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condition

Ulkar V. Gurbanova

Received: 20.08.2021 / Revised: 22.04.2022/ Accepted: 11.05.2022

Abstract. This paper is devoted to the study of the global bifurcation from infinity of the nonlinear Sturm-
Liouville problem with an indefinite weight function and a spectral parameter in the boundary condition.
We prove that there are two pairs of two classes of global continua of nontrivial solutions bifurcating from
points of R × {∞} corresponding to positive and negative eigenvalues of the linear problem obtained
by setting the nonlinear term equal to zero. These continua possess the usual nodal properties in some
neighborhoods of the asymptotic bifurcation points of this problem. Moreover, each of these continua
either intersects R × {0}), or intersects some asymptotic bifurcation point in a certain class with fixed
oscillation count, or the projection of this continuum onto R× {0} is unbounded.
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1 Introduction

In this paper, we consider the nonlinear Sturm-Liouville problem

`y ≡ −(p (x) y′)′ + q(x)y = λr(x) y + g(x, y, y′, λ), x ∈ (0, 1), (1.1)

b0y(0) = d0p(0)y′(0), (1.2)

(a1λ+ b1)y(1) = p(1)y′(1), (1.3)

which was started in [17, 18]. Here λ ∈ R is a parameter, p ∈ C1 ([0, 1]; (0,+∞)), q ∈
C ([0, 1]; [0,+∞)), r ∈ C ([0, 1];R) and there exist x0, x1 ∈ [0, 1] such that r(x0)r(x1) <
0, b0, d0, a1, b1 are real constants such that

|b0|+ |d0| > 0, b0 d0 ≥ 0 and if b0 = 0, then q 6≡ 0, and

a1 > 0, b1 ≤ 0.
(1.4)

Ulkar V. Gurbanova
Ganja State University, Sumgait AZ2001, Azerbaijan
E-mail: ulya1812dok2@mail.ru



U.V. Gurbanova 133

The nonlinear term g ∈ C
(
[0, 1]× R3;R

)
and satisfy the following conditions:

ug(x, u, s, 0λ) ≤ 0, (x, u, s, λ) ∈ [0, 1]× R3, (1.5)

g(x, u, s, λ) = o (|u|+ |s|) as |u|+ |s| → +∞ (1.6)

uniformly in (x, λ) ∈ [0, 1]× Λ, for any bounded interval Λ ⊂ R.
Since the second half of the last century, bifurcation of solutions of nonlinear eigenvalue

problems have been intensively studied. Note that bifurcation of nonlinear eigenvalue prob-
lems (for ordinary and partial differential equations) arise in the study of various problems
of mechanics, physics, mathematical physics, biology, and also other areas of natural sci-
ence (see [3, 5, 13, 15, 20] and bibliography therein); for example, the considered problem
(1.1)-(1.3) arises when describing the selection-migration process in population genetics
(see [12, 14]).

In the case when r > 0 and a1 = 0 or a1 6= 0 the global bifurcation from zero or infinity
of nontrivial solutions of problem (1.1)-(1.3) was considered before in [9, 12, 22-26]. These
papers was shown the existence of two families of unbounded continua of nontrivial solu-
tions in R × C1[0, 1] emanating from bifurcation points and intervals of the line of trivial
solutions or the line R × {∞} corresponding to the eigenvalues of the linear problem ob-
tained from (1.1)-(1.3) by putting g ≡ 0. Moreover, these continua possess the usual nodal
properties in some neighborhood of these bifurcation points. Similar global bifurcation re-
sults in nonlinear eigenvalue problems for ordinary differential equations of fourth order
and one-dimensional Dirac system (both with a spectral parameter in the boundary condi-
tion, also without a spectral parameter in the boundary conditions) are obtained in [1-4, 6,
8].

In the case when the weight function r changes sign and a1 = 0 in [7] and [21] was
proved the existence of four families of unbounded continua of nontrivial solutions of prob-
lem (1.1)-(1.3) emanating from bifurcation points and intervals of the line of trivial solutions
or the line R×{∞} corresponding to the eigenvalues of the linear problem (1.1)-(1.3) with
g ≡ 0 and possessing the some nodal properties in some neighborhood of these bifurca-
tion points. Similar results in nonlinear eigenvalue problems for elliptic partial differential
equations of second order with indefinite weight were obtained in [5, 13, 19].

