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Anisotropic maximal operator with rough kernel and its commutators
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Abstract. Let (2 € Lq(Snfl) be a homogeneous function of degree zero with q > 1. In this paper, we
study the boundedness of the anisotropic maximal operator with rough kernels M ;l) and its commutators
[b, M%] on generalized weighted anisotropic Morrey spaces My, ,(w). We find the sufficient conditions
on the pair (p1,p2) withq < p <1, p # land w € Ay orl < p < qand wi? € Ap g
which ensures the boundedness of the operators M % from one generalized weighted anisotropic Morrey
space My, ,, q(w) to another M, ., 4(w) for 1 < p < oc. We find the sufficient conditions on the pair

(p1,02) withb € BMOR™") andq <p <1, p# 1, w € Apjqrorl < p < g wP € Ap g
which ensures the boundedness of the operators [b, M‘é]fmm My, o, a(w) to My, o, q(w) for 1 < p < oo.
In all cases the conditions for the boundedness of the operators M flz, [b, M ‘é} are given in terms of
supremal-type inequalities on (1, p2) and w, which do not assume any assumption on monotonicity of
o1(z,7), pa(z,r)inr.

Keywords. Anisotropic maximal operator; rough kernel; generalized weighted anisotropic Morrey
spaces; commutator; A, weights
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1 Introduction

It is well-known that the commutator is an important integral operator and it plays a
key role in harmonic analysis. In 1965, Calderon [9,10] studied a kind of commutators,
appearing in Cauchy integral problems of Lip-line. Let K be a Calderén-Zygmund singular
integral operator and b € BM O(R"). A well known result of Coifman, Rochberg and Weiss
[11] states that the commutator operator [b, K|f = K (bf)—b K f is bounded on L, (R") for
1 < p < oo. The commutator of Calderén-Zygmund operators plays an important role in
studying the regularity of solutions of elliptic partial differential equations of second order
(see, for example, [13-15,19,28,30]).
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The classical Morrey spaces were originally introduced by Morrey in [39] to study
the local behavior of solutions to second order elliptic partial differential equations. For
the properties and applications of classical Morrey spaces, we refer the readers to [13,
14,16,19,23]. Guliyev, Mizuhara and Nakai [21,38,43] introduced generalized Morrey
spaces MP#?(R™) (see, also [22,23,25,44]). Recently, Komori and Shirai [36] considered
the weighted Morrey spaces LP"(w) and studied the boundedness of some classical oper-
ators such as the Hardy-Littlewood maximal operator, the Calderén-Zygmund operator on
these spaces. Guliyev [24] gave a concept of generalized weighted Morrey space M), ,(w)
which could be viewed as extension of both generalized Morrey space M,, , and weighted
Morrey space LP"(w). In [24] Guliyev also studied the boundedness of the classical oper-
ators and its commutators in these spaces M, ,(w), see also Guliyev et al. [3,15,17,26,29,
30,32-34].

Watson [45] and independently by Duoandikoetxea [18] established weighted L,, bound-
edness for the singular integral operators with rough kernels and their commutators.

Let R™ be the n-dimension Euclidean space with the norm || for each z € R", §7~1
denotes the unit sphere on R™. For z € R™ and » > 0, let B(z,r) denote the open ball
centered at x of radius r and GB(I, r) denote the set R™\ B(z,r). Let d = (dy,...,d,),
di>1,i=1,...,n,|d =3, dand tly = (tdlxl, e ,td"xn). By [6, 12], the function
F(z,p)=>1", x? p~ 24 considered for any fixed z € R", is a decreasing one with respect
to p > 0 and the equation F'(z, p) = 1 is uniquely solvable. This unique solution will be
denoted by p(z). It is a simple matter to check that p(z — y) defines a distance between
any two points z, y € R"™. Thus R", endowed with the metric p, defines a homogeneous
metric space ([4,6,7,12]). The balls with respect to p, centered at x of radius r, are just the
ellipsoids

2 2
Y1 — 11 Yn — T
5d($,T):{yER”;(T%)+...+m<1},

with the Lebesgue measure |Ey(z, )| = v,r!9, where v, is the volume of the unit ball in
R”. Letalso ITy(z,r) = {y € R™ : maxj<;<p |x; —y;|"/% < r} denote the parallelopiped,
C&’d(x,r) = R"\ &4(x,r) be the complement of £4(0,7). If d = 1 = (1,...,1), then
clearly p(z) = |z| and &1(x,r) = B(x,r). Note that in the standard parabolic case d =

(1,...,1,2) we have
X! 2 + x 4 + x%
pla) = \/' e !
Let A; = diag{t™, ..., t%}. Suppose that {2 satisfies the following conditions.

