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Abstract. In this paper, we investigate the boundedness of the oscillatory singular integrals with variable
Calderón-Zygmund kernel on the generalized weighted Morrey spaces Mp,ϕ(w). When w the weights are
in the Muckenhoupt class Ap, 1 < p < ∞ and (ϕ1, ϕ2, w) satisfies some conditions, we show that the
oscillatory singular integral operators Tλ and T ∗

λ are bounded from Mp,ϕ1(w) to Mp,ϕ2(w). Meanwhile,
the corresponding result for the oscillatory singular integrals with standard Calderón-Zygmund kernel
are established.
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1 Introduction and main results

The classical Morrey spaces were introduced by Morrey [21] to study the local behavior of
solutions to second-order elliptic partial differential equations. Moreover, various Morrey
spaces are defined in the process of study. Guliyev, Mizuhara and Nakai [4,20,22] intro-
duced generalized Morrey spaces Mp,ϕ(Rn) (see, also [5,6,24]); Komori and Shirai [18]
defined weighted Morrey spaces Lp,κ(w); Guliyev [8] gave a concept of the generalized
weighted Morrey spaces Mp,ϕ(w) which could be viewed as extension of both Mp,ϕ(Rn)
and Lp,κ(w). In [8], the boundedness of the classical operators and their commutators in
spaces Mp,ϕ

w was also studied, see also [1,3,10–12,14,16,17].
The spaces Mp,ϕ(w) defined by the norm

‖f‖Mp,ϕ
w
≡ sup

x∈Rn,r>0
ϕ(x, r)−1w(B(x, r))−1/p ‖f‖Lp(B(x,r),w),
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where the function ϕ is a positive measurable function on Rn × (0,∞) and w is a non-
negative measurable function on Rn. Here and everywhere in the sequel B(x, r) is the ball
in Rn of radius r centered at x and w(B(x, r)) =

∫
B(x,r)w(y)dy.

Suppose that K is the standard Calderón-Zygmund kernel. That is, K ∈ C∞(Rn \ {0})
is homogeneous of degree−n, and

∫
Sn−1 K(x)dσ(x) = 0, where Sn−1 = {x ∈ Rn : |x| =

1}. The oscillatory integral operator Tλ is defined by

Tλf(x) = p.v.

∫
Rn
eiλΦ(x,y)K(x− y)ϕ(x, y)f(y)dy, (1.1)

where λ ∈ R, ϕ ∈ C∞0 (Rn×Rn), the space of infinitely differentiable functions on Rn×Rn
with compact supports, and Φ is a real-analytic function or a real-C∞(Rn × Rn) function
satisfying that for any (x0, y0) ∈ suppϕ, there exists (j0, k0), 1 ≤ j0, k0 ≤ n, such that
∂2Φ(x0, y0)/∂xj0∂yk0 does not vanish up to infinite order. These operators have arisen in
the study of singular integrals supported on lower dimensional varieties, and the singular
Radon transform. In [23], Y. B. Pan proved that Tλ are uniformly in λ bounded on Lp(Rn),
1 < p <∞.

LetK(x, y) be a variable Calderón-Zygmund kernel. That means, for a. e. x ∈ Rn,K(x, ·)
is a standard Calderón-Zygmund kernel and

max
|j|≤2n,j∈Nn0

∥∥∥∂|j|k
∂yj

∥∥∥
L∞(Rn×Sn−1)

= A <∞. (1.2)

Define the oscillatory integral operator with variable Calderón-Zygmund kernel T ∗λ by

T ∗λf(x) = p.v

∫
Rn
eiλΦ(x,y)K(x, x− y)ϕ(x, y)f(y)dy, (1.3)

where λ, ϕ and Φ satisfy the same assumptions as those in the operator defined by (1.1).
S. Z. Lu and D. C. Yang etc. [19] investigated the Lp boundedness about this class of

oscillatory integral operators. The boundedness of some operators on these spaces can be
see ([2,4,6,7,20–22,25,26]). Recently, A. Eroglu [15] obtained the boundedness of a class
of oscillatory integral with Calderón-Zygmund kernel and polynomial phase on generalized
Morrey spaces. In [13] Guliyev etc. proved the generalized Morrey spaces Mp,ϕ bounded-
ness of Tλ defined by (1.1).

