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Abstract. We study mapping properties of some classical operators of harmonic analysis-maximal, sin-
gular and fractional operators- in a new vanishing subspace of generalized Orlicz-Morrey spaces. We
show that the vanishing property defining that subspace is preserved under the action of those operators.
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1 Introduction

Morrey spaces Mp,λ(Rn) play an important role in the study of local behaviour and
regularity properties of solutions to PDE. It is well known that the Morrey spaces are non-
separable if λ > 0. The lack of approximation tools for the entire Morrey space has moti-
vated the introduction of appropriate subspaces like vanishing spaces. The definition of the
vanishing Morrey spaces involves several vanishing conditions. Each condition generate a
closed subspace of Mp,λ(Rn). We use the notation of [1] and show these conditions as
(V0), (V∞) and (V ∗).

The space V0Mp,λ(Rn), often called in the literature just by vanishing Morrey space,
was already introduced in [3,21,22] motivated by regularity results of elliptic equations.
The subspaces V∞Mp,λ(Rn) and V (∗)Mp,λ(Rn) were recently introduced in [1] to study
the delicate problem in the approximation of Morrey functions by nice functions.

A natural step in the theory of functions spaces was to study Orlicz-Morrey spaces
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where the “Morrey-type measuring” of regularity of functions is realized with respect to the
Orlicz norm over balls instead of the Lebesgue one.

We refer to [5,6,15,16] for the preservation of the vanishing property (V0) ofMΦ,ϕ(Rn)
by some classical operators.

In this paper, we focus on the condition (V∞). More precisely, the purpose of this pa-
per is to introduce new vanishing Orlicz-Morrey space V∞MΦ,ϕ(Rn) and to show that
vanishing property (V∞) is preserved under the action of maximal, singular and fractional
operators.

We use the following notation: B(x, r) is the open ball in Rn centered at x ∈ Rn and
radius r > 0. The (Lebesgue) measure of a measurable set E ⊂ Rn is denoted by |E|
and χE denotes its characteristic function. We use C as a generic positive constant, i.e., a
constant whose value may change with each appearance. The expressionA . B means that
A ≤ CB for some independent constant C > 0, and A ≈ B means A . B . A.

2 Preliminaries

We recall the definition of Young functions.

Definition 2.1 A function Φ : [0,∞] → [0,∞] is called a Young function if Φ is convex,
left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) = Φ(∞) =∞.

A Young function Φ is said to satisfy the ∆2-condition, denoted also by Φ ∈ ∆2, if

Φ(2r) ≤ CΦ(r), r > 0

for some C > 0.
A Young function Φ is said to satisfy the∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2C
Φ(Cr), r ≥ 0

for some C > 1.
Next we recall the generalized inverse of Young function Φ. For a Young function Φ and

0 ≤ s ≤ ∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s} (inf ∅ =∞).

Definition 2.2 (Orlicz Space) For a Young function Φ, the Orlicz space LΦ(Rn) is defined
by:

LΦ(Rn) =
{
f ∈ L1

loc(Rn) :
∫
Rn
Φ(k|f(x)|)dx <∞ for some k > 0

}
.

The space LΦloc(Rn) is defined as the set of all measurable functions f such that fχB ∈
LΦ(Rn) for all ballsB ⊂ Rn. We refer to [2,19,20] for Orlicz spaces in some other settings.

LΦ(Rn) is a Banach space under the Luxemburg-Nakano norm

‖f‖LΦ = inf

{
λ > 0 :

∫
Rn
Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

For Ω ⊂ Rn, let
‖f‖LΦ(Ω) := ‖fχΩ‖LΦ .

A tacit understanding is that f is defined to be zero outside Ω.
In [4], the generalized Orlicz–Morrey spaceMΦ,ϕ(Rn) was introduced to unify Orlicz

spaces and generalized Morrey spaces. The definition ofMΦ,ϕ(Rn) is as follows:



40 Some classical operators in a new vanishing generalized Orlicz-Morrey space

Definition 2.3 Let ϕ be a positive measurable function on (0,∞) and Φ any Young func-
tion. The generalized Orlicz-Morrey spaceMΦ,ϕ(Rn) is the space of functions f ∈ LΦloc(Rn)
such that

‖f‖MΦ,ϕ = sup
x∈Rn,r>0

AΦ,ϕ(f ;x, r) <∞,

where AΦ,ϕ(f ;x, r) :=
Φ−1(r−n)‖f‖

LΦ(B(x,r))

ϕ(r) .

