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Abstract. In this article the correctness of a linear inverse problem for the three-dimensional Tricomi
equation with nonlocal boundary conditions of periodic type is considered in a prismatic unbounded
domain. The existence and uniqueness theorems for a generalized solution to a linear inverse problem
with nonlocal boundary conditions of periodic type are proved in a certain class of integrable functions.
The ”ε-regularization”, a priori estimates, approximation sequences and Fourier transform methods are
applied.
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1 Formulation of the problem

Different kind of inverse problems for the classical equations (parabolic, elliptic and hy-
perbolic types) are studied by many mathematicians (see, for examples, [1], [3], [16], [17],
[19], [33], [34], [35]). Mixed differential equations of first and second type are considered,
in particular, in [4], [5], [6], [7], [26], [30], [31] in bounded domains. Inverse problems for
equations of mixed type (especially, for the Tricomi equation) in unbounded domains are
much less studied.

In this paper, we study the unique solubility of inverse problems for the three-dimensional
Tricomi equation with nonlocal boundary conditions of periodic type in an unbounded pris-
matic domain. We note, the method of reduction of the inverse problem to direct with nonlo-
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cal boundary conditions of periodic type for a family of loaded Tricomi integro-differential
equations is suggested in [8] in a bounded rectangular domain.

We remind that as a loaded equation is typically called a partial differential equation
containing the values of certain functionals of the solution of the equation in the coefficients
or in the right-hand side [4], [5], [6], [7], [8], [9], [10], [17], [22], [26], [30], [31], [32].
Some inverse boundary problems for partial differential and integro-differential equations
are considered in [2], [13], [15], [24], [25], [36], [37], [38].
In the domain Q = Q1 × R = (−1, 1) × (0, T ) × R we consider the three-dimensional
Tricomi equation:

Lu = xutt −∆u+ a(x, t)ut + c(x, t)u = ψ(x, t, z), (1.1)

where ∆u = uxx + uzz is the Laplace operator, ψ(x, t, y) = g(x, t, y) + h(x, t) f(x, t, y),
the functions g(x, t, y) and f(x, t, y) are given and the function h(x, t) is unknown.

We need to introduce definitions of several function spaces and designations. The Fourier
transform of function u(x, t, z) we denote by

û(x, t, λ) = (2π)−1/2
+∞∫
−∞

u(x, t, z) e−iλzdz

and the inverse Fourier transform – by

u(x, t, z) = (2π)−1/2
+∞∫
−∞

û(x, t, λ) eiλzdλ.

Now, by the aid of the Fourier transform, we determine the space W l,s
2 (Q) with the norm

‖u‖2
W l,s

2 (Q)
= (2π)−1/2

+∞∫
−∞

(
1 + |λ|2

)s ‖û (x, t, λ)‖2W l
2(Q1)

dλ, (A)

where s, l are any finite positive integers. The Sobolev space is defined by W l
2(Q1) (for

l = 0, W 0
2 (Q1) = L2(Q1)) with the scalar product (u, ϑ)l and with the norm

‖ϑ‖2l = ‖ϑ‖
2
W l

2(Q1)
=
∑
|α|≤l

∫
Q1

|Dαϑ|2 dxdt,

where α is multi-index, Dα is generalized derivative on variables x and t. It is obvious that
the space W l,s

2 (Q) with the norm (A) is a Hilbert space [14], [18], [20], [21], [23], [27].
Linear inverse problem. Find the pair of functions {u(x, t, z), h(x, t)} satisfying the

equation (1.1) in the domainQ, the following with nonlocal boundary conditions of periodic
type

γDp
t u|t=0 = Dp

t u|t=T , (1.2)
Dp
x u|x=−1 = Dp

x u|x=1 (1.3)
and the additional condition

u(x, t, `0) = ϕ0 (x, t), (1.4)

where p ∈ {0, 1}, Dp
t u = ∂pu

∂ tp , D0
t u = u, γ is some nonzero constant, `0 ∈ R with the

function h(x, t) belongs to the class

U =
{
(u, h) |u ∈W 2,s

2 (Q); h ∈W 2
2 (Q1), s ≥ 3

}
.
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Definition 1. As a generalized solution to the problem (1.1)–(1.4) we will call the function
u(x, t, z) ∈ U , which satisfies the equation (1.1) with the conditions (1.2)–(1.4) almost
everywhere.