The purpose of this paper is to generalize the results above to the case with real -
C∞(Rn×Rn) or analytic phase functions. Our main results in this paper are formulated as
follows.

Theorem 1.1 Let λ ∈ R, ϕ ∈ C∞0 (Rn × Rn) and Φ is a real-C∞(Rn × Rn) function
satisfying that for any (x0, y0) ∈ suppϕ, there exists (j0, k0), 1 ≤ j0, k0 ≤ n, such
that ∂2Φ(x0, y0)/∂xj0∂xk0 does not vanish up to infinite order. Assume K is a standard
Calderón- Zygmund kernel and Tλ is defined as in (1.1). Then for any 1 ≤ p < ∞, and
(ϕ1, ϕ2) satisfies the condition

∫ ∞
r

ess inf
t<τ<∞

ϕ1(x, τ)w(B(x, τ))
1
p

w(B(x, t))
1
p

dt

t
≤ C ϕ2(x, r), (1.4)

where C does not depend on x and r, the operator Tλ is bounded from Mp,ϕ1(w) to
Mp,ϕ2(w) for p > 1 and from Mp,ϕ1(w) to WMp,ϕ2(w) for p ≥ 1.
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Theorem 1.2 Let λ ∈ R, ϕ ∈ C∞0 (Rn × Rn) and Φ is a real-C∞(Rn × Rn) function
satisfying that for any (x0, y0) ∈ suppϕ, there exists (j0, k0), 1 ≤ j0, k0 ≤ n, such
that ∂2Φ(x0, y0)/∂xj0∂xk0 does not vanish up to infinite order. Assume K is a variable
Calderón- Zygmund kernel and T ∗λ is defined as in (1.3). Then for any 1 ≤ p <∞, (ϕ1, ϕ2)
satisfies the condition (1.4), the operator T ∗λ is bounded from Mp,ϕ1(w) to Mp,ϕ2(w) for
p > 1 and from Mp,ϕ1(w) to WMp,ϕ2(w) for p ≥ 1.

Note that for ϕ1(x, r) = ϕ1(x, r) ≡ w(B(x, r))
κ−1
p , from Theorems 1.1 and 1.2 we get

the following results, which proved in [23].

Corollary 1.1 Let λ ∈ R, ϕ ∈ C∞0 (Rn × Rn) and Φ is a real-C∞(Rn × Rn) function
satisfying that for any (x0, y0) ∈ suppϕ, there exists (j0, k0), 1 ≤ j0, k0 ≤ n, such
that ∂2Φ(x0, y0)/∂xj0∂xk0 does not vanish up to infinite order. Assume K is a standard
Calderón- Zygmund kernel and Tλ is defined as in (1.1). Then for any 1 ≤ p < ∞, and
0 < κ < 1, the operator Tλ is bounded on Lp,κ(w) for p > 1 and from Lp,κ(w) to
WLp,κ(w) for p ≥ 1.

Corollary 1.2 Let λ ∈ R, ϕ ∈ C∞0 (Rn × Rn) and Φ is a real-C∞(Rn × Rn) function
satisfying that for any (x0, y0) ∈ suppϕ, there exists (j0, k0), 1 ≤ j0, k0 ≤ n, such
that ∂2Φ(x0, y0)/∂xj0∂xk0 does not vanish up to infinite order. Assume K is a standard
Calderón- Zygmund kernel and T ∗λ is defined as in (1.3). Then for any 1 ≤ p < ∞, and
0 < κ < 1, the operator T ∗λ is bounded on Lp,κ(w) for p > 1 and from Lp,κ(w) to
WLp,κ(w) for p ≥ 1.