The papers [18] and [17] the author studied the global bifurcation from zero of nontrivial
solutions to problem (1.1)-(1.3) in the cases: (a) the function g satisfies condition (1.6) as
|u|+|s| → 0, and (b) the function g can be represented in the form g1+g2, where g1 satisfies
condition (a) and g2 has sublinear growth with respect to the variable u. In these works it
was proved that there exists four families of unbounded continua of nontrivial solutions in
R× C1[0, 1] emanating from bifurcation points and intervals of the line of trivial solutions
corresponding to the eigenvalues of the linear problem (1.1)-(1.3) with g ≡ 0 and contained
in the classes of functions with usual nodal properties.

In this paper, we study the global bifurcation from infinity of nontrivial solutions to
problem (1.1)-(1.3).

The structure of this paper is as follows. In Section 2 we reduces problem (1.1)-(1.3)
to the nonlinear operator equation, and prove that the corresponding nonlinear operator is
asymptotically linear. In Section 3 using the approach used in [23] and [24], we transform
this bifurcation from infinity problem to the bifurcation from zero problem with completely
continuous operators. Next combining global bifurcation results in [14], [18] and [22] we
prove the existence of global continua of solutions bifurcating from infinity which are sim-
ilar to those obtained in [6] and [7].
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2 Reduction of problem (1.1)-(1.3) to an operator equation and the necessary
auxiliary results

Let H = L2(0, 1)⊕ C be a Hilbert space with the inner product

(ŷ, v̂)H = ({y, α}, {v, β}) = (y, v)L2 + a−11 α β̄,

where (y, v)L2 is a scalar product in L2(0, 1). In H we define a linear operator

Aŷ = A{y, α} = {`(y), p(1)y′(1)− b1y(1)},

on the domain

D(A) = {ŷ = {y, α} ∈ H : y, py′ ∈ AC[0, 1], `(y) ∈ L2(0, 1),
b0y(0) = d0p(0) y′(0), α = a1 y(1)}.

In view of condition (1.4) it follows from [16, §§ 2-3; 18, Lemma 2.1] (see also [10,
Lemma 2.1]) that the operator A is self-adjoint and positive definite on D(A).

We also define the operators R : H → H and G : R×D(A)→ H as follows:

Rŷ = R{y, α} = {ry, α}, G(λ, ŷ) = G(λ, {y, α}) = {g( · , y, y′, λ), 0},

where α = a1 y
′(1). Thus the nonlinear eigenvalue problem (1.1)-(1.3) is reduced to the

following equivalent nonlinear eigenvalue problem

Aŷ = λRŷ +G(λ, ŷ), ŷ ∈ D(A), (2.1)

i.e., between the solutions of problems (1.1)-(1.3) and (2.1) we can establish a one-to-one
correspondence

(λ, y)↔ (λ, ŷ), ŷ = {y, α}, α = a1y(1). (2.2)

We consider the linear eigenvalue problem

(`y)(x) = λr(x)y(x), x ∈ (0, 1),
b0y(0) = d0p(0)y′(0),

(a1λ+ b1)y(1) = p(1)y′(1).
(2.3)

which obtained from (1.1)-(1.3) by setting g ≡ 0. It follows from [10, Theorem 3.2] that
the eigenvalues of the linear problem (2.3) are all real, simple and form two unbounded
sequences

0 < λ+1 < λ+2 < . . . < λ+n < . . .

and
0 > λ−1 > λ−2 > . . . > λ−n > . . . .

For each n ∈ N the eigenfunction y+n (x) (y−n (x)), corresponding to the eigenvalue λ+n (λ−n ),
has exactly n − 1 simple nodal zeros in (0, 1) (recall that the zero of a function is called a
nodal zero if the function changes sign at this zero; the zero of a function is called a simple
nodal zero if the derivative of the function at this zero is nonzero).

