convolution product generated by the shift operator.

Definition 2.1 The convolution product associated with A, o, of f,g in L1 o (]Rffl) is de-
fined by the following ¥/(r,z) € [0,+oo[xR™,

(f *a g)(T‘,CL‘) = /n /OOOﬁr,w)f(svy)g(svy)dya(&y)
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Note that, the following properties is valid:
i) For all (r,z), (s,y) € [0,00[xR™, (1, A) € R x R™, we have

N (1 2) P (8:Y) = Tira)Pu(S; Y)-

i) Let f be in Ly o (R”), then for all (s,y) € [0, co[xR™, we have

/n /Ooo T(s ) (r, @) dve(r,z) = /n /OOO f(r,z)dve(r, z).

iii) If f € Lpo(R%™), 1 < p < oo, then for all (s,y) € [0,00[xR", the function T f
belongs to Ly, o (R’") and we have

Hﬁs,y)f“l/p,a S HfHLp,oa

iv) lim,. 2y 0,0 | Ty f = fllpa = 0.

v) For f € Llya(R’ffl) and g E.LLQ(R’}FH),_ Then f %4 g belongs to Loo(RYT1) and the
convolution product is commutative and associative

vi) For p, ¢, € [0, oo] such that % + % —1=21 the map

o
(f,9) = f*ayg

extends to a continuous map from L, o (R") x Ly o (R") to L, o (R} ') and we have,

1S *a gllzra < fllzpallgllzeq- (2.7)

Definition 2.2 The Fourier transform associated with the partial differential operators D;

and Ly, o, is defined on Ly o(RT) by the following , for all (11, \) € [0, 00[xR",

Fo D) = [ [ sra)ogn(raldinr.a)

We have the following properties.
i) Let f € Li(R%™). Then for all (r,z) € [0,4+00[xR" , we have, V(u,\) €
[0, 00[xR™;

FoTira) ()1, A) = @uny (1 2) Fa (f) (12, A)-
i) For f,g € L1 o(R7H)

Folf *a 9) (1, A) = Fa(f) (11, A) - Falg) (g, ).
Proposition 2.2 Let f € Ly, o(R™) with p € [1,2]. Then Fo(f) belongs to Ly o(R)
with % + % = 1 and we have

[ Fa(H)lL,

D,

S ||f||Lp,a
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Proposition 2.3 The fourier transform F, is a topological isomorphism from S,(R x R™)
(the space of infinitely differentiable functions on R x R™, even with respect to the first vari-
able, rapidly decreasing together with all their derivatives) onto itself. The inverse mapping
is given by

FAO0 = [ g,
where

,u20‘+1

DX = Grygarria T

Lemma 2.1 The following equality is valid

T 1
/ g(s,y)s** dsdy = 7\/7? (@+3) / g (\/ r2 472, :C) 7ot drdrda.
Ri+1 F(OZ + 1) Ri+2

Lemma 2.2 The following equality is valid

T 1
/ g(s,y)s** dsdy = vrllat ;) / g (\/ T2+ 72, z) 7ot grdrdz,
B((ra),t) I'(a+1)  JB(((ra)0)0

where
B(((r,2),0),1) = {(7, (r,2)) € REZ s |r = V72 + P2 4 o — 22 < £2}.

Lemma 2.3 Forall (r,z) € ]Rff_Jrl the following equality is valid
/ 7'(7,7:,;)9(5, y)82a+1dsdy = / g (\/ T2 472, z) 72t grdrdz,
B((0,0),t) B(((r,x),0),t)

where B(((r,z),0),t) = {(7,7,2) e R"T: |(F,(r — 7,2 — 2))| < t}.