2 Notations and preliminary Lemmas

Let B = B(x0, r) be the ball with the center x0 and radius r. Given a ball B and λ > 0,
λB denotes the ball with the same center as B whose radius is λ times that of B.

If w is a weight function, we denote by Lp(w) ≡ Lp(Rn, w) the weighted Lebesgue
space defined by the norm

‖f‖Lp(w) =
(∫

Rn
|f(x)|pw(x)dx

) 1
p

<∞, when 1 ≤ p <∞

and by ‖f‖L∞(w) = ess inf
x∈Rn

|f(x)|w(x) when p =∞.

We recall that a weight function w is in the Muckenhoupt class Ap, 1 < p <∞, if

[w]Ap : = sup
B

[w]Ap(B)

= sup
B

(
1

|B|

∫
B
w(x)dx

)(
1

|B|

∫
B
w(x)1−p

′
dx

)p−1
<∞,

where the sup is taken with respect to all the balls B and 1
p +

1
p′ = 1. Note that, for all ball

B by Hölder’s inequality

[w]
1/p
Ap(B) = |B|

−1‖w‖1/p
L1(B)

‖w−1/p‖Lp′ (B) ≥ 1. (2.1)

For p = 1, the class A1 is defined by the condition Mw(x) ≤ Cw(x) with [w]A1 =

sup
x∈Rn

Mw(x)
w(x) , and for p =∞ we define A∞ =

⋃
1≤p<∞Ap.

Our argument based heavily on the following results.
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Lemma 2.1 [19] Assume Tλ is defined as in (1.1). Then for any 1 < p < ∞ and w ∈ Ap,
we have

‖Tλf‖Lp(w) ≤ C(n, p, Φ, ϕ,Cp,w)C1 ‖f‖Lp(w),

where C(n, p, Φ, ϕ,Cp,w) is independent of λ, K, f and C1 = ‖k‖C1(Sn−1).

Lemma 2.2 [19] Assume T ∗λ is defined as in (1.3). Then for any 1 < p < ∞ and w ∈ Ap,
we have

‖T ∗λf‖Lp(w) ≤ C(n, p, Φ, ϕ,Cp,w)A ‖f‖Lp(w),

where C(n, p, Φ, ϕ,Cp,w) is independent of λ, K, f and A is defined in (1.2).

The generalized weighed Morrey spaces introduced by Guliyev in [8] are defined as
follows.

Definition 2.1 Let 1 ≤ p < ∞, ϕ be a positive measurable function on Rn × (0,∞)
and w be non-negative measurable function on Rn. We denote by Mp,ϕ(w) the generalized
weighted Morrey space, the space of all functions f ∈ Lploc(w) with finite norm

‖f‖Mp,ϕ
w

= sup
x∈Rn,r>0

ϕ(x, r)−1w(B(x, r))
− 1
p ‖f‖Lp(B(x,r),w),

where

‖f‖Lp(B(x,r),w) =

(∫
B(x,r)

|f(y)|pw(y)dy

) 1
p

.

Furthermore, WMp,ϕ(w) is the weak generalized weighted Morrey space of all func-
tions f ∈WLploc(w) for which

‖f‖WMp,ϕ(w) = sup
x∈Rn,r>0

ϕ(x, r)−1w(B(x, r))
− 1
p ‖f‖WLp(B(x,r),w) <∞,

where WLp(B(x, r), w) denotes the weak Lp(w)-space of measurable functions f for
which

‖f‖WLp(B(x,r),w) ≡ ‖fχB(x,r)
‖WLp(w) = sup

t>0
t

(∫
{y∈B(x,r): |f(y)|>t}

w(y)dy

) 1
p

.

Remark 2.1 (1) If w ≡ 1, then Mp,ϕ(1) =Mp,ϕ is the generalized Morrey space.

(2) If ϕ(x, r) ≡ w(B(x, r))
κ−1
p , then Mp,ϕ(w) = Lp,κ(w) is the weighted Morrey

space.