Note that the linear problem is reduces to the following operator equation

Aŷ = λRŷ, ŷ ∈ D(A). (2.4)

We introduce the notation:

bc0 = {y ∈ C1[0, 1] : b0y(0) = d0y
′(0)}.
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By E we denote the Banach space C1[0, 1] ∩ bc0 with the norm

‖y‖1 = ‖y‖∞ + ‖y′‖∞, ‖y‖∞ = max
x∈[0,1]

|y(x)|.

Let Ê = E ⊕ C be the Banach space with the following norm

‖ŷ‖1 = ‖{y, α}‖1 = ‖y‖1 + |α| .

Note that if {y, α} ∈ D(A), then by p ∈ C1[0, 1] we get y′ ∈ AC[0, 1]. Consequently,
we have y ∈ C1[0, 1], which implies that

D(A) ⊆ Ê.

Now by Ê0 we denote the Banach space C0[0, 1]⊕ R with the norm

‖ŷ‖0 = ‖{y, α}‖0 = ‖y‖0 + |α|, ‖y‖0 = max
x∈[0,1]

|y(x)|.

By the definition of operators A, R, and G it follows that

A : Ê → Ê0, R : Ê0 → Ê0, G : R× Ê → Ê0.

Since the operator A is positive definite on D(A), it follows from Lemma 3.3 of [9] that
there exists

A = A−1 : Ê0 → D(A)

which is a compact and continuous mapping. Then problem (2.1) we can rewrite in the
following equivalent form

ŷ = λARŷ +AG(λ, ŷ), ŷ ∈ D(A). (2.5)

Denote:
R = AR and G = AG.

Then, in turn, problem (2.5) can be rewritten as follows:

ŷ = λRŷ + G(λ, ŷ). (2.6)

Note that
R : Ê → Ê and G : R× Ê → Ê.

It follows from definition of operator R that

‖Rŷ‖0 ≤ r1‖ŷ‖1, r1 = max
x∈[0,1]

|r(x)|,

and, therefore, the operator R is completely continuous due to the complete continuity of
A. Moreover, G is a continuous operator.

Lemma 2.1 For any bounded interval Λ ∈ R the relations

G(λ, ŷ) = o (‖ŷ‖1) as ‖ŷ‖1 → +∞ (2.7)

holds uniformly in λ ∈ Λ.
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Proof. By virtue of (1.6) for any sufficiently small ε > 0 there exists sufficiently large
∆ε > 0 such that for any (x, u, s, λ) ∈ [0, 1]× R3, |u|+ |s| > ∆ε, λ ∈ Λ, the relation

|g(x, u, s, λ)| < ε (|u|+ |s|)
2 ‖A‖

(2.8)

holds. In other hand since g ∈ C
(
[0, 1]× R3;R

)
it follows that there exists positive con-

stant Mε depending on ε such that for any (x, u, s, λ) ∈ [0, 1]×R3, |u|+ |s| ≤ ∆ε, λ ∈ Λ,
the following inequality holds:

|g(x, u, s, λ)| ≤Mε. (2.9)

Let us choose a sufficiently large number ∆ε, 1 > ∆ε so that

Mε

∆ ε,1
<

ε

2 ‖A‖
. (2.10)

Then, for any λ ∈ Λ and ŷ ∈ Ê with ‖y‖1 > ∆ε,1, we have

‖G(λ, y)‖1 ≤ ‖A‖‖G(λ, y)‖0 = ‖A‖ max
x∈[0,1]

|g(x, y(x), y′(x), λ)| ≤ ‖A‖

×max

 max
x∈[0,1],

|y(x)|+|y′(x)|≤∆ε,
λ∈Λ

|g(x, y(x), y′(x), λ)|, max
x∈[0,1],

|y(x)|+|y′(x)|>∆ε,
λ∈Λ

|g(x, y(x), y′(x), λ)|


≤ ‖A‖ max

{
Mε,

ε ‖y‖1
2 ‖A‖

}
≤ ‖A‖ max

{
ε∆ε,1

2 ‖A‖
,
ε ‖y‖1
2 ‖A‖

}
≤ ε ‖y‖1

2
< ε ‖y‖1. (2.11)

The proof of this lemma is complete.