(1) £2is a A;-homogeneous function of degree zero on R™. That is,
QAz) =0 <td1m1, . ,td"xn> = Q(x) (1.1)

forall¢ > 0 and z € R".
Let f € L°°(R™). The anisotropic maximal operator with rough kernel M9, is defined
by
M () =sup €| [ 120~ l7@)dy.
>

E(z,t)

The commutators generated by a suitable function b and the operator M flz is formally
defined by

b, M) f = ME(bf) — bMEF.
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It is obvious that when 2 = 1, M fl) is the anisotropic maximal operator M¢. For b €
Llloc(R”) the commutator of the anisotropic maximal operator M ;lz , is defined by

Mg, f(x) = sup € (. )7 / [2(x —y)| [b(z) = b()| | f(W)ldy.  (1.2)

E(x,t

Therefore, it will be an interesting thing to study the property of M. The main pur-
pose of this paper is to show that anisotropic maximal operator with rough kernels M %
is bounded from one generalized weighted anisotropic Morrey space M, ., 4(w) to an-
other M, ,, a(w), 1 < p < co. We find the sufficient conditions on the pair (1, p2) with
b€ BMOR")and ¢ < p <1,p# l,w € Apgorl <p <gq, wi? e Ap g
which ensures the boundedness of the commutator operators [b, M 3] from M, ,, 4(w) to
M, o,.a(w) for 1 < p < oco.

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A = B and say that A and B are
equivalent.

2 Preliminaries

Next we will give the weighted boundedness of anisotropic maximal operator M }12 with
rough kernel and its commutator. In their proof, the weighted boundedness of the anisotropic
maximal operator M g with rough kernel (for its definition, see (1.2)) is needed, while the
latter itself is of great significance.

Theorem 2.1 [18] Suppose that (2 satisfies the condition (1.1) and {2 € Lq(S”_l), 1<
q < oo. Then for every ¢ < p < oo, p # 1 and w € Apjq orl <p <gq p#1and

wl™? e Ay g there is a constant C independent of f such that

d
MG N2y < CNFN L -

Theorem 2.2 [5] Suppose that {2 satisfies the condition (1.1) and {2 € Lq(S"_l), 1<
q < oo. Let also b € BMO(R™). Then for every ¢ < p < oo,p # landw € A, or

1 <p < q, p # 1andw1*p/ c Ap’/q”
d
HMQJ)fHLp,w S C”fHLp,w
For a function b defined on R", we denote

(0, ifb(z) >0
br(w) = {|b(x), if b(z) < 0

p/q
there is a constant C independent of f such that

and b (z) := |b(z)| — b~ (). Obviously, b* (z) — b~ (z) = b(z).
The following relations between [b, M&] and Mg , are valid:
Let b be any non-negative locally integrable function. Then

b, M((iz}f(ﬂf)’ < M&bf(x), reR”

holds for all f € L (R™).

1
If b is any locall())/cintegrable function on R", then

b, ME]f ()] < MG f(2) + 207 (@) Mbf(z),  zeR" 2.1
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holds for all f € LL _(R") (see, for example, [1]).

In the sequel M (R4 ), M+ (R;) and MM T (R ; 1) stand for the set of Lebesgue-measurable
functions on R, , and its subspaces of nonnegative and nonnegative non-decreasing func-
tions, respectively. We also denote

A={peM (R 1): lim =0}

Let u be a continuous and non-negative function on R . We define the supremal operator
S, by

(gug)(w = ”ug”Loo(t,OO)7 le (0,00),
The following theorem was proved in [8].

Theorem 2.3 [8] Suppose that v1 and vy are nonnegative measurable functions such that
0 < |lv1llzo(0,) < 00 for everyt > 0. Let u be a continuous nonnegative function on R.
Then the operator S, is bounded from Loy, (R 10 Log 1, (R+) on the cone A if and only
if

Huz§u<||muz;m>HL ®e) "

3 Generalized weighted anisotropic Morrey spaces

The classical Morrey spaces M,, y were originally introduced by Morrey in [39] to study
the local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [20,37].