Let all the coefficients of the equation (1.1) be sufficiently smooth functions in the do-
main Q and let the following conditions be satisfied.
Condition 1: The periodicity conditions: a(x, 0) = a(x, T ), c(x, 0) = c(x, T ); the non-
local conditions: γ g(x, 0, z) = g(x, T, z), γ f(x, 0, z) = f(x, T, z) the smoothness
conditions: f(x, t, l0) = f0(x, t) ∈ C0,1

x,t (Q1), |f0(x, t)| ≥ η > 0, f ∈ W 3,s
2 (Q), g ∈

W 1,s
2 (Q);

Condition 2: ϕ0(x, t) ∈W 3
2 (Q1),

γDq
tϕ0

∣∣
t=0

= Dq
tϕ0

∣∣
t=T

, q = 0, 1, 2. Dp
xϕ0

∣∣
x=−1 = Dp

xϕ0

∣∣
x=
, p = 0, 1.

The unique solubility of the problem (1.1)–(1.4) will be proved by the help of the Fourier
transform. We consider the traces of the equation (1.1) at z = `0:

Lu
(
x, t, `0

)
= xutt

(
x, t, `0

)
− uxx

(
x, t, `0

)
− uzz

(
x, t, `0

)
+

+a(x, t)ut
(
x, t, `0

)
+ c(x, t)u

(
x, t, `0

)
= ψ

(
x, t, `0

)
.

Taking into account the condition (1.4) and that f0 6= 0, we determine a formally un-
known function h(x, t) in the form of the integral

h(x, t) =
1

f0(x, t)

[
Φ0 +

1√
2π

+∞∫
−∞

λ2eiλ`0 û(x, t, λ)dλ

]
,

where Φ0 = L0ϕ0 − g0, L0ϕ0 = xϕ0tt − ϕ0xx + a(x, t)ϕ0t + c (x, t)ϕ0.
For the function û(x, t, λ) in the domain Q1 = (−1, 1) × (0, T ) we obtain the loaded
Tricomi integro-differential equation:

Lû = xûtt − ûxx + a(x, t) ût +
(
c(x, t) + λ2

)
û = ĝ(x, t, λ)

+
f̂(x, t, λ)

f0(x, t)

[
Φ0 +

1√
2π

+∞∫
−∞

λ2eiλ`0 û(x, t, λ)dλ

]
≡ F̂ (û) (1.5)

with nonlocal boundary conditions of periodic type

γDp
t û|t=0 = Dp

t û|t=T , (1.6)

Dp
x û|x=−1 = Dp

x û|x=1 ; p = 0, 1, (1.7)

where

f̂(x, t, λ) = (2π)−1/2
+∞∫
−∞

f(x, t, z) e−iλzdz, λ ∈ R

is the Fourier transform of function f(x, t, z) in variable z.
The main result is given by the following theorem.

Theorem 1.1 Let conditions 1 and 2 be satisfied, 2a(x, t) + µx > B1 > 0, µc(x, t) −
ct(x, t) > b2 > 0 for all x ∈ Q1, where µ = 2

T ln | γ | > 0, | γ | > 1. Suppose
that there exist some positive numbers σ, c(σ−1) such that for b0 = min

{
B1, µ, b2

}
we have b0 − c

(
σ−1

)
= δ > 0, M ‖ f ‖2

W 3,s
2 (Q)

< 1
2 , c(σ−1) = 14µ2σ−1 > 0, where
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M = const
(
σ µ2mδ−1η−2 ‖f0‖C0,1

x,t

(
Q1

) ), m = 10c1c2c3, c1 =
+∞∫
−∞

λ4dλ(
1+|λ|2

)s < ∞,

s ≥ 3, ci(i = 2, 3) are the coefficients of the Sobolev embedding theorems.
Then the functions

u(x, t, z) = (2π)−1/2
+∞∫
−∞

û(x, t, λ) eiλzdλ, (1.8)

h(x, t) =
1

f0(x, t)

[
Φ0 +

1√
2π

+∞∫
−∞

λ2eiλ`0 û(x, t, λ)dλ

]
(1.9)

are the unique pair of solutions to the linear inverse problem (1.1)–(1.4) from the class U .