For a Young function Φ, we denote by GΦ the set of all almost decreasing ϕ : (0,∞)→
(0,∞) functions such that t ∈ (0,∞) 7→ ϕ(t)

Φ−1(t−n) is almost increasing.
It will be assumed that the functions ϕ are of the class GΦ in the sequel. We refer to [9,

Section 5] for more information about these spaces.
We consider the following subspace ofMΦ,ϕ(Rn):

Definition 2.4 The vanishing generalized Orlicz-Morrey space V∞MΦ,ϕ(Rn) is defined as
the spaces of functions f ∈MΦ,ϕ(Rn) such that

lim
r→∞

sup
x∈Rn

AΦ,ϕ(f ;x, r) = 0.

The vanishing subspace V∞MΦ,ϕ(Rn) is nontrivial if ϕ ∈ GΦ satisfies the additional con-
dition

lim
r→∞

Φ−1(r−n)

ϕ(r)
= 0,

since then it contains bounded functions with compact support.
Lastly, we define operators investigated in this paper.

Definition 2.5 LetΦ any Young function. A sublinear operator T will be calledΦ-admissible
singular type operator, if:

1) T satisfies the size condition of the form

χ
B(x,r)

(z)
∣∣∣T(fχRn\B(x,2r)

)
(z)
∣∣∣ ≤ CχB(x,r)

(z)

∫
Rn\B(x,2r)

|f(y)|
|y − z|n

dy

for x ∈ Rn and r > 0;
2) T is bounded in LΦ(Rn).
If Φ ∈ ∇2 an example of Φ-admissible singular type operator is the Hardy-Littlewood

maximal operator

Mf(x) := sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy.

If Φ ∈ ∆2 ∩ ∇2 the class above includes also Calderón-Zygmund operators S with
“standard kernels” (cf. [12, p. 99]).

We refer to [18] for the boundedness of operators M and S in Orlicz spaces.
We also consider Riesz potential operator

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy

and the fractional maximal operator

Mαf(x) = sup
r>0

1

|B(x, r)|1−α/n

∫
B(x,r)

|f(y)|dy,

where 0 < α < n.
It is known that the fractional maximal operator Mα is dominated pointwise by the

fractional integral operator Iα, that is,

Mαf(x) ≤ CIα(|f |)(x), x ∈ Rn. (2.1)
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3 Auxiliary Estimates

The following Guliyev-type local estimates play an essential role in the proof of our results.

Lemma 3.1 [17] Let Φ be a Young function. Then for the Φ-admissible singular type oper-
ator T the following inequality is valid

‖Tf‖LΦ(B(x,r)) .
1

Φ−1
(
r−n

) ∫ ∞
r
‖f‖LΦ(B(x,t))Φ

−1(t−n)dt
t

(3.1)

for all f ∈ LΦloc(Rn) and any ball B(x, r).

Lemma 3.2 [4] Let f ∈ LΦloc(Rn). Then for Young function Φ ∈ ∇2

‖Mf‖LΦ(B(x,r)) .
1

Φ−1(r−n)
sup
t>r

Φ−1(t−n)‖f‖LΦ(B(x,t)) (3.2)

with the implicit constant independent of x ∈ Rn and r > 0.

Lemma 3.3 [10,13] Let 0 < α < n and Φ, Ψ Young functions, Φ ∈ ∇2. If Φ and Ψ satisfy
the conditons

rαΦ−1(r−n) . Ψ−1(r−n) (3.3)

and ∫ ∞
r

Φ−1(t−n)tα
dt

t
. Ψ−1(r−n), (3.4)

then for all f ∈ LΦloc(Rn) and B(x, r)

‖Iαf‖LΨ (B(x,r)) .
1

Ψ−1(r−n)

∫ ∞
r
‖f‖LΦ(B(x,t))Ψ

−1(t−n)
dt

t
. (3.5)

Lemma 3.4 [11,14] Let Φ, Ψ Young functions and 0 < α < n, Φ ∈ ∇2. If Φ and Ψ satisfy
the condition (3.3), then for all f ∈ LΦloc(Rn) and B(x, r)

‖Mαf‖LΨ (B(x,r)) .
1

Ψ−1(r−n)
sup
t>r

tαΦ−1(t−n)‖f‖LΦ(B(x,t)). (3.6)

The following pointwise estimates also play an essential role in the proof of our results.