Lemma 2.4 Forall (r,z) € ]Rfrl the following equality is valid

/ ﬁr,m)g(say)MaXB((o,O)’t) (y)82a+1dsdy
B((0,0),t)

= /B((( o )g (\/ T2 + 72, z) M,,XB((W)!O)J) (7, (r, z))?wﬂd?dez,
r,x),0),t

where B((r,2,0),t) = {(7,7,2) € RT"? : |(F,r — 7,2 — 2)| < t}.
Lemmas 2.3, 2.4 is straightforward via the following substitutions

Z:y,T:SCOS@7 ?:Ssine, 0§Oé<7’[',
(s,y) € RTM (7, (1,2)) € R
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3 Definitions, notation and preliminaries

Definition 3.1 [12,13] Let 1 < p < 00, 0 < X < 2a + 2. We denote by M, » o(R')
Morrey space (= B-Morrey space), associated with the Laplace-Bessel differential operator
as the set of locally integrable functions f(r,x), (r,z) € RT‘l, with the finite norm

1/p
1l a0 = sup (t_k/ (T | £ (5,9)] )psm“dsdy) .
” B((0,0),t)

n+1
t>0, (r,z)eR’

We will make use the Laplace-Bessel maximal function associated with the differential
operators A,, . The Laplace-Bessel maximal function was introdused by Guliyev in [11],
see also [12,13]

My f(r,z) = sup IB((o,o),a)\;l/ Tisw) ([ (1, 2)])dva(s, ),
e>0 B((0,0),e)
where
B((0,0),6) = {(s,y) € R" : s> + |y|> < %}
and

/2 (o +1) 42042
2n T(a+ 1/2)

Also consider the fractional maximal function

|B((O’O)75)‘a =

_ B 1
MP f(r,2) = sup | B((0,0), £)| 27 / Tis ) (1 (s 2))dva(s. 1),
£>0 B((0,0),¢)
with
0<B<2a+n+2.

Note that for 3 = 0 we have MY f(r, x) = M, f(r, ).
We consider the B-Riesz potential

I5f(r,z) = /IR o TealF (59 (s, )72 722 T dsdy, 0 < <20 +2,
+

Th;orem 31 [IS]DIff € Miyo(RE), 0 <X < 2a42+n, then Mo f € WMy, o(RE)
an
[Mafllwarsso < Crxall Flimy o
where C1 ) o depends only on \, o and n.
I f € MproREM), 1< p<o0,0< A< 2a+2+n, then My f € My oRTH)
and
[Mafllmyra < Conall Fllmg s

where C,, ) o depends only on p, \, o and n.

Theorem 3.2 [I5]Let0 < o < Q, 0 < A< 2a+2+n—Band1 g;m%.

HIfl1<p< % then condition % — % = Mﬁ is necessary and sufficient

for the boundedness IS from My aRE) t0 My o (R,
2) If p = 1, then condition 1 — % = Mﬁ is necessary and sufficient for the

boundedness 15 from My oRET) 10 WM, o(RE.
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Definition 3.2 Letr w(r,x) positive measurable weight function on Riﬂ. We denote by

./\/.lp’w,a.(RiH) .the generalized Morrey spaces, the spaces of all functions [ € Lg’c(RiH)
with finite quasinorm

_ 20+4n+42

t P
f Mpw o = Sup TN T‘I f a *
H H W, (T7x)€Ri+1’ 10 W((T, l‘), t) H ‘ ( )|HLP B((0,0),t))

2a+2+4+ A—2a+2

Tw((ra), )=t v then MyuoRTTY) = Ly o(RYTY ifw((r,z),t) =t »
0 <A< 2a+n+2 then My, o(RT) = M, o (RET.

4 Maximal function associated with Laplace-Bessel differential operators on
generalized B-Morrey spaces

In this section we study the boundedness of the maximal operator associated with Laplace-
Bessel differential operators on generalized B-Morrey spaces.

Theorem 4.1 Let 1 < p < oo and the w(r,x) positive measurable weight function on
R % (0, 00) satisfying the condition

/toow((r, :c),T)Ci_—T < Cw((r,x),t), 4.1

where C' does not depend on (r,x) and t.
Then for p > 1 the maximal operator M, is bounded from M, o (]Rffl) to My .0 (]R’}F'H)
and for p = 1 the maximal operator M, is bounded from M ,, o (RT'I) 1o WM 40 (Ri‘H ).