(3) If ϕ(x, r) ≡ v(B(x, r))
κ
pw(B(x, r))

− 1
p , then Mp,ϕ(w) = Lp,κ(v, w) is the two

weighted Morrey space.

(4) If w ≡ 1 and ϕ(x, r) = r
λ−n
p with 0 < λ < n, then Mp,ϕ(w) = Lp,λ(Rn) is the

classical Morrey space and WMp,ϕ(w) =WLp,λ(Rn) is the weak Morrey space.

(5) If ϕ(x, r) ≡ w(B(x, r))
− 1
p , then Mp,ϕ(w) = Lp(Rn, w) is the weighted Lebesgue

space.
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The Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
B3x

1

|B|

∫
B
|f(y)|dy, f ∈ L1

loc(Rn).

A distribution kernel K is called a standard Calderòn-Zygmund kernel (SCZK) if it
satisfies the following hypotheses:

|K(x, y)| ≤ C

|x− y|n
,∀x 6= y,

|∇xK(x, y)|+ |∇yK(x, y)| ≤ C

|x− y|n+1
,∀x 6= y,

where C does not depend on x and y. The corresponding Calderòn-Zygmund integral oper-
ator S and oscillatory integral operator R are defined by

Sf(x) = p.v.

∫
Rn
K(x, y)f(y)dy.

and

Rf(x) = p.v.

∫
Rn
eiP (x,y)K(x, y)f(y)dy,

where P (x, y) is a real valued polynomial defined on Rn × Rn.

Theorem 2.1 [8] Let 1 ≤ p < ∞ and (ϕ1, ϕ2) satisfy the condition (1.4). Then the max-
imal operator M and the singular integral operator T are bounded from Mp,ϕ1(w) to
Mp,ϕ2(w) for p > 1 and from Mp,ϕ1(w) to WMp,ϕ2(w) for p ≥ 1.

Corollary 2.1 Let 1 ≤ p < ∞ and (ϕ1, ϕ2) satisfy the condition (1.4). If S is of type
(L2, L2), then for any real polynomial P (x, y), the operator R is bounded from Mp,ϕ1(w)
to Mp,ϕ2(w) for p > 1 and from Mp,ϕ1(w) to WMp,ϕ2(w) for p ≥ 1.

Remark 2.2 Note that, in the case w ≡ 1 Corollary 2.1 were proved in [15].

Lemma 2.3 [27] Denote by Hm the spaces of spherical harmonic functions of degree m.
Then

(a) L2(Sn−1) = ⊕∞m=0Hm, and gm = dimHm ≤ C(n)mn−2 for any m ∈ N,
(b) for any m = 0, 1, 2, ..., there exists an orthogonal system {Yjm}gmj=1 ofHm such that

‖Yjm‖L∞(Sn−1) ≤ C(n)mn/2−1, Yjm = (−m)−n(m + n − 2)−nΛnYjm, j = 1, ..., gm,
and Λ is the Beltrami-Laplace operator on Sn−1.

In the following the letter C will denote a constant which may vary at each occurrence.

3 Proof of Theorems 1.1 and 1.2

We will use the following results on the boundedness of the weighted Hardy operator

H∗wg(t) :=

∫ ∞
t

g(s)w(s)ds, 0 < t <∞,

where w is a weight.
The following theorem was proved in [9].
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Theorem 3.1 [9] Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a
neighborhood of the origin. The inequality

sup
t>0

v2(t)H
∗
wg(t) ≤ C sup

t>0
v1(t)g(t) (3.1)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

D := sup
t>0

v2(t)

∫ ∞
t

w(s)ds

ess sup
s<τ<∞

v1(τ)
<∞.

Moreover, the value C = D is the best constant for (3.1).

The following lemma is valid.

Lemma 3.1 Let 1 ≤ p <∞, w ∈ Ap and Tλ is defined as in (1.1).
Then, for 1 < p <∞ the inequality

‖Tλf‖Lp(B,w) . w(B)
1
p

∫ ∞
2r
‖f‖Lp(B(x0,t),w)w(B(x0, t))

−1/p dt

t

holds for any ball B = B(x0, r) and for all f ∈ Lloc
p (Rn).