Proof. We prove the theorem according to the following scheme:
1. We show that the function u(x, t, y), defined by the formula (1.8), satisfies the addi-

tional condition (1.4).
2. We show the unique solubility to the problem (1.5)–(1.7). In this order, we will study

the unique solubility of the problem for the family of loaded Tricomi integro-differential
equations of the third order with a small parameter (auxiliary problem).

3. With the help of this auxiliary problem, we study the unique solubility of the problem
(1.5)–(1.7).

4. Using the unique solubility of the problem (1.5)–(1.7), we prove the unique solubility
of linear inverse problem (1.1)–(1.4).

Now let us go to the realization of this scheme. So, we prove that u(x, t, `0) = ϕ0 (x, t).
Suppose that

u (x, t, `0) = (2π)−1/2
+∞∫
−∞

û(x, t, λ)eiλ`0dλ = ω (x, t) 6= ϕ0(x, t).

We consider the function ϑ(x, t) = ω(x, t) − ϕ0(x, t) in the domain Q1. Multiplying the
problem (1.5)–(1.7) by eiλ`0√

2π
and integrating by the parameter λ from −∞ to∞ and taking

into account the conditions of the theorem, we obtain the following differential equation

L0ϑ = xϑtt − ϑxx + a (x, t)ϑt + c (x, t)ϑ = 0 (1.10)

with nonlocal boundary conditions of periodic type

γDp
t ϑ|t=0 = Dp

t ϑ|t=T ; (1.11)

Dp
x ϑ|x=−1 = Dp

x ϑ|x=1 ; p = 0, 1, (1.12)

The uniqueness of the solution to problems (1.10)–(1.12) is proven in [8], [11],[12]. There-
fore, it follows that ϑ(x, t) = 0, i.e. ω(x, t) = ϕ0(x, t).
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2 A family of loaded integro-differential equations of the third order with a small
parameter

In the domain Q1 = (−1, 1) × (0, T ) we consider the following family of loaded integro-
differential equations of the third order with a small parameter:

Lεûε = −εûεttt + L0ûε + λ2 ûε = ĝ(x, t, λ)

+
f̂ (x, t, λ)

f0(x, t)

[
Φ0 +

1√
2π

+∞∫
−∞

λ2eiλ`0 ûε(x, t, λ)dλ

]
≡ F̂ (ûε) (2.1)

with nonlocal boundary conditions of periodic type

γDq
t ûε|t=0 = Dq

t ûε|t=T , q = 0, 1, 2, (2.2)

Dp
x ûε|x=−1 = Dp

x ûε|x=1 , q = 0, 1, (2.3)

where ε is a small positive number. Further, for the correctness of the problem (2.1)–(2.3)
we introduce the following notation of a space of generalized functions:

Wi(Q1,R) =
{
ϑ̂
∣∣∣ ϑ̂ ∈W i

2(Q1), i = 0, 1, 2;
(
1 + |λ|2

)s/2 ∥∥∥ ϑ̂ ∥∥∥
W i

2(Q1)
∈ L2(R);

W 0
2 (Q1) = L2(Q1)

}
with the norm 〈

ϑ̂
〉2
i
=

∞∫
−∞

(
1 + |λ|2

)s ∥∥∥ ϑ̂ ∥∥∥2
W i

2(Q1)
dλ. (B)

It is obvious that the space Wi(Q 1,R) with the given norm is Hilbert space [14], [18],
[20], [21], [23], [27]. From the definition of the space W i

2(Q1), i = 0, 1, 2, it follows the
following embedding W2(Q1,R) ⊂W1(Q1,R) ⊂W0(Q1,R). By the symbol

W (Q1,R) =

{
ϑ̂
∣∣∣ ϑ̂ ∈W2(Q1,R),

∂3ϑ̂

∂t3
= ϑ̂ttt ∈W0(Q1,R)

}
we denote the class of functions satisfying the corresponding conditions (2.2)–(2.3).
Definition 2. As a generalized solution to the problem (2.1)–(2.3) we will call the function
ϑ̂(x, t, λ) ∈W (Q1, R), satisfying the equation (2.1) almost everywhere.

