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Abstract. On the real line, the Dunkl operators

D))= Y@ oy y 1)@ =D R s L1
dzx 2z
are differential-difference operators associated with the reflection group Zo on R. In the paper, in the
setting R we study the maximal commutators My, ,, in the Orlicz spaces Lg(R,dmy). We give necessary
and sufficient conditions for the boundedness of the operators My, ,, on Orlicz spaces Lg (R, dm,) when
b belongs to BMO(R, dm,) spaces.
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1 Introduction

On the real line, the Dunkl operators A, are differential-difference operators introduced
in 1989 by Dunkl [8]. For a real parameter v > —1/2, we consider the Dunkl operator,
associated with the reflection group Z, on R :

D,(f)(z):= dfd(;) +(2v+1)

f(z) = f(=x)

, T €R.
2x v

Note that D_; /o = d/dx.

Let v > —1/2 be a fixed number and m,, be the weighted Lebesgue measure on R, given
by

dmy(z) == (2" I(v + 1))71 l2[* T dx, xR

Forany z € Rand r > 0, let B(z,r) := {y € R : |y| €| max{0, |x| — r}, |z| + [ }. Then
B(0,r) =] — r,r[and m, B(0,7) = ¢, 7?2, where ¢, := [2"T (v + 1) (v +1)]
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The maximal operator M,, associated by Dunkl operator on the real line is given by

My f() := sup (my, (B(z, 7))~ /B L W@lam ), R

r>0

The maximal commutator My ,, associated with Dunkl operator on the real line and with
a locally integrable function b € L!°°(R, dm,,) is defined by

My, f(x) = Sup(mu(B(war)))l/B( )Ib( z) =b(y)| [f(y)dm.(y), xR,

r>0

It is well known that maximal and fractional maximal operators play an important role
in harmonic analysis (see [7,24]). Also the fractional maximal function and the fractional
integral, associated with D,, differential-difference Dunkl operators play an important role
in Dunkl harmonic analysis, differentiation theory and PDE’s. The harmonic analysis of
the one-dimensional Dunkl operator and Dunkl transform was developed in [4,5,18]. The
Dunkl operator and Dunkl transform considered here are the rank-one case of the general
Dunkl theory, which is associated with a finite reflection group acting on a Euclidean space.
The Dunkl theory provides a useful framework for the study of multivariable analytic struc-
tures and has gained considerable interest in various fields of mathematics and in physical
applications (see, for example, [9]). The maximal function, the fractional integral and re-
lated topics associated with the Dunkl differential-difference operator have been research
areas for many mathematicians such as C. Abdelkefi and M. Sifi [1], V.S. Guliyev and Y.Y.
Mammadov [4-6], Y.Y. Mammadov [16], L. Kamoun [12], M.A. Mourou [19], F. Soltani
[22,23], K. Trimeche [25] and others. Moreover, the results on Lg (R, dm,, )-boundedness
of fractional maximal operator and its commutators associated with D, were obtained in
[6,17].

Harmonic analysis associated to the Dunkl transform and the Dunkl differential-difference
operator gives rise to convolutions with a relevant generalized translation. In this paper, in
the framework of this analysis in the setting R, we study the boundedness of the maximal
commutator My, on Orlicz spaces Lg(R, dm,, ), when b belongs to the space BMO(R, dm,,),
by which some new characterizations of the space BM O(R, dm,,) are given.

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A ~ B and say that A and B are
equivalent.

2 Preliminaries in the Dunkl setting on R

To introduce the notion of Orlicz spaces in the Dunkl setting on R, we first recall the
definition of Young functions.

Definition 2.1 A function @ : [0,00) — [0, ] is called a Young function if @ is convex,
left-continuous, 11111095( r)=@(0) = nd (r) = 00.
r—

From the convexity and ¢(0) = 0 it follows that any Young function is increasing. If there
exists s € (0,00) such that #(s) = oo, then &(r) = oo for r > s. The set of Young
functions such that

0<P(r) <o for 0<r<oo

is denoted by Y. If & € ), then @ is absolutely continuous on every closed interval in
[0, 00) and bijective from [0, c0) to itself.
For a Young function @ and 0 < s < oo, let

&7 1(s) == inf{r > 0: d(r) > s}.
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If ® € ), then ! is the usual inverse function of &. It is well known that
r <& '(r)®'(r)<2r  foranyr >0, 2.1
where ®(r) is defined by

5(7‘) . {Sup{rs — (p(?o, s €[0,00)}, TTE:[O,OOOO)

A Young function @ is said to satisfy the Aq-condition, denoted also as @ € Ao, if
D(2r) < CP(r), r>0
for some C' > 1. If & € A, then ® € Y. A Young function @ is said to satisfy the
Va-condition, denoted also by @ € Vo, if

1
< — >
d(r) < 20@(07“), r>0

for some C' > 1. In what follows, for any subset F of R, we use x,, to denote its charac-
teristic function.