Moreover, for p = 1 the inequality

‖Tλf‖WL1(B,w) . w(B)

∫ ∞
2r
‖f‖L1(B(x0,t),w)w(B(x0, t))

−1 dt

t
(3.2)

holds for any ball B = B(x0, r) and for all f ∈ L1
loc(Rn, w).

Proof. Let p ∈ (1,∞) and w ∈ Ap. For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball
centered at x0 and radius r, 2B = B(x0, 2r). We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ {(2B)
(y)

and have
‖Tλf‖Lp(B,w) ≤ ‖Tλf1‖Lp(B,w) + ‖Tλf2‖Lp(B,w).

It is known that (see Lemma 2.1) the operator Tλ is bounded on Lp(w). Since f1 ∈
Lp(w), Tλf1 ∈ Lp(w) and boundedness of Tλ in Lp(w) (see [19]) it follows that

‖Tλf1‖Lp(B,w) ≤ ‖Tλf1‖Lp(w) ≤ C‖f1‖Lp(w) = C‖f‖Lp(2B,w),

where the constant C > 0 is independent of f .
We now estimate Tλf2. We can write∣∣∣Tλf2(x)∣∣∣ = ∣∣∣ ∫

{(2B)
eiλΦ(x,y)K(x− y)ϕ(x, y)f(y)dy

∣∣∣.
Now by an argument similar to the proof of Lemma 6 in [19], we choose φ1 ∈ C∞0 (Rn)

such that φ1(x) ≡ 1 when |x| ≤ 1, and φ1(x) ≡ 0 when |x| > 2. Let φ2 = 1 − φ1 and
N ∈ N which is large enough and will be determined later. Write

K(x) = K1
λ(x) +K2

λ(x),

where

Kj
λ(x) = K(x)φj(λ

1/Nx), j = 1, 2.
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Then

Tλf2(x) = p.v.

∫
{(2B)

eiλΦ(x,y)K1
λ(x− y)ϕ(x, y)f(y)dy

+ p.v.

∫
{(2B)

eiλΦ(x,y)K2
λ(x− y)ϕ(x, y)f(y)dy := T 1

λf2(x) + T 2
λf2(x).

Let us first estimate T 1
λf2(x). To do so, using Taylor’s expansion and the compactness

of suppϕ, we write

Φ(x, y) = Φ(x, x) + P (x, y) + rN (x, y)

for (x, y) ∈ suppϕ, where P (x, y) is a polynomial with deg P < N and |rN (x, y)| ≤
C|x− y|N with C in dependent of x and y. Define

Rf(x) = p.v.

∫
{(2B)

eiλP (x,y)K1
λ(x− y)ϕ(x, y)f(y)dy.

Therefore

e−iλΦ(x,x)T 1
λf2(x)−Rf(x)

=

∫
B(x,2λ−1/N )

eiλP (x,y)[eiλrN (x,y) − 1]K1
λ(x− y)ϕ(x, y)f(y)dy

=

∞∑
j=0

∫
B(x,2−j+1λ−1/N )\B(x,2−jλ−1/N )

eiλP (x,y)[eiλrN (x,y) − 1]K1
λ(x− y)ϕ(x, y)f(y)dy

≡
∞∑
j=0

T 1
λjf2(x).

On T 1
λjf2(x), by the properties of rN and k, we have

|T 1
λjf2(x)| ≤ C2−jNMf(x).

So we have

|T 1
λf2(x)| ≤ C

∞∑
j=0

2−jNMf(x) + C|Rf(x)| ≤ CMf(x) + C|Rf(x)|.

By Theorem 3.1 in [8], we have

‖T 1
λf2‖Lp(B(x0,r),w) . ‖Mf‖Lp(B(x0,r),w) + ‖Rf‖Lp(B(x0,r),w)

. w(B)
1
p

∫ ∞
2r
‖f‖Lp(B(x0,t),w)w(B(x0, t))

−1/p dt

t
.