3 Global bifurcation from infinity of solutions to problem (1.1)-(1.3)

To study the global bifurcation of solutions to problem (1.1)-(1.3) we will use the subsets
Sσ, νn and Ŝσ, νn , n ∈ N, σ ∈ {+ , −}, ν ∈ {+ , −}, of E and Ê, respectively, with fixed
oscillation count, which defined in [18, § 3]. Moreover, adding the points (λ,∞), λ ∈ R, to
R × Ê and defining an appropriate topology on the resulting set, we obtain that (λ,∞) is
an element of R× Ê.

Recall that problem (1.1)-(1.3) is equivalent to problem (2.6). For problem (2.6) we have
the following global bifurcation result.

Theorem 3.1 For each n ∈ N, each σ ∈ {+ , −} and each ν ∈ {+ , −} there exists an
unbounded component Ĉσ,νn of the set of nontrivial solutions of (2.6) and the neighborhood
Q̂σ,νn of the point (λσn,∞) such that

(i) Ĉσ,νn ⊂ Rσ × Ê, where R+ = (0,+∞) and R− = (−∞, 0);
(i) Ĉσ,νn ∩ Q̂σ,νn ⊂ Rσ × Ŝσ, νn ;
(iii) either Ĉσ,νn meets (λσn′ ,∞) with respect to the set R × Ŝσ, ν

′

n′ for some (n′, ν ′) 6=
(n, ν), or Ĉσ,νn meets (λ, 0̂) for some λ ∈ Rσ, or projection P σR (Ĉσ,νn ) of Ĉσ,νn onto Rσ×{0̂}
is unbounded, where 0̂ = {0, 0}.
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Proof. To prove the theorem using the approach used in [23] and [24], we transform
the bifurcation from infinity problem (2.6) to the bifurcation from zero problem. For this
purpose, by following [24], we consider the following map

T : (λ, ŷ)→ (λ, v̂) =

(
λ,

ŷ

‖ŷ‖21

)
, (λ, ŷ) ∈ R× Ê, ŷ 6= 0̂. (3.1)

Let Ĉ be the set of nontrivial solutions of problem (2.6). If (λ, ŷ) ∈ Ĉ, then we have the
following relations

‖v̂‖1 =
1

‖ŷ‖1
, ‖ŷ‖1 =

1

‖v̂‖1
and ŷ =

v̂

‖v̂‖21
. (3.2)

Hence under the inverse transformation T−1, we get

T−1 : (λ, v̂)→ (λ, ŷ) =

(
λ,

v̂

‖v̂‖21

)
, (3.3)

Dividing both parts (2.6) by ‖ŷ‖21 and using (3.2), we get

v̂ = λRv̂ + ‖v̂‖21 G
(
λ,

v̂

‖v̂‖21

)
. (3.4)

Let Ĝ : R× Ê → Ê be the continuous operator defined by

Ĝ(λ, v̂) =

{
‖v̂‖21 G

(
λ, v
‖v̂‖21

)
if v̂ 6= 0̂,

0 if v̂ = 0̂.

(the continuity of this operator for v = 0 follows from Lemma 2.1). Then problem (3.4)
takes the following form

v̂ = λRv̂ + Ĝ (λ, v̂) . (3.5)

We now prove that the operator Ĝ is completely continuous and satisfies the condition:

Ĝ(λ, v̂) = o (‖v̂‖1) as ‖v̂‖1 → 0, (3.6)

uniformly in λ ∈ Λ for any bounded interval Λ ⊂ R. Indeed, by (2.7) (see Lemma 2.1) for
any small ε > 0 there exists a sufficiently large ∆̂ε,1 > 0 such that

‖G(λ, ŷ)‖1
‖y‖1

< ε for any ŷ ∈ Ê, ‖ŷ‖1 > ∆̂ ε,1 and λ ∈ Λ. (3.7)