Definition 2.2 (Orlicz Space). For a Young function @, the set
Lo(R, dm,) = {f € LY°(R, dm,) : / B(k|f(2)]) dmu(x) < oo for some & > 0}
R

is called the Orlicz space. If &(r) := rP forall r € [0,00),1 < p < o0, then Ls(R, dm,,) =
L,(R,dm,). If (r) := 0 for all » € [0,1] and @(r) := oo for all » € (1,00), then
Lo(R,dm,) = Lo (R, dm,,). The space LE°(R, dm,,) is defined as the set of all functions
fsuch that fx, € Ls(R, dm,) for all balls B C R.

Lg(R, dm,,) is a Banach space with respect to the norm

110, = int {05 [ oy am, o) <1}

For a measurable function f on R and ¢ > 0, let
m(f,t)y :=m{z e R:|[f(z)| >1}.

Definition 2.3 The weak Orlicz space

WLe(R,dm,) = {f € LY;(R) : || fllwL,, < oo}
is defined by the norm
(K —— inf{)\ >0 : Sup@(t)m(i, t) < 1}.
’ t>0 A v
The following analogue of the Holder inequality is well known (see, for example, [21]).

Lemma 2.1 Let the functions f and g be measurable on R. For a Young function ® and its
complementary function @, the following inequality is valid

/R F@)g(@)| dmy (@) < 2] fllz, gz, -
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3 Maximal commutators Mj, o, in Orlicz spaces Ls (R, dm,,)

In this section we investigate the boundedness of the maximal commutator M, ,, in Orlicz
spaces Lg(R, dm,).
The following result completely characterizes the boundedness of M, on Orlicz spaces
L@(R, dml,).

Theorem 3.1 [3] Let @ be a Young function.
(i)The operator M,, is bounded from Lg(R,dm,,) to W Ly(R, dm,,), and the inequality

1My fllwiae, < CollfllLs. 3.1

holds with constant C independent of f.
(ii) The operator M,, is bounded on Lg(R,dm,,), and the inequality

1My fllLs, < Collfllzs, 3.2)
holds with constant Cy independent of f if and only if ® € V.

The following theorems were proved in [6].

Theorem 3.2 [6] Let b € BMO(R,dm,) and & € Y. Then the condition ¢ € Vs is
necessary and sufficient for the boundedness of My, ,, on Ly(R,dm,).

Theorem 3.3 [6] Let @ be a Young function with ® € V. Then the conditionb € BMO(R, dm,,)
is necessary and sufficient for the boundedness of My, ,, on Lg(R, dm,,).

We recall the definition of the space BMO(R, dm,,).

Definition 3.1 Suppose that b € LI°°(R, dm,,), let

1
b L) (= sup / b(y) — bperm(x)| dmy(y),
[ ||BMO() R my (B(z,7)) B(M)\ (v) B(zx, )( )l (y)
where
1
be::/ b(y) dmy(y).
B(z,r) my(B(.T,T’)) Blas) ( ) ( )
Define

BMO(R,dm,) := {b € LY°(R,dm,) : 6]l Barow) < oo}
Modulo constants, the space BMO(R, dm,,) is a Banach space with respect to the norm

|- | BMoO@)-
We will need the following properties of B M O-functions (see [10]):

1 P
b AR su / b(y) — bp(ap [Pdm, . (33)
Plasow = swp <my<3<x,r>> o 90 = P <y>>

where 1 < p < oo and the positive equivalence constants are independent of b, and
t
0Bz — bBay| < ClblBrow) ln; forany 0 < 2r <t, (3.4)

where the positive constant C' does not depend on b, x, r and ¢.
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For any measurable set ' with m,(E) < oo and any suitable function f, the norm
1 £l L(iog 1), is defined by

IfHL(logL)7E:inf{>\>0: m,,l(E) [Elf(;)l <2+ |f(;:)|>dmy(x) < 1}'

The norm || f||exp 1, is defined by

|f||eXpLyE:inf{)\>0: ml,l(E) /Eexp(|f()\$)|)dmy(x) §2}'

Then for any suitable functions f and g the generalized Holders inequality holds (see

[21])

1
my (E)

The following John-Nirenberg inequalities on spaces of homogeneous type come from
[13, Propositions 6, 7].

/Elf(x)llg(w)ldmu(x) S 1 llexp 2,5 191l 21og 1), - (3.5)

Lemma 3.1 Let b € BMO(R,dm,). Then there exist constants Cy,Co > 0 such that for
every ball B C R and every o > 0, we have

C
my({x € B: ]b(x) — bB‘ > Oé}) <y mu(B) exp{ — ”bHB]\jO()a}

By the generalized Holder’s inequality in Orlicz spaces (see [21, page 58]) and John-
Nirenberg’s inequality, we get (see also [14, (2.14)]).