In order to proof the solubility of the problems (2.1)–(2.3) we consider nonlocal bound-
ary conditions of periodic type for a family of loaded integro-differential equations of the
third order with a small parameter:

Lεû
(θ)
ε = −εû(θ)εttt + L0û

(θ)
ε + λ2û(θ)ε = ĝ(x, t, λ)

+
f̂(x, t, λ)

f0(x, t)

[
Φ0 +

1√
2π

+∞∫
−∞

λ2ei λ `0 û(θ−1)ε (x, t, λ) dλ

]
≡ F̂

( ˆ
u
(θ−1)
ε

)
(2.4)

with nonlocal boundary conditions of periodic type

γDq
t û

(θ)
ε

∣∣∣
t=0

= Dq
t û

(θ)
ε

∣∣∣
t=T

, q = 0, 1, 2, (2.5)
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Dp
x û

(θ)
ε

∣∣∣
x=−1

= Dp
x û

(θ)
ε

∣∣∣
x=1

, p = 0, 1, (2.6)

where ε > 0, θ = 0, 1, 2, ...
Lemma 1. Suppose that all the conditions of the theorem 1.1 be satisfied. Then the solution
to problem (2.4)–(2.6) satisfies the following estimates

(I). εδ
〈
û
(θ)
εtt

〉2
0
+
〈
u
(θ)
ε

〉2
1
≤ const(θ̃, ε̃, λ̃),

(II). εδ
〈
û
(θ)
εttt

〉2
0
+
〈
û
(θ)
ε

〉2
2
≤ const(θ̃, ε̃, λ̃).

The const(θ̃, ε̃, λ̃) is independent from the parameters θ, ε, λ.

Proof. Consider the identity

2
(
Lû(θ)ε , e−µtû

(θ)
εt

)
0
= 2

(
F̂
(
û(θ−1)ε

)
, e−µtû

(θ)
εt

)
0
, (2.7)

where the constant µ > 0 we will choose later.
Taking into account the conditions of the Theorem 1.1, integrating identical equation

(2.7) by parts and applying the Cauchy inequality with σ ([18], [27]), it is easy to obtain the
following inequality

2

∫
Q1

Lû(θ)ε e−µ t û
(θ)
εt dxdt ≥ ε

∥∥∥û(θ)εtt∥∥∥2
0
+

∫
Q1

e−µt
[
(2a+ µx) û

2(θ)
εt

+µ û2(θ)εx + µλ2û2(θ)ε + (µ c− ct)
ˆ

u
2(θ)
ε

]
dxdt

−
∫
∂Q1

e−µt
{
xû

2(θ)
εt et − û2(θ)εx et − 2û

(θ)
εt û

(θ)
εx ex + (c+ λ2)û(θ)ε et

}
ds, (2.8)

where µ − const > 0, −→e =
(
ex = (−→e , x); et = (−→e , t)

)
is the unit vector of the inward

normal values to the boundary ∂ Q1. The conditions of the Theorem 1.1 provides non-
negativity of the integral in the domain Q. By virtue of the nonlocal boundary conditions of
periodic type (2.5), (2.6) and the conditions of Theorem 1.1, by the choice of γ2 = eµT we
obtain that the boundary integrals will be equal to zero. Thus, from the inequality

2

∫
Q1

Lû(θ)ε e−µt û
(θ)
εt dxdt ≥ ε

∥∥∥û(θ)εtt∥∥∥2
0
+

∫
Q1

e−µt
(
B1 û

2(θ)
εt + µ û2(θ)εx

+µλ2û2(θ)ε + b2 û
2(θ)
ε

)
dxdt ≥ ε

∥∥∥û(θ)εtt∥∥∥2
0
+ b0

∥∥∥û(θ)ε ∥∥∥2
1
, (2.9)

applying the Cauchy inequality with σ to the identity (2.7), we obtain∣∣∣2(F̂ (û(θ−1)ε

)
, e−µtû

(θ)
εt

)
0

∣∣∣
≤

∣∣∣∣∣∣2
(
ĝ +

f̂(x, t, λ)

f0(x, t)