Lemma 3.5 [7] Let Φ be a Young function, ϕ ∈ GΦ and β ∈ (0, 1). If the conditions

rα . ϕ(r)β−1, (3.7)

and ∫ ∞
r

tαϕ(t)
dt

t
. ϕ(r)β (3.8)

hold, then there exist a positive constant C such that, for all f ∈ MΦ,ϕ(Rn) and for every
x ∈ Rn

Iαf(x) ≤ C(Mf(x))β‖f‖1−βMΦ,ϕ . (3.9)

Lemma 3.6 [8] Let Φ be a Young function, ϕ ∈ GΦ and β ∈ (0, 1). If the condition (3.7)
holds, then there exist a positive constant C such that, for all f ∈MΦ,ϕ(Rn) and for every
x ∈ Rn

Mαf(x) ≤ C(Mf(x))β‖f‖1−βMΦ,ϕ . (3.10)



42 Some classical operators in a new vanishing generalized Orlicz-Morrey space

4 Main Results

In this section, we show that the subspace V∞MΦ,ϕ(Rn) is invariant with respect to sub-
linear Φ-admissible singular type operators. Moreover, we show that the vanishing property
V∞ is preserved under the action of fractional operators Iα and Mα.

Theorem 4.1 Let Φ be a Young function and ϕ ∈ GΦ satisfy the condition∫ ∞
r

ϕ(t)
dt

t
≤ Cϕ(r) (4.1)

where C does not depend on r. Then Φ-admissible singular type operator T is bounded on
V∞MΦ,ϕ(Rn).

Proof. Since the generalized Orlicz-Morrey norm inequalities are already known [17, The-
orem 18], it remains to show that V∞MΦ,ϕ(Rn) is invariant with respect to T :

lim
r→∞

sup
x∈Rn

AΦ,ϕ(f ;x, r) = 0 =⇒ lim
r→∞

sup
x∈Rn

AΦ,ϕ(Tf ;x, r) = 0.

If f ∈ V∞MΦ,ϕ(Rn) then for any ε > 0 there exists R = R(ε) > 0 such that

sup
x∈Rn

AΦ,ϕ(f ;x, t) < ε for every t ≥ R.

Using inequality (3.1) and the condition (4.1), we get

AΦ,ϕ(Tf ;x, r) .
1

ϕ(r)

∫ ∞
r

Φ−1(t−n)‖f‖LΦ(B(x,t))

dt

t
. ε

for any x ∈ Rn and every r ≥ R (with the implicit constants independent of x and r).
Therefore

lim
r→∞

sup
x∈Rn

AΦ,ϕ(Tf ;x, r) = 0

and hence Tf ∈ V∞MΦ,ϕ(Rn).

Corollary 4.1 Let Φ be a Young function and ϕ ∈ GΦ satisfy the condition (4.1). Then
maximal operator M and singular operator S is bounded on V∞MΦ,ϕ(Rn) under the
conditions Φ ∈ ∇2 and Φ ∈ ∆2 ∩∇2, respectively.

In view of (3.2) we can give a better result for maximal operator. More precisely, in the
following result, we do not need the condition (4.1).

Theorem 4.2 Let Φ be a Young function with Φ ∈ ∇2 and ϕ ∈ GΦ. Then the maximal
operator M is bounded on V∞MΦ,ϕ(Rn).

Proof. Since M is bounded inMΦ,ϕ(Rn) (cf. [4, Theorem 4.6]) we only have to show that
it preserves the vanishing property (V∞). This can be done as in proof of Theorem 4.1, but
now using the estimate (3.2).

Theorem 4.3 (Spanne type result) Let Φ, Ψ be Young functions, Φ ∈ ∇2, ϕ1 ∈ GΦ and
ϕ2 ∈ GΨ . Suppose that the conditions (3.3), (3.4) and∫ ∞

r

Ψ−1(t−n)

Φ−1(t−n)
ϕ1(t)

dt

t
. ϕ2(r) (4.2)

hold, then the operator Iα is bounded from V∞MΦ,ϕ1(Rn) to V∞MΨ,ϕ2(Rn).
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Proof. Since Iα is bounded fromMΦ,ϕ1(Rn) intoMΨ,ϕ2(Rn)[13, Theorem 14], we only
need to check the action of Iα. Hence, it remains to show that

lim
r→∞

sup
x∈Rn

AΦ,ϕ1(f ;x, r) = 0 =⇒ lim
r→∞

sup
x∈Rn

AΨ,ϕ2(Iαf ;x, r) = 0.

This can be done as in proof of Theorem 4.1, but now using the estimate (3.5).