1
’m/B |b(z) — ba|lg(z)|dm,(z) < 6l Barow) 191l Laog 1), B+ (3.6)

We refer for instance to [11] and [15] for details on this space and properties.

Lemma 3.2 [17] Let b € BMO(R,dm, ) and @ be a Young function with & € Ay, then

bllssow = suwp @Bl ) 6 = bpen i, ey G

zeR,r>
where the positive equivalence constants are independent of b.

Lemma 3.3 Let f € LI°°(R, dm,). Then

M, (M, f)(z) =~ sup 1 x5l Las10g™ 1), (3.8)

Proof. Let B be aball in R. We are going to use weak type estimates (see [24], for instance):
there exist positive constants ¢ > 1 such that for every f € LY¢(R, dm,) and for every

t> (1/my(B)) [ |f(x)|dm,(z) we have

= F@)ldm (@) < mu{z € B: My(fxp)(x) > 1)
CU J{zeB:|f(z)|>t}
<

| (@)[dm, ().

S e

/{IGB:f(w)|>t/2}
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Then
LA@UMM@WW@ﬁZAMWAQEBiMAﬁmX@>AHW
|fIB
_ /0 (€ B My(fx,)(x) > A})dA
N /oo my({z € B+ My(f x,)(x) > A})dA
|flB
ZWMBHﬂB+%Q7me€B:MMﬂmM@>AD0
1 [ d\
my (B - x)|ldmy,(x) ) —
) fls g [ ([ @) S
1 IF@) g\
=m, Z dmy(x
(B) |11 + ¢ /{weB:f<:c>>f|B} </f|3 >’f( ) (@)
| /()]
=m,(B - z)|lo dm,(x
(B) |fls + /{%B o o T (2
UL @ g
> [ 1@ (1 + 1o Y dm @)
On the other hand,

JRAERIETE / mo({z € B : M(f x,)(x) > A})d
~ /O my({z € B : My(fx,)(@) > 22})d\

|f1B
= /0 my({z € B: M,(f xp)(x) > 2A})dA

+ /oo m,,({a: €B: Mu(fXB)(x) > 2)‘})d>‘
|f|B

& dA
v d v N
sm@flsve [ ([ 0 W@hm@)T

= m(B)|fl+c [ @) tog L 4, ()
(z€B:|f(2)|>|f15} |z

< c/B]f(a;)|(1+log+ m)dmy(az).

Therefore, for all f € LI°(R, dm,,) we get

Since

M, (M, f)(x) = supm, (B /|f 1+l + N)dm ().

/5

B>z

4 log+ /@)
7T

Jdmy (),

(3.9
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then
|f|B < HfXBHL(l—i—log"' Lyv-

Using the inequality log™ (ab) < log™ a + log™ with a, b > 0, we get

& @1+ 0g" L am, o

mV(B) |f|B
1 |f ()] 1 X5l 11108+ 1),
= 1+ logt dm,,
5 [ 1s@I(1+ 1o (||fXB|L(mOg+W ) )dm ()

; ()]
- - log™ dm,,
my<B>/B‘f (@ (1+1og ||fxBHL<1+10g+L),V> ()

1 / HfXB ”L(lJrlog7L L)v
+ f(x)|log™t ~dm, (x
my(B) B‘ @) |flB (=)

HfXB ||L(1+10g+ L)y

/15

< ”fXB HL(1+10g+ L)v + |f|B 10g+

Since HfXB||L|(;|+;g+ LY > 1 and logt <twhent > 1, we get

1 |/ ()|
W/B\f(fv)<1+log+ ﬁ)dmy(w) < 20 X5l L1 10+ L) (3.10)

On the other hand, since

1 /()]
fx ot V:/fx 1 +log™ dmy(x),
xalsrsiog 1 = gy [ 1@ Pl o) @)
on using
‘f|B < HfXB”L(l—i—logjL L)w>
we get that
1 |f ()]
< —— 1 +logt =2 )dm,(z). 11
16 v 100 S 7y [ @11+ 108" T )am(e). G

Therefore, from (3.9), (3.10) and (3.11) we have (3.8).

For proving our main results, we need the following estimate.

Lemma 3.4 Let b € BMO(R, dm,) Then there exists a positive constant C' such that
My, f(x) < Cllbll Bpoy My (M, f) () (3.12)

for almost every x € R and for all functions f € L'°°(R,dm,).