[
Φ0 +

1√
2π

+∞∫
−∞

λ2ei λ `0 û(θ−1)ε (x, t, λ)dλ

]
, e−µ tû

(θ)
εt

)
0

∣∣∣∣∣∣
≤ 3σ

∥∥∥û(θ)ε ∥∥∥2
1
+ σ−1

[
‖ĝ‖20 + η−2

∥∥∥f̂∥∥∥2
C(Q1)

(
T0 ‖ϕ‖2W 2

2 (Q1)
+ ‖g0‖20

)]
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+c1ση
−2
∥∥∥f̂∥∥∥

C(Q1)

∞∫
−∞

(
1 + |λ|2

)s ∥∥∥û(θ−1)ε

∥∥∥2
1
dλ, (2.10)

where T0 = 2max
{
1, ‖a‖C(Q1); ‖c‖C(Q1)

}
.

Combining the inequalities (2.9) and (2.10), we derive

ε
∥∥∥û(θ)εtt∥∥∥2

0
+
(
b0 − 3σ−1

) ∥∥∥û(θ)ε ∥∥∥2
1

≤ σ−1
[
‖ĝ‖20 + η−2

∥∥∥f̂∥∥∥2
C(Q1)

(
T0 ‖ϕ‖2W 2

2 (Q1)
+ ‖g0‖20

)]

+c1ση
−2
∥∥∥f̂∥∥∥

C(Q1)

∞∫
−∞

(
1 + |λ|2

)s ∥∥∥û(θ−1)ε

∥∥∥2
1
dλ. (2.11)

Applying embedding theorem of Sobolev:
∥∥∥f̂∥∥∥2

C(Q1)
≤ c2

∥∥∥f̂∥∥∥2
W 2

2 (Q1)
to the inequality

(2.11), we obtain

ε
∥∥∥û(θ)εtt∥∥∥2

0
+ (b0 − 3σ−1)

∥∥∥û(θ)ε ∥∥∥2
1

≤ σ−1c2
[
‖ĝ‖20 + η−2

∥∥∥f̂∥∥∥2
W 2

2 (Q1)

(
T0 ‖ϕ‖2W 2

2 (Q1)
+ ‖g0‖20

)]

+c1σc2η
−2
∥∥∥f̂∥∥∥2

W 2
2 (Q1)

∞∫
−∞

(
1 + |λ|2

)s ∥∥∥û(θ−1)ε

∥∥∥2
1
dλ. (2.12)

By virtue of the conditions of the Theorem 1.1, we have b0 − 3σ ≥ b0 − c(σ−1) > δ > 0.
So, dividing the inequality (2.12) into b0 − c(σ−1) ≥ δ > 0, multiplying

(
1 + |λ|2

)s and
integrating by λ from −∞ to∞, we obtain the first recurrent formula

ε

δ

〈
û
(θ)
εtt

〉2
0
+
〈
u(θ)ε

〉2
1
≤ A+ c1c2σδ

−1η−2
〈
f̂
〉2
2

〈
u(θ−1)ε

〉2
1
, (2.13)

where

A ≡ (σδ)−1c2

[
〈ĝ〉20 + η−2

〈
f̂
〉2
2

(
T0 ‖ϕ‖2W 2

2 (Q1)
+ ‖g0‖20

)]
.

By the conditions of the Theorem 1.1, we have

c1c2σδ
−1η−2

〈
f̂
〉2
2
< M

〈
f̂
〉2
3
<

1

2
.

So, from the recurrent formulas (2.13), we obtain the validity of estimates (I). Since as the
”zero approximation” we take

{
û
(0)
ε

}
≡ {0}, then we have

ε

δ

〈
û
(0)
εtt

〉2
0
+
〈
u(0)ε

〉2
1
≤ A.

Continuing this process, we obtain the first a priori estimate for any function{
û
(θ)
ε

}
,∀θ ≥ 1

ε

δ

〈
û
(θ)
εtt

〉2
0
+
〈
u(θ)ε

〉2
1
≤ A

(
1 +

∞∑
θ=0

1

2θ+1

)
≤ 2A.
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Let us prove the estimate (II). To this end, consider the identity:

−2
∫
Q1

e−µt Lεû
(θ)
ε Pû(θ)ε dxdt = −2

∫
Q1

e−µt F̂
(
û(θ−1)ε

)
Pû(θ)ε dxdt, (2.14)

where Pû(θ)ε = û
(θ)
εttt − µ û

(θ)
εtt +

µ
2 û

(θ)
εxx − µû(θ)εt .