Then for any (λ, v) ∈ R× Ê such that λ ∈ Λ and ‖v̂‖1 < δ̂ε,1 = ∆̂−1ε,1 we get

‖Ĝ(λ, v̂)‖1
‖v̂‖1

=
‖v̂‖21

∥∥∥G (λ, v̂
‖v̂‖21

)∥∥∥
1

‖v̂‖1
=

∥∥∥G (λ, v̂
‖v̂‖21

)∥∥∥
1

1
‖v̂‖1

=
‖G(λ, ŷ)‖1
‖ŷ‖1

< ε, (3.8)

which implies (3.6).
Let B̂δ be an open ball in Ê of radius δ centered at 0̂, and B̂δ is the closure of this ball.
Now we will fix the number ε > 0. Then, by (3.8), for any (λ, v̂) ∈ Λ × Bδε,1 we get

the following estimate

‖Ĝ(λ, v̂)‖1 =
‖Ĝ(λ, v̂)‖1
‖v̂‖1

‖v̂‖1 < ε ‖v̂‖1 < ε δ̂ε,1, (3.9)
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i.e., the set Ĝ(Λ×Bδε) is bounded in Ê. Since for any v̂ 6= 0̂

Ĝ(λ, v̂) = ‖v̂‖21 G
(
λ,

v̂

‖v̂‖21

)
= ‖v̂‖21A−1G

(
λ,

v̂

‖v̂‖21

)
it follows that ŵ = Ĝ(λ, v̂) (ŵ = (w, a1w(1)) satisfies the equation

Aŵ = ‖v̂‖21G
(
λ,

v̂

‖v̂‖21

)
.

Hence the function w(x) satisfies the following differential equation

−(p (x)w(x)′)′ + q(x)w(x) = ‖v̂‖21 g
(
x,
v(x)

‖v̂‖21
,
v′(x)

‖v̂‖21
, λ

)
, x ∈ (0, 1). (3.10)

We rewrite the equation in the following form

w′′(x) =
1

p(x)

{
p′(x)w(x)− q(x)w(x) + ‖v̂‖1 g(x,y(x),y

′(x),λ)
‖ŷ‖1

}
, x ∈ (0, 1).

(3.11)

Since ‖v̂‖1 < δ̂ε,1 it follows that ‖ŷ‖1 = 1
‖v̂‖1 > δ̂−1ε,1 = ∆̂ε,1, and consequently, by (2.11)

we have
g (x, y(x), y′(x), λ)

‖ŷ‖1
< ε. (3.12)

By virtue of (3.9) and (3.12) from (3.11) we get the following inequality

|w′′(x)| ≤ p−10 {(‖p ‖1 + ‖q‖∞)‖w‖1 + ε δε,1}

≤ p−10 (‖p ‖1 + ‖q‖∞) + 1) ε δε,1 ≤ p−10 (‖p ‖1 + ‖q‖∞) + 1),

where p0 = min
x∈[0,1]

p(x). Then, based on the Arzela-Ascoli theorem, we can assert that the

set {
Ĝ(λ, v̂) : λ ∈ Λ, v ∈ Bδε,1

}
is precompact in Ê, which means that the operator Ĝ : R× E → Ê is completely continu-
ous.

In view of relation (3.6), by [20, Ch. 4, § 2, Theorem 2.1] problem (3.5) is linearizable,
and the corresponding linearization of this problem at v̂ = 0̂ is given by

v̂ = λRv̂. (3.13)

It is obvious that the linear problem (3.13) is equivalent to the linear problem (2.4) (or (2.3)),
so that all eigenvalues of this problem are real and simple.