Theorem 4.4 (Spanne-type result) Let Φ, Ψ be Young functions, Φ ∈ ∇2, ϕ1 ∈ GΦ and
ϕ2 ∈ GΨ . Suppose that the conditions (3.3) and

sup
r<t<∞

Ψ−1(t−n)

Φ−1(t−n)
ϕ1(t) . ϕ2(r) (4.3)

hold, then the operator Mα is bounded from V∞MΦ,ϕ1(Rn) to V∞MΨ,ϕ2(Rn).

Proof. Since Mα is bounded from MΦ,ϕ1(Rn) into MΨ,ϕ2(Rn) [14, Theorem 4.4], we
only need to check the action of Mα. Hence, it remains to show that

lim
r→∞

sup
x∈Rn

AΦ,ϕ1(f ;x, r) = 0 =⇒ lim
r→∞

sup
x∈Rn

AΨ,ϕ2(Mαf ;x, r) = 0.

This can be done as in proof of Theorem 4.1, but now using the estimate (3.6).

Remark 4.1 Although fractional maximal function is pointwise dominated by the Riesz
potential (cf. (2.1)), and consequently, the results for the former could be derived from the
results for the latter, we consider them separately, because we are able to study the fractional
maximal operator under weaker assumptions than it derived from the results for the potential
operator. More precisely, condition (4.3) is weaker than (4.2). Indeed, (4.2) implies (4.3):

We first note that Ψ−1
(
τ
)
/τ is decreasing, since Ψ−1

(
0
)
= 0 and Ψ−1 concave. By this

fact, we have

Ψ−1(s−n) ≈ Ψ−1(s−n)sn
∫ ∞
s

dt

tn+1
.
∫ ∞
s

Ψ−1(t−n)
dt

t
.

It follows from this inequality and ϕ1 ∈ GΦ

ϕ2(r) &
∫ ∞
r

ϕ1(t)

Φ−1
(
t−n
)Ψ−1(t−n)dt

t

&
∫ ∞
s

ϕ1(t)

Φ−1
(
t−n
)Ψ−1(t−n)dt

t

&
ϕ1(s)

Φ−1
(
s−n

) ∫ ∞
s

Ψ−1
(
t−n
)dt
t

≈
ϕ1(s)

Φ−1
(
s−n

)Ψ−1(s−n),
where we took s ∈ (r,∞), so that

sup
r<s<∞

Ψ−1(s−n)

Φ−1(s−n)
ϕ1(s) . ϕ2(r).

Moreover, we do not need the condition (3.4) for the boundedness of fractional maximal
operator.
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The theorems below provide Adams-type results for the action of the operators Iα and
Mα on vanishing subspace.

Theorem 4.5 (Adams type result) Let Φ be a Young function with Φ ∈ ∇2 and let ϕ ∈ GΦ.
Let β ∈ (0, 1) and define η(t) ≡ ϕ(t)β and Ψ(t) ≡ Φ(t1/β). If conditions (3.7) and (3.8)
hold, then Iα is bounded from V∞MΦ,ϕ(Rn) to V∞MΨ,η(Rn).

Proof. The Adams-type boundedness of the operator Iα in generalized Orlicz-Morrey spaces
follows from [7, Theorem 4.2]. To show the preservation of vanishing property, we make use
of the pointwise estimate (3.9). From that estimate and scaling property ‖(Mf)β‖LΨ (B(x,r)) =

‖(Mf)‖β
LΦ(B(x,r))

, we get

AΨ,η(Iαf ;x, r) .
(
AΦ,ϕ(Mf ;x, r)

)β‖f‖1−βMΦ,ϕ (4.4)

for all r > 0 and x ∈ Rn. If f ∈ V∞MΦ,ϕ(Rn), then Mf ∈ V∞MΦ,ϕ(Rn) by Theorem
4.2. Consequently, we have Iαf ∈ V∞MΨ,η(Rn) taking into account estimate (4.4).

Theorem 4.6 (Adams type result) Let Φ be a Young function with Φ ∈ ∇2 and let ϕ ∈ GΦ.
Let β ∈ (0, 1) and define η(t) ≡ ϕ(t)β and Ψ(t) ≡ Φ(t1/β). If the condition (3.7) holds,
then Mα is bounded from V∞MΦ,ϕ(Rn) to V∞MΨ,η(Rn).

Proof. The Adams-type boundedness of the operator Mα in generalized Orlicz-Morrey
spaces follows from [8, Theorem 3.2]. So, we only need to check the preservation of van-
ishing property. This can be done as in proof of Theorem 4.5, but now using the estimate
(3.10).

Remark 4.2 We find it important to underline once again the results for the fractional max-
imal operator are obtained under weaker assumptions than derived from Thereom 4.5. More
precisely, we do not need the condition (3.8).
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