158 Maximal commutators in Orlicz spaces for the Dunkl operator on the real line

Proof. Letx € R,r > 0, B = B(z,r) and AB = B(x, Ar). We write f as f = f1 + fo,
where f1(y) = f(y)Xsp W), f2(y) = f(y)xﬂ(sg)(y)’ and x,, denotes the characteristic

function of 3B. Then for any y € R

My, f(y) = M, ((b—b(y))f)(y) = M, ((b—bsp +bsz — b(y))f)(y)
< M, ((b—b3p)f)(y) + M, ((bsz — b(y))f) (v)
< M, ((b—bsp) f1)(y) + M, ((b— bsB)fz) + [b3p — b(y) | My f (y)

For 0 < 6 < 1 we have

(o ), (Mo b)) < (o [, Q20— tan) 1) ) )

+( 1B / (M, (0= bs) f2) () i (1))
~ by (Mo ) (9) s (1))

=

=

1
8

—11+-72+13-

We first estimate [;. Recall that M, is weak-type (1, 1), (cf. [5]). We have

mle /‘M — ban) f1)( y)‘admu(y)
my (B)
/ (M, ((b— bsp) 1)) (t)) dt
my(B)

(
< 1(3)[ sup t(Mu((bbsB)fl))*(t)r/o t0dt
1

IN

my(B)

my 0<t<my(B)

AN

10=bsm) flly, , m(B)

m, (B)
S 16— bsg) Fxaslly, , mo(B)~.

Thus

I < my(B)™ / 1by) — bas) | £ (@) ldm (y).

3B

Then, by (3.5) and Lemmas 3.1 and 3.4 , we obtain

< ||b- b3B||eXpL 3B ||f”L (log L),3B
S 10l Barow) 1 | Log 1) 38

< bl Brow) My (M, f) ().

Let us estimate I. Since for any two points z,y € B, we have

M, ((b—1bsp)f)(y) < CM,((b—bsp)f)(z)

with C' an absolute constant (see, for example, [2, p. 160]).
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Therefore, by (3.5) and Lemma 3.4 we obtain

I, = (lel(‘B)/B (My((b— bSB)fQ)(y))édmu(y))g
S M, ((b—bsp)f) (@)

— supm, (B)"! / 1b(y) — bas] | £ (@) ldm (y)
B>z B

< sup [|b—b3Bllexpr,38 | fllLaog 1),3B
B>z

S bl Barow) sup 1fllnaog 1,38
B>z
< bl Barow) My (M, f)(x).
Therefore we get
I S bl Brow) Moy (M, f) ().

Finally, for estimate I3, applying Holders inequality with exponenta = 1/6,0 < 6 < 1,
by Lemmas 3.2 for &(t) = t%, 1 < a < oo we get

B < (o b = s, )
S bl Brow) My (M, f) ().

Lemma 3.4 is proved by the estimate of I;, I», I3 and the Lebesgue differentiation
theorem.

1
a

myl(B) /B M, f(y)dm, (y)

The following theorem gives necessary and sufficient conditions for the boundedness of
the operator M, on Lg(R, dm,, ), when b belongs to the BM O(v) space.

Theorem 3.4 Letb € L'°°(R,dm,) and ¢ € Y be a Young function.

1. If ® € Vy, then the condition b € BMO(R, dm,) is sufficient for the boundedness
of My, on Lg(R, dm,,).

2. The condition b € BMO(R,dm,) is necessary for the boundedness of My, on
an (R, dm,,).

3. If & € Vo, then the condition b € BMO(R, dm,) is necessary and sufficient for the
boundedness of My, on Ls(R,dm,)).

Proof. 1. Letb € BMO(R,dm,). Then from Lemma 3.12 we have
Mb,l/f(x) 5 HbHBMO(V) MV(MVf) (:E) (3.13)

for almost every 2 € R and for all functions from f € L°°(R, dm,).
Combining Theorem 3.1, Lemma 3.4 and from (3.13), we get

1My fllLs, S N0l Brrow) IMy (Mo f) g,
S HbHBMO(V)”MVfHI@,u

S ol svow)lflLs., -
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2. We shall now prove the second part. Suppose that Mp, ,, is bounded from Lg (R, dm,,)
to Ly (R, dm,,). Choose any ball B = B (:E r)in R, by Lemma 2.1 and 2.1

= boldmu(y) = s [ s [ (40) = b)) |dmu )

1
< by
_ml/(B //|
_ 1 /
 m,(B)! Jgm,(B

(B)
ml,l(B /BMb,l/(XB)(y)dml/(y)
2

b(z)|dmy(z)dm,(y)

. b(y) = b(2) x5 (2)dmy, (z)dm, (y)

IN

< my,(B) ”Mb,u(XB>HLQB(B)HlHL%(B) <C.

Thus b € BMO(R,dm,).
3. The third statement of the theorem follows from the first and second parts of the
theorem.

If we take @(t) = tP in Theorem 3.4 we get the following corollary.

Corollary 3.1 Let1 < p < coandb € L*°(R,dm,,). Then My, is bounded on L,(R,dm,,)
ifand only if b € BMO(R, dm,).
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