Proof. We need to introduce the maximal operator defined on a space of homogeneous
type (Y,d, o). By this we mean a topological space Y = R’}fl x (0, 00) equipped with a
continuous pseudometric d and a positive measure o satisfying

o(B((T,r,x),2t)) < Cio(B((F,r,z),t)) 4.2)
with a constant Cy independent of (7,7, z) and r > 0. Here B((7,r,x),t) = {(5,s,y) €
Y s (7). (5,5,9) <} do(5,5,y) = (3)2*Fds ds dy, (7,7, 2), (5, 5,1)) =

_ _ _ . 1
(7, r2) = (5,8, y)| = ((F=3)° + |r — s + |z — y|?)=.
Let (Y, d, o) be a space of homogeneous type. Define

M, F (7,7, 2) = sup o (B((F,r,z), 1)) /B oy TGSV 0 50),

r>0

where f (7,7, z) = f (\/?2 +r2,:p).

It is well known that the maximal operator M, is of weak type (1,1) and is bounded
on L,(Y,do) for 1 < p < oo (see [6]). Here we are concerned with the maximal operator
defined by do (3, s,y) = (3)2*T1ds ds dy. It is clear that this measure satisfies the doubling
condition (4.2).

It can be proved that

M, f (\/ 72 472, z) =M,f (\/ 72472 2, 0) (4.3)

and _
Maf(ra .1‘) = Mof(ra xz, 0) (4.4)
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Indeed, from Lemma 2.3

/ Tis,y) ‘f (\/ 72 472, z) ‘ F2atl = drdy
B((0,0),t)

_ / 75, 5,9)| do(s,s,y)
B((m,z,[)),t)

and

[B((0.0),8)|a = oB( (V7 +72,2,0).1)

imply (4.3). Furthermore, taking 7 = 0 in (4.3) we get (4.4).
Using Lemma 2.3 and equality (4.3) we have

1/p
(/ [,ﬁr,x) (Maf(y)) ]pdy(s’ y))
B((0,0),t)

1/p
= (/R"“ [T(r,x) (Mo f(y)) ]pXB((op),t)(S, y)dv(s, y))
i
» 1/p
= (/ (Maf (m, Z)) XE(((r,x),0),t) (7,7,2) do(T, T, Z))
Ri+1><(0700)

1/
- </B(((r,x),o),t) <MJ (m%o))p do(7,, Z)> p.

In [17] there was proved that the analogue of the Fefferman-Stein theorem for the maxi-
mal operator defined on a space of homogeneous type is valid, if condition (4.2) is satisfied.
Therefore

/Y (My(5,5,9)) (5, 5, 9)do(5, 5,1)

e / 105, 5,4) P M5, 5,) do (3, 5,). 4.5)
Y

Then taking ¢(3,s,y) = f (\/52 + 52,9, 0) and ¢(5,5,4) = XB(r2)) (55, y) we
obtain from inequality (4.5) and Lemma 2.3 that

1/p
[ Tw (Maf(s.) Pdv(s)
B((0,0),r)
_ p 1/[’
= (/ (MO'f < 52 + SQa Y, 0)) XB((z,0),t) (E’ S, y) do_(gv S, y))
Y
— p 1/p
<Oy (/Y ‘f ( 52 + 827 Y, O) ‘ MO’XB((CC,O)7t) (37 S, y) d0<§a S, y))

1/p
= CQ <L ‘f ( \ §2 + 527y> ‘p MO’XB((:B,O),t)(gvs)y) d0(875,y)>
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1/p
= 02 (/RTH-I [7d(r,a:)|f(5a y)| ]pMaXB((O,O),T) (87 y)di/(s, y))
+

<G ([ Tl Pivisy)
B((0,0),r)

» 1/p
Tyl (59 P M ((0.0)) (5 9) v (5, 9)

+Cy /
Z 2]+1 \ 2Jr

1/p
< (/ [Tl f (5, 9)| [P (s, y))
B((0,0),r)

[e.e]

1/p
TQ

+C / Trx ) P d )
& oo, TN o)

J=1

2a+424n >° 1 . 2042 .
7=1

2a+2+n d
< Oy a5 ( ra)t+C [ a )

T

2a+24n
<Cyr v w((r ), Ol fll My -

5 Fractional integral associated with Laplace-Bessel differential operators on
generalized B-Morrey spaces

In this section we study the boundedness of the fractional integral operator associated with
Laplace-Bessel differential operators on generalized B-Morrey spaces.