We recall that a weight function w is in the Muckenhoupt class A, [40], 1 < p < oo, if

[]a, : = Sgp[w]Ap(g)

— sup <é|/ (w)da:) <’;,/gw(x)1_p/d:v>p_l 3.1

where the sup is taken with respect to all the anisotropic balls £ and ;1) + 1% = 1. Note that,
for all balls £ using Holder’s inequality, we have that

[wlfiey = 1€ wll e w7l ) = 1. (3.2)
For p = 1, the class A; is defined by the condition M%w(z) < Cw(x) with [w]4, =
xsé%)n Mza()x), and for p = 00 Ao = Uj<peoo Ap and [w]y, = 1i§r;l)f<1[w]Ap'
Remark 3.1 It is known that
e A W p]‘il/,"; e = & I = |5 w2, )

Moreover, we can write w! ™" € Ap//q/ = w7 ¢ A,y because of wl=? e Ap//q/ -
A,y Therefore, we get
/ /
WP € Ay = w TP € Ay

= [0 Y0 = E7 e 1 g e Pl 33)

p'/q

But the opposite is not true.
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Remark 3.2 Let’s write w! ™" ¢ Ay /g and used the definitions A, classes we get the
following

1-p/ 1y T _ 1,1 72177? ')
- q rlq
W' € Ay = [0 R T = T e PR 10 Pz 0
—p/11 —i= 1 1
> W = 187 /” ol . G4
q—p

where the following equalities are provided.

oy M4 a4 _dp-1) <Q>':q <P’>':P<q—1>
p’p pla—1) p plg—1)" \p ’

Then from eq.(3.3) and eq.(3.4) we have

1-p/ L 1—p/71/p’
w EAp/q [ ]Ap//q
1 1 1
= €171 P17 ) o Pl ool (3.5)

7456

Guliyev [24] introduced generalized weighted Morrey spaces MP#(w) as follows.
Definition 3.1 [24] Let 1 < p < 00, ¢ be a positive measurable function on R™ x (0, 00)
and w be non-negative measurable function on R™. We denote by M,, ,(w) the generalized
weighted anisotropic Morrey space, the space of all functions f € ngfu (R™) with finite
norm

_1
||f||Mp,%d(w) = Sup (p(l‘,?“)_l ’LU(S(.I‘,T‘)) P ||f||Lp,w(5(x r))
z€R™,r>0

where Ly, ,(E(x,r)) denotes the weighted Ly-space of measurable functions f for which

1

G
112w @) = 1 Xe@m 12y w@e) = (/g( | !f(y)|pw(y)d?/) :

Furthermore, by WM, , q(w) we denote the weak generalized weighted anisotropic
Morrey space of all functions f € WL;,?TCU(R”) for which

_1
1f 1w a0y = 6§3p>0¢(w7r)_1w(5(w,r)) P AW Ly () < 00

where W Ly, ,(E(z, 1)) denotes the weak Ly, .,-space of measurable functions f for which

P
Hf”WLp w(&(z,r)) = ”fXg(m T)HWpr(R") =supt </ w(y)dy> .
t>0 {ye&(a,r): |f(W)[>t}

Remark 3.3 (1) If w = 1, then Mp 0,d(1) = M, , q is the generalized Morrey space.

(2) fo(x,r) = w(&(x,r)) = ,then M), , q(w) = L, . 4(w) is the weighted anisotropic

Morrey space.
K 1

(3) If p(z,r) = v(&(x,7))rw(E(x,r)) P, then M), q(w) = Ly, q(v, w) is the two

weighted anisotropic Morrey space.
A—n

(4) fw = 1land p(x,r) =7 » with0 < X\ < n, then M, , q(w) =
is the classical anisotropic Morrey space and WM, , q(w) = WLy » q(R") i
anisotropic Morrey space.

1

(5) If p(x,7) = w(&(x,r)) P, then M) , 4(w) = Ly .,(R™) is the weighted Lebesgue

space.

Lp /\,d(Rn)
is the weak
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The following statement, was proved in [35].

Theorem 3.1 Ler 1 < p < oo, w € A, and (1, p2) satisfy the condition

1
ess inf o (2, T)w(E(w, 7))

sup

1 < CQOQ(IE,T), (36)
> w(&(z,1))r

where C' does not depend on x and r. Then the operator M is bounded from M, ,, (w) to
M, o, (w) for p > 1 and from My ,, (w) to WM 4, (w).

The following statement, was proved in [35], see also [24].