Reasoning in the same way as in the proof of the estimates (I), integrating (2.14) by parts
and taking into account the conditions of Theorem 1.1 and nonlocal boundary conditions of
periodic type (2.5) and (2.6), we get∣∣∣∣∣∣∣−2

∫
Q1

e−µt F̂
(
û(θ−1)ε

)
Pû(θ)ε dxdt

∣∣∣∣∣∣∣ ≥ ε
∥∥∥û(θ)εttt∥∥∥2

0
+

∫
Q1

e−µ t
(
B1 · û2(θ)εtt

+µ û2(θ)εxx + µ2 û
2(θ)
εtx

)
dxdt+ b0

∥∥∥û(θ)ε ∥∥∥2
1
− 3µ2σ−1

∥∥∥û(θ)ε ∥∥∥2
2
, (2.15)

where c0
(
σ−1

)
= 3µ2σ−1. For the coefficients of Cauchy inequality we have b0−c0(σ−1) >

b0− c(σ−1) ≥ δ > 0, where b0 = min
{
B1; µ; λ

2µ+ b2
}

. Then from the inequality (2.15)
we obtain the following estimate∣∣∣∣∣∣∣−2

∫
Q1

e−µt F̂
(
û(θ−1)ε

)
Pû(θ)ε d x d t

∣∣∣∣∣∣∣ ≥ ε
∥∥∥û(θ)εttt∥∥∥2

0
+ δ

∥∥∥û(θ)ε ∥∥∥2
2
. (2.16)

Applying the Cauchy inequality with σ to the right-hand side of identity (2.14), we get the
following inequality ∣∣∣∣∣∣∣−2

∫
Q1

e−µt F̂
(
û(θ−1)ε

)
Pû(θ)ε dxdt

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣2
(
ĝ +

f̂(x, t, λ)

f0(x, t)

[
Φ0 +

1√
2π

+∞∫
−∞

λ2ei λ `0 û(θ−1)ε (x, t, λ)dλ

]
; e−µtPû(θ)ε

)
0

∣∣∣∣∣∣
≤ 11µ2σ−1

∥∥∥û(θ)ε ∥∥∥2
2
+ 8σ−1µ2

[
‖ĝ‖21 + η−2

∥∥∥f̂∥∥∥2
C1(Q1)

(
T0 ‖ϕ‖2W 3

2 (Q1)
+ ‖g0‖21

)]

+10c1σµ
2η−2 ‖f0‖C1(Q1)

∥∥∥f̂∥∥∥
C1(Q1)

∞∫
−∞

(
1 + |λ|2

)s ∥∥∥û(θ−1)ε

∥∥∥2
2
dλ. (2.17)

Combining inequalities (2.16) and (2.17), we get the correlation

ε
∥∥∥û(θ)εttt∥∥∥2

0
+
(
b0 − c(σ−1)

) ∥∥∥û(θ)ε ∥∥∥2
2

≤ 8σ−1µ2
[
‖ĝ‖21 + η−2

∥∥∥f̂∥∥∥2
C1(Q1)

(
T0 ‖ϕ‖2W 3

2 (Q1)
+ ‖g0‖21

)]

+10c1 σ µ
2η−2 ‖f0‖C1(Q1)

∥∥∥f̂∥∥∥
C1(Q1)

∞∫
−∞

(
1 + |λ|2

)s ∥∥∥û(θ−1)ε

∥∥∥2
2
dλ. (2.18)
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Applying the Sobolev embedding theorem:
∥∥∥f̂∥∥∥2

C1(Q1)
≤ c3

∥∥∥f̂∥∥∥2
W 3

2 (Q1)
to the inequal-

ity (2.18), we obtain

ε
∥∥∥û(θ)εttt∥∥∥2

0
+
(
b0 − c

(
σ−1

)) ∥∥∥û(θ)ε ∥∥∥2
2

≤ 8σ−1c3µ
2

[
‖ĝ‖21 + η−2

∥∥∥f̂∥∥∥2
W 3

2 (Q1)