Theorem 5.1 [3,13] Let0 < 8 <2a+2+nand1 <p < %

HIfl<p< % then condition % — % = % is necessary and sufficient for

the boundedness of I}, 4 from L,, Oé(]R"'H) to Ly, Oé(]R’}r'H).
2) If p = 1, then condition 1 — %

ness of 1 from LR 0 WLq’a (R7H).

is necessary and sufficient for the bounded-

Theorem 5.2 Let 0 < f < 2a0+n+2, 1 < p < % and the w(r,x) positive
measurable weight function on ]RT'l x (0, 0c0) satisfying the condition (4.1) and

/ ww((r,xmfﬁ

where C' does not depend on (r,
NIfl<p< % and

to ./\/lqwa(R”H)
2)Ifp=1and 1—7

< Ctﬁw((r,x),t), 5.1

% — m, then Ig is bounded from M,, , CY(R”H)

1
p

then IZ is bounded from M a(RnH) toWMq Q(R"H).

2a+2+n’
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Proof. Let1 < p < %, % — % 2a+’32+n and f € My, Q(R”’H) Then

185(r,2) = ( [+ ) T f(5,9) (5,222 (5, )
B((0,0),t) R\ B((0,0),t)
= Ai(r,z,t) + As(r, 2, t). (5.2)

Let I, f be the fractional integral operator on the space of homogeneous type (Y, d, 0):

18 f(F,r, ) = / F(5,9)d(F 7, 2), (5, 5,9))° do (5, 5,9).
Y

Also, in the work [20], [22] it was proved:

Proposition 1. Let 0 < o < 1,1 < p < é
conditions are equivalent:

1) There is a constant C > 0 such that for any f € L, ,(Y') the inequality

17 (£, < Cllf L,

% = «. Then the following two

holds.

2)pe Ay (V) 5+ =1

By the Proposition 1 and ¢ (8, s,y) = (MXE((O,M)J)(E, s,y))9 € A,(Y),0<0<1,

we have
1/q
(/ 727‘,3:) ’Fl(S,y)r]dl/(S,y))
B((0,0),t)

1/q
< ( RO+ Tir.) |F1(s,y)|? (MaXB((070)7t)(S,y))edl/(s, y))

U

— p 0 1/p
<O </ ‘f ( 5+ 3273/7 0)‘ (MOXB(((r,z),O),t) (§> S, y)) da(§7 57y)>

1/q
12076 (VS 32.0.0)[ o(5.5.0) do.5.0)

1/p
L1 (V20 (oxgmpma 50 dots.s.) )

1/p
(/ Trx |f S y)‘ ( aXB((0,0), t)(s y)) dV(S,y))

1/p
< ( / T(r,x)lf(s,y)lpdl/(s,y)>
B((0,0),t)

e (X T £(5.9) P(Maxs, (s,9)) (s, )

i=1 /B((0,0),27+10)\B((0,0),2t)

1/p
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1/p
< Oy (/ Torz)l f(s,y)Pdv(s, y))
B((0,0),t)

1
o0 ( )| t(2a+2+n)0 ( ) /e
e (> [ T £ (5P a5,y
2 ;::1 B2 N\B(0)21) | (15, )| + r)Eect2em)?