Now, let us turn to estimate T 2
λf2(x). We consider the following two cases.

Case 1. λ ≤ 1. Similar to that estimate of T 2
λ in Lemma 6 in [19], we have

|T 2
λf2(x)| ≤ CMf(x),

where the constant C > 0 is independent of f . By Theorem 3.1 in [8] we have

‖T 2
λf2‖Lp(B(x0,r),w) . w(B)

1
p

∫ ∞
2r
‖f‖Lp(B(x0,t),w)w(B(x0, t))

−1/p dt

t
.
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Case 2. λ > 1. We choose ϕ0 ∈ C∞0 (Rn) such that

suppϕ0 ⊆ {x ∈ Rn : 1 < |x| ≤ 2},

and

φ2(x) =
∞∑
j=0

ϕ0(2
−jx).

Let
K2
λ,j(x) = K(x)ϕ0(2

−jλ1/Nx).

Then

T 2
λf2(x) =

∫
{
(2B)

eiλΦ(x,y)K2
λ(x− y)ϕ(x, y)f(y)dy

=
∞∑
j=0

∫
{(2B)

eiλΦ(x,y)K2
λ,j(x− y)ϕ(x, y)f(y)dy

≡
∞∑
j=0

T 2
λ,jf2(x).

For T 2
λ,j , by the definition of it, we can get

|T 2
λf2(x)| ≤ C

∫
B(x,2−j+1λ−1/N )\B(x,2−jλ−1/N )

|f(y)|
|x− y|n

dy ≤ CMf(x). (3.3)

The inequality (3.3) also can be see in [19], we omit the detail here.
By Theorem 3.1 in [8], we have

‖T 2
λf2‖Lp(B(x0,r),w) . w(B)

1
p

∫ ∞
2r
‖f‖Lp(B(x0,t),w)w(B(x0, t))

−1/p dt

t
.

Therefore

‖Tλf2‖Lp(B(x0,r),w) ≤ ‖T
1
λf2‖Lp(B(x0,r),w) + ‖T

2
λf2‖Lp(B(x0,r),w)

. w(B)
1
p

∫ ∞
2r
‖f‖Lp(B(x0,t),w)w(B(x0, t))

−1/p dt

t
.

This finishes the proof of Lemma 3.1.

Proof of Theorem 1.1.

By Lemma 3.1 and Theorem 3.1 we get

‖Tλf‖Mp,ϕ2 (w) . sup
x∈Rn,r>0

ϕ2(x, r)
−1
∫ ∞
r
‖f‖Lp(B(x,t),w)w(B(x, t))−1/p

dt

t

. sup
x∈Rn,r>0

ϕ1(x, r)
−1w(B(x, r))−1/p ‖f‖Lp(B(x,r),w) = ‖f‖Mp,ϕ1 (w).

This finishes the proof of Theorem 1.1.

The following lemma is valid.
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Lemma 3.2 Let 1 ≤ p <∞ and T ∗λ is defined as in (1.3).
Then, for 1 < p <∞ the inequality

‖T ∗λf‖Lp(B,w) . w(B)
1
p

∫ ∞
2r
‖f‖Lp(B(x0,t),w)w(B(x0, t))

−1/p dt

t

holds for any ball B = B(x0, r) and for all f ∈ Lloc
p (Rn).

Moreover, for p = 1 the inequality

‖T ∗λf‖WL1(B,w) . w(B)

∫ ∞
2r
‖f‖L1(B(x0,t),w)w(B(x0, t))

−1 dt

t

holds for any ball B = B(x0, r) and for all f ∈ L1
loc(Rn, w).

Proof. Let p ∈ (1,∞). For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball centered at x0
and radius r, 2B = B(x0, 2r). We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ {(2B)
(y)

and have
‖T ∗λf‖Lp(B,w) ≤ ‖T ∗λf1‖Lp(B,w) + ‖T ∗λf2‖Lp(B,w).