(
T0 ‖ϕ‖2W 3

2 (Q1)
+ ‖g0‖21

)]

+10c1c3σµ
2η−2 ‖f0‖C1(Q1)

∥∥∥f̂∥∥∥2
W 3

2 (Q1)

∞∫
−∞

(
1 + |λ|2

)s ∥∥∥û(θ−1)ε

∥∥∥2
2
dλ. (2.19)

Dividing the inequality (2.19) into b0 − c(σ−1) ≥ δ > 0, where c(σ−1) = 14µ2σ−1,
multiplying by

(
1 + |λ|2

)s and integrating by λ from −∞ to ∞, we obtain the second
recurrent formula

ε

δ

〈
û
(θ)
εttt

〉2
0
+
〈
û(θ)ε

〉2
2
≤ A1 + 10c1c3σµ

2η−2 ‖f0‖C1(Q1)

〈
f̂
〉2
3

〈
û(θ−1)ε

〉2
2
, (2.20)

where

A1 ≡ 8c3µ
2(σδ)−1

[
〈ĝ〉21 + η−2

〈
f̂
〉2
3

(
T0 ‖ϕ‖2W 3

2 (Q1)
+ ‖g0‖21

)]
.

Therefore, by conditions of Theorem 1.1 we have

ε

δ

〈
û
(0)
εttt

〉2
0
+
〈
u(0)ε

〉2
2
≤ A1.

Continuing this process, we obtain the second a priori estimate for any function
{
û
(θ)
ε

}
,

∀θ ≥ 1

ε

δ

〈
û
(θ)
εttt

〉2
0
+
〈
u(θ)ε

〉2
2
≤ A1

(
1 +

∞∑
θ=0

1

2θ+1

)
≤ 2A1.

Hence, we obtain the estimate (II). The lemma 1 is proved.

We introduce a new function from the class W (Q1,R): ϑ̂
(θ)
ε = û

(θ)
ε − û(θ−1)ε ; ε > 0 :

θ = 1, 2, 3... Then the following lemma is valid.
Lemma 2. Suppose that all the conditions of theorem 1.1 be satisfied. Then for the function{
ϑ̂
(θ)
ε

}
∈W (Q1,R) allows the following estimates:

(III). εδ
〈
ϑ̂
(θ)
εtt

〉2
0
+
〈
ϑ̂
(θ)
ε

〉2
1
≤ A ·

(
1
2

)θ−1;

(IV ). εδ
〈
ϑ̂
(θ)
εttt

〉2
0
+
〈
ϑ̂
(θ)
ε

〉2
2
≤ A1 ·

(
1
2

)θ−1.

Proof. From (2.4)–(2.6) for the function
{
ϑ̂
(θ)
ε

}
∈ W (Q1, R) we obtain the following

equation
Lεϑ̂

(θ)
ε = −εϑ̂(θ)εttt + L0ϑ̂

(θ)
ε + λ2ϑ̂(θ)ε

=
f̂ (x, t, λ)√
2πf0(x, t)

+∞∫
−∞

λ2eiλ`0 ϑ̂(θ−1)ε (x, t, λ) dλ ≡ F̂
(
ϑ̂(θ−1)ε

)
(2.21)
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with nonlocal boundary conditions of periodic type

γDq
t ϑ̂

(θ)
ε

∣∣∣
t=0

= Dq
t ϑ̂

(θ)
ε

∣∣∣
t=T

, q = 0, 1, 2, (2.22)

Dp
x ϑ̂

(θ)
ε

∣∣∣
x=−1

= Dp
x ϑ̂

(θ)
ε

∣∣∣
x=1

, p = 0, 1, (2.23)

where ε > 0, θ = 1, 2, ...

Similarly to the proof of Lemma 1 for the function
{
ϑ̂
(θ)
ε

}
=
{
û
(θ)
ε

}
−
{
û
(θ−1)
ε

}
∈

W (Q1,R) we obtain the third recurrent formula

ε

δ

〈
ϑ̂
(θ)
εtt

〉2
0
+
〈
ϑ̂(θ)ε

〉2
1
≤ 1

2

〈
ϑ̂(θ−1)ε

〉2
1

(2.24)

that, repeating the arguments of Lemma 1 from (2.24) we get a priori estimate (III). Estimate
(IV) will be proved similarly. Lemma 2 is proved.