2a+2+n

< Cy WMy (7 7 wl(72), )

oo
1 . 2a+24n ) 1/p
+1 +1
+X @0 wl(0),27)
Jj=1

2a+24+n

< Oy [ fllag, . 65 (w<<r,x>,t>+o Oow((hrv)ﬁ)dT>

t T

2a+2+n

<Cyt v w((T, x)vt)HfHMpquOé'

Hence

A1 My o = sup  t ¢ w ((r,z),t)
(T,I)ER1+1, t>0

X </ 7-(7‘,90) |A(S7y7t)|qdy(37y)>
B((0,0),t)

S C4”fHMp,w,a'

1

q

Now we estimate | Ao (7, x, t)|. By the Holder’s inequality we have

As(r, 2, )] < / ((s5,9)]7 222w (s, y)
R\ B((0,0),t)

o0

(5, 9) 1P 22Ty | (5, ) |du (5, )

=1 /B((0,0) ,27+H 1)\ B((0,0),27t)

<> (/ . | !(Svy)|(ﬁ(2a+2)pld7/(87y)>
; B((0,0),27+14)\ B((0,0),271)

ﬁr,x) |f(57 y) |pd7/(87 y))

1
I

X
B =

/B((O,O),2j+1t)\B((O,O),2J't)

o

<O flpmy o D2 W((r,2),271)

J=1

<Clflap [ llr2), )7 e

< CtPw((r,2),t) | pa, o
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Hence
_ 20+424n 1 q a
Aoty = s 5T G ([ T s )
(T‘,x)ERi+1, t>0 B((0,0),t)
<C s w () 0 a0 0,8 X000 L
(r,x)ER1+l7 t>0
S C”fHMp,w,a'
Therefore I f € ./\/lqywq/pa(R’}fl) and
berl,, =Wl
2) Let f € Mo (R, By the (5.2), we get
B[ Tl il (s
B((0,0),t)
-1
B—2a—2—n
< 3 (2) / T f(0)] dv(s, )
k=—o00 E2k+1t\E2kt
Hence
|F1(Ta l‘)| < CtﬁMaf(rvx)' (53)
Then
{50 € B0,0)0) = Ty |1 (5,m)] > 28}

< { ((0,0),t) : Tiray [ F1(5,9)| > B} a
+|{ Say EB((()’O)? ) : 7ZT7£E)|F2(S7:U)| >5} |a-

Taking into account inequality (5.3) and Theorem 3.1 we have

{(5,9) € BO,0).0) + T Fa(s9)] > 6} o

C B8
< ; cw((r2), ) | fllp, s

<

and thus if Ct™ 2a+42+nw((r, z),t) [ fllag, . = B, then [Fa(r, )| < B and consequently,
[ {(s,9) € B((0,0),8) : Ty F2(s,9)| > B} ]a = 0.

Finally
{9 0)1) Tl f(w) > 28} |
C
< 5w w((ry @), O || Fll gy
(K
= Cwi((r,z),t) (%“) .

The Theorem 3.2 is proved.
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6 The Littlewood-Paley g-function

In this section we define and study the g-littlewood function associated with Laplace differ-
ential operator inthe generalized Morrey space M, o (R™™1).

In the following we recall some facts and definitions. The Poisson integrals u(f), t > 0
and f € S,(R™"1) is defined by

u(f)(r,x) =pex f(r,x), (r,z) € R+

where p; is the Poisson kernel given by

20 M (a + 243
pilrya) = F (e () = — o+ % |
72 I'(a+1)(t2+r2+|z)?)

see [4], Proposition 3.1.
Proposition 6.1 Let f € S, (R""1) be a positive function and p > 1, then we have
i) For |(r,x)| = V1% + 22 large we have

w(r,z) < C’(t2 +r2 4+ ]m|2)(_a+n7+2),

ii)
%(T, x) < Ct—2etnt3,
iii)
Zﬁfo: 2) < O +0° 4 o) o),
v)

) .
a—u(r,x) <O+ 72+ |2y ) 1 <i<n.
i

Proposition 6.2 Let  a positive, non increasing in L' (dvy,) locally integrable function on
R™1. we have

Sulo)@t *o f(T,$) < ||@t||1,04 Ma(f)(r,x),
t>

where @, is the dilation of @ given by

Sy(r,x) = — (Qactnd2 @(g, %)