Since the operator Ĝ is completely continuous which satisfies the condition (3.6) we can
apply Theorem 2 of [14] to nonlinear eigenvalue problem (3.5). Then by this theorem, [18,
Lemma 4.2] (which holds by condition (1.5)) and [22, Lemma 1.24] for each n ∈ N and
each σ ∈ {+ , −} there exist components C̃σ,+n and C̃σ,−n of the set C̃ of nontrivial solutions
of problem (3.5), and neighborhoods Q̃σ,+n and Q̃σ,−n of the point (λσn, 0) such that

(1) C̃σ,+n ⊂ Rσ × E and C̃σ,−n ⊂ Rσ × E;
(2) C̃σ,+n ∩ Q̃σ,+n ⊂ Rσ × Ŝσ,+n and C̃σ,−n ∩ Q̃σ,−n ⊂ Rσ × Ŝσ,−n ;
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(3) either C̃σ,+n and C̃σ,−n are unbounded in Rσ × Ê or C̃σ,+n ∩ C̃σ,−n 6= (λσn, 0̂).
Statement (3) shows that for the set C̃σ,+n (respectively, C̃σ,−n ) at least one of the following
holds:

(3. a) C̃σ,+n (respectively, C̃σ,−n ) is unbounded in Rσ × Ê in which case either C̃σ,+n

(respectively, C̃σ,−n ) meets (λ,∞) for some λ ∈ Rσ, or prRσ×{0̂}(C̃
σ,+
n ) (respectively,

prRσ×{0̂}(C̃
σ,−
n )) is unbounded;

(3. b) C̃σ,+n (respectively, C̃σ,−n ) intersects with the set C̃σ,−n (respectively, C̃σ,+n ) for
some (λ, u), u 6= 0, in which case C̃σ,+n (respectively, C̃σ,−n ) meets (λσn, 0̂) with respect to
the set Rσ × Ŝσ,−n (respectively, Rσ × Ŝσ,+n );

(3. c) C̃σ,+n ∩ C̃σ,−n = (λσn′ , 0̂) for some n 6= n′ ∈ N. Then, by statement (2), in this
case C̃σ,+n (respectively, C̃σ,−n ) meets (λσn′ , 0̂) with respect to the set Rσ × Ŝσ, ν

′

n′ for some
ν ′ ∈ {+ , −}.

By construction, the inversion (3.3) (i.e. inversion (λ, v̂) → T−1(λ, ŷ)) maps C̃ into
Ĉ. For each n ∈ N, each σ ∈ {+ , −}, and each ν ∈ {+ , −} we denote by Ĉσ,νn and
Q̂σ,νn the inverse images T−1(C̃σ,νn ) and T−1(Q̃σ,νn ) of C̃σ,νn and Q̃σ,νn , respectively, under
the inversion T . Since Q̃σ,νn is a neighborhood of (λσn, 0̂) it follows that Q̂σ,νn ⊂ Rσ × Ê is
a neighborhood of (λσn,∞) ∈ Rσ × Ê. Now the statements (i)-(iii) of the theorem for Ĉσ,νn
correspond, via T−1, to the statements (1)-(3) for C̃σ,νn ((here, three alternatives of statement
(iii) of the theorem for Ĉσ,νn correspond to alternatives (3.a)-(3.c) of statement (3) for C̃σ,νn ).
The proof of this theorem is complete.

Recall that between the solutions of problems (1.1)-(1.3) and (2.6) (or (2.1)) there is a
one-to-one correspondence (2.2). Therefore, Theorem 3.1 immediately implies the follow-
ing result.

Theorem 3.2 For each n ∈ N, each σ ∈ {+ , −} and each ν ∈ {+ , −} there exists an
unbounded component Cσ,νn of the set of nontrivial solutions of (1.1)-(1.3) and the neigh-
borhood Qσ,νn of the point (λσn,∞) such that

(i) Cσ,νn ⊂ Rσ × E;
(i) Cσ,νn ∩Qσ,νn ⊂ Rσ × Sσ, νn ;
(iii) either Cσ,νn meets (λσn′ ,∞) with respect to the set R × Sσ, ν

′

n′ for some (n′, ν ′) 6=
(n, ν), or Cσ,νn meets (λ, 0) for some λ ∈ Rσ, or projection PRσ×{0}(C

σ,ν
n ) of Cσ,νn onto

Rσ × {0} is unbounded.

Remark 3.1 Following the corresponding reasoning carried out in [6] and [23], we can
give examples illustrating all possible cases stated in Theorems 3.1 and 3.2.
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