Theorem 2.1 Suppose that all the conditions of Theorem 1.1 be satisfied. Then the problem
(2.4)–(2.6) are uniquely solvable in W (Q1,R).

Proof. Theorem 2.1 will be proved by the contraction mapping method [11], [12], [29],
[28]. Suppose that L̂ε is an operator, corresponding to the differential expression (2.4) and
conditions (2.5), (2.6). We denote that L̂−1ε is a formal inverse operator. We consider the
following operator in space W (Q1,R):

û(θ)ε = L̂−1ε Fs

(
û(θ−1)ε

)
≡ Pû(θ−1)ε .

1. Operator P maps the space W (Q1,R) in itself. Suppose that
{
û
(θ−1)
ε

}
∈W (Q1,R).

Then the Lemma 1 for the problem (2.4)–(2.6) is true. So, the estimate (II) is correct. Hence,
follows that for any θ = 1, 2, 3... we get

{
û
(θ)
ε

}
∈ W (Q1,R). Thus P : W (Q1,R) →

W (Q1,R).
2. Let us prove that P is a contractive operator. Suppose that

{
û
(θ)
ε

}
,
{
û
(θ−1)
ε

}
∈

W (Q1,R). Consider the new function
{
ϑ̂
(θ)
ε

}
=
{
û
(θ)
ε

}
−
{
û
(θ−1)
ε

}
. For this function the

confirmation of Lemma 2 is correct. So, the estimate (IV) is correct:

ε

δ

〈
ϑ̂
(θ)
εttt

〉2
0
+
〈
ϑ̂(θ)ε

〉2
2
≤
(
1

2

)(θ−1)
const(θ̃).

Therefore P is a contractive operator and, according to a well-known theorem on con-
tracting maps, the problem (2.4)–(2.6) have a unique solution in the space W (Q1,R),
ε > 0. Consequently, we have û(θ)ε → ûε as θ →∞ (see [10], [11], [12], [28], [35]).

3 The family of loaded Tricomi integro-differential equations of the second order

Let us prove the unique solubility of the problem (1.5)–(1.7). The family of loaded integro-
differential equation of the third order (2.1) with conditions (2.2), (2.3) we use as ”ε-
regularizing” equation for (1.5). Suppose that for ε > 0 the function {ûε} ∈W (Q1,R) is a
single solution to the problem (2.1)–(2.3). Hence, for ε > 0 the inequality (IV) is valid. Ac-
cording to the theorem on weak compactness ([8], [18]), from the bounded sequence {ûε}
can be retrieved the weakly convergent sequence of functions

{
ûεj
}

, such that ûεj → û is



96 On a linear inverse problem for the three-dimensional Tricomi equation with ...

weak in W (Q1,R). Let us show that the limit function û(x, t, λ) satisfies the equation (1.5)
almost everywhere in W (Q1,R). Indeed, since the sequence

{
ûεj
}

is weakly convergence
in W (Q1,R), then the operator L is linear. So, we have

Lû−F (û) = Lû−F (ûεj )−
[
F (û)−F (ûεj )

]
= εj ûεjttt+L0

(
û−ûεj

)
+λ2

(
û−ûεj

)
. (3.1)

Passing to the limit in (3.1) as εj → 0, we obtain Lû = F (û). It means that the function
û(x, t, λ) is single solution to the problems (1.5)–(1.7) from the class W (Q1,R)(see, [4],
[6], [9], [10], [29]). This completes the proof of the Theorem 2.1.

Since all conditions of theorem 1.1 are met, applying the Parseval–Steklov equalities
([20], [27]) to solution of the problem (1.5)–(1.7), we obtain a single solution of the problem
(1.1)–(1.4) from the class U .

Remark 3.1 We observe that a linear inverse problems for multi-dimensional equations of
Tricomi and Chaplygin types with nonlocal boundary conditions of periodic type in pris-
matic unbounded domains will be studied in a similar way.
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