Definition 6.1 We define the g-functions associated with Laplace-Bessel differential oper-
ators for f € S,(R""1) by the following
. o0 ) 1/2
¥ (o) € R g(f)(ra) = ([ 1Vt Prd)
0

where uy is the Poisson integral and

? ? )
[Vur(r2)|* = |55 () + |5 () +; 5 o)l
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Theorem 6.1 Let p €]1,2] and w(r,z) positive measurable weight function on R™"1 x
[0, o[ satsfying

o0 d
/ w(r, 1) < Curya,e),
e T

where C does not depend on (r, x) and ¢ then there exists a positive constant Cy, o, such that
forall f € Mypyo(R") we have

||g(f)HMp,w,a S Opaa”fHMp,w,a‘

Proof. Since the operator g is semi-linear operator then it suffices to proof theorem for all
positive function.

case 1 < p < 2.

By the same way as [4], we obtain

. 1 \8( .
9Nl < (o) (MalD0)) * (D)’ ©)
where
Ma(f)(r,z) = sup [uy(r, @)
and -
Lo(f)(rz) = /0 |Agd (r, )t
with o2
AazaT;JrAn,a.

Lemma 3 allows us to get

/ Ty 9 (1) (529) Padva(s, )
B(0,0),e

_ / Toray9(F) (V72 + 72, 2) P72 L drdrds.
E((r,z),0,e)
Thus, using relation (6.1) we obtain
[ Temg0)s)Pva(s.)
B(0,0),e

p(2—p)

< (p(pl_ 1))5 /E . (Ml +7,2))

x(La(N(V/72+7,2)) 20t g .

Applying Holder inequality we get

/ Ty 9(F)(529) Padva(s, )
B(0,0),¢
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P 2—p

<o) (o, Ml V75722 7 trara)

p—1

[Sl5s]

«( / IalF)(V/72 4 72, )P drdrdz) (6.2)
E((r,x),0,e)

In the first hand using the same method as [4] we have

/ I (/)(V 72 +72 2) |?2a+1d?d7dz
E((r,z),0,e)
= / ( / Antl (V72 472, z)tdt)?m“d?dv-dz
E((r,z),0,e) 0
< / F(VTE 172, 2)) Pt drdrdz
E((r,x),0,e)

- / T F (5,1 Pdvals, ) < 22 u((r,2), ) PSR,
B((0,0),¢) Y

Therefore

[NJES)

( / II.(f)(V 72 +72 2) |?2a+1d?d7'dz>
E((r,z),0,e)

2
< 6(a+n+2)p/2(w(<r’ w)vg))p2/2||f”]j\/l/p2,w,a' (6.3)

On the other hand using Proposition 2.6 and the fact that ||p¢||1,o = 1 (see [4]) we deduce

/ (Ma(5) (V72 472, 2)) 72 drdrdz
E((r’x)7078)
p
<l ) M)V ) 5 i
r,x),0,e

< / Ty Ma(£) (5, 9)Pdva(s, )
B((0,0),¢)

< 22 (1, 2), )P [ Ma (Il
From Theorem 4.1.we deduce

2—p

< /E((T ),0,€) (Ma(f)(\/m’ Z)>p?2a+1d?d7dz> ?

< AP (1, ), ) P2 R, (64)

Relations (6.2), (6.3) and (6.4) involve that
/ o TPl ) < 22 2), 1,

which gives that
Hg(f)HMp,w,a S C||f||Mp,w,a'
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Note that, in the case p = 2 we have

[ Tl )Pdva(sn
B(0,0),¢

2/ \T@m)g(f)(\/TQ%—? 2)|?P72 9 dFdrdz
E((r,z),0,e)

= / / Aqui (V72 + 72 z)tdt) 7ot grdrdz,
(r,z),0,e)

see [4], relation (5.1).

Using also ([4], Proposition 3.7) we obtain

[ emg() s Pvats.)
B(0,0),

/ P72 172, 2) PP drdrds
((r,z),0,€)

<

| =

1

<3 [ e Pdvats.y)
B(0,0),

This implies that

1
||g(f)HMp,w,cx S EH-fHMp,w,a'

The theorem is proved.
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