It is known that (see Lemma 2.2) the operator T ∗λ is bounded on Lp(w). Since f1 ∈
Lp(w), T ∗λf1 ∈ Lp(w) and boundedness of T ∗λ in Lp(w) (see [19]) it follows that

‖T ∗λf1‖Lp(B,w) ≤ ‖T ∗λf1‖Lp(w) ≤ C‖f1‖Lp(w) = C‖f‖Lp(2B,w),

where the constant C > 0 is independent of f .
We now estimate T ∗λf2. For each m ∈ N and j = 1, . . . , gm, we get

ajm(x) =

∫
Sn−1

Ω(x, z)Yjm(z)dσz,

where Ω(x, z) = |z|nK(x, z). Then for a.e.x ∈ Rn,

Ω(x, z) =

∞∑
m=1

gm∑
j=1

ajm(x)Yjm(z
′), (3.4)

where z′ = z/|z| for any z ∈ Rn\{0}. By Lemma 2.3, we have that for any x ∈ Rn,

|ajm(x)| = m−n(m+ n− 2)−n
∣∣∣∣∫
Sn−1

Ω(x, z)ΛnYjm(z)dσz

∣∣∣∣
= m−n(m+ n− 2)−n

∣∣∣∣∫
Sn−1

ΛnΩ(x, z)Yjm(z)dσz

∣∣∣∣
≤ C(n)Am−2n. (3.5)

By Lemma 2.3 again, we can verify that for any ε > 0, N ∈ N, and a.e. x ∈ Rn, if
|y − x| ≥ ε, then∣∣∣∣∣∣

N∑
m=1

gm∑
j=1

eiλΦ(x,y)
ajm(x)Yjm((x− y)′)

|x− y|n
ϕ(x, y)f2(y)

∣∣∣∣∣∣ ≤ C(ε)A|f2(y)|. (3.6)
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Therefore, from (3.4), (3.6) and the Lebesgue dominated convergence theorem, it fol-
lows that

T ∗λf2(x) = lim
ε→0

∫
{B(x,ε)

eiλΦ(x,y)K(x, x− y)ϕ(x, y)f2(y)dy

= lim
ε→0

∞∑
m=1

gm∑
j=1

∫
{B(x,ε)

eiλΦ(x,y)
ajm(x)Yjm((x− y)′)

|x− y|n
ϕ(x, y)f2(y)dy

= lim
ε→0

∞∑
m=1

gm∑
j=1

ajm(x)

∫
{B(x,ε)

eiλΦ(x,y)
Yjm((x− y)′)
|x− y|n

ϕ(x, y)f2(y)dy.

We write

Rjmf2(x) =

∫
{B(x,ε)

eiλΦ(x,y)
Yjm((x− y)′)
|x− y|n

ϕ(x, y)f2(y)dy.

It is easy to see that Rjmf2(x) is the oscillatory integral operator defined by (1.1). By
Theorem 1.1 we have Rjm bounded from Mp,ϕ1(w) to Mp,ϕ2(w). Therefore, by (3.5) and
the above discussion we have

‖T ∗λf2‖Lp(B(x0,r),w) . w(B)
1
p

∫ ∞
2r
‖f‖Lp(B(x0,t),w)w(B(x0, t))

−1/p dt

t
.

This finishes the Lemma 3.2.

Proof of Theorem 1.2.
By Lemma 3.2 and Theorem 3.1 we get

‖T ∗λf‖Mp,ϕ2 (w) . sup
x∈Rn,r>0

ϕ2(x, r)
−1
∫ ∞
r
‖f‖Lp(B(x,t),w)w(B(x, t))−1/p

dt

t

. sup
x∈Rn,r>0

ϕ1(x, r)
−1w(B(x, r))−1/p ‖f‖Lp(B(x,r),w) = ‖f‖Mp,ϕ1 (w).

This finishes the proof of Theorem 1.2.
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