Theorem 3.2 Let 1 < p < oo, w € A,, b € BMO(R™) and (1, p2) satisfy the condition

sup
t>r

£\ ©ss inf 1 (2, 7)w(E(x, T))%
(1 +In ) S < Coa(,r), G.7)
r

w(E(x, )7

where C does not depend on x and r. Then the operator Mgl is bounded from My, ,, 4(w)

10 M, o, a(w).

Note that, in the case w = 1 Theorem 3.1 was proved in [27,42], see also [2].

4 Anisotropic maximal operator with rough kernels M }1) in the spaces M, , q(w)

In the following lemma we get Guliyev weighted local estimate (see, for example, [21,
23] in the case w = 1 and [24] in the case w € A),) for the operator T};.

Lemma 4.1 Suppose that {2 be satisfies the condition (1.1) and (2 € Lq(S”_l), 1<g<
00

Ifd <p<oo,p#landw e A then the inequality

p/q">

=

1 _
MGy (e S w(Elx,T))? sup 1 F1 2o (€ )y W(E (2, 2)) P

holds for any anisotropic ball E(x,r), and for all f € L
If1 <p§q,p7é1andw1*p/ €A

(R™).

loc
p?w

' /q'» then the inequality
Md < 1/p —1/p
IMEFIL, @) S HwHLﬁ@(z,m sup 11w (€t HwHLﬁmw))

holds for any anisotropic ball E(x,r), and for all f € L}J‘ffu (R™).

Proof. Let (2 be satisfies the condition (1.1) and {2 € Lq(S"_l), 1 <qg< oo
Note that

1
12(z = )Lyt < o 192]| L, (sn-1) [0, + |z — zo])| 9, (4.1)
where co = (nvy) Y7 and v, = |£(0,1)] (see, [27]).
For arbitrary o € R", set £ = E(x,r) for the ball centered at 2y and of radius r,

2& = E(xo, 2r). We represent f as
f=litto i) = Fy)xaey), faly) = F(Y)Xepe ), m>0 (42
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and have
IMEFIlz, 0 < IMBfLlL, o) + 1ML, . 6)-

Since f1 € Ly (R™), M3 fi € Ly .,(R™) and from the boundedness of M in L,, ., (R™)
forw € A,/ and ¢’ < p < oo, p # 1 (see Theorem 2.2) it follows that

IM&fillL, W) < IMEfillL,, . @m)

1
S 20 ysn—1y (w4, 1fillz, @

1
~ ”‘QHLq(S”*U [w]ﬁﬂ Hf||Lp,w(2€)
q/

1 1 _
SN2 L sn-1y w]}, w(&)r Sup 1l 2y @ty (E @, 1)) P

q r

Let z be an arbitrary pointin & = E(x, 7). If E(z,t)N CE(;U, 2r) # &, thent > r. Indeed,

ifyeE(z,t)N EE(a;,Qr), thenwe gett > p(y —2) > p(z —y) —plz —2) > 2r —r =r.
On the other hand, £(z,t) N CE(x, 2r) C E(x,2t). Indeed, if y € E(z,t) N CE(x, 2r),
then we get p(x — y) < p(y — 2) + p(x — z) <t +r < 2t. Hence, forall z € £

ME f(2) = sup €z, )| / 190z — )| |foly)dy
t>0 E(z,t)

<swpleG2n ™ [ 10—l w)ldy
E(z,t)N"E(x,2r)

[ 126l

)

/g 190z — )| £ (w)ldy.

R

< sup[&(, 2t)| !
t>r

= sup |€(, 1)| !
t>2r
By applying Hélder’s inequality for ¢’ < p < oo, p# land w € A, /q's We get

M () < sup € (w0 /g 1926 =)l )y

S sup 1€ (2, )| 7HI2(z = g @an 1l e

)

/ i/ 1
S 920z, sm-1y Sup €@, O Nl 2yt 079 /p”z(p/q/)/(é'(a:,t)) €0, ¢ + |z — 2[)]=

1 _1 L
S 9202y (snr fwli, sup €@ O I Ny ey w(E @, )77 [E@@, O] 1E(0, +7)]
4.3)

|=

q

sup || fl|, . (@ eyw(E(z, ) P.

1
~ |2 -1 wp,
I20zy(smn [l sup

=

Moreover, for all ¢ < p < oo, p # 1 the inequality

Tp

1 1
IMEFollr, ey S 1921, sm-1) (W], w(E) Sup £l 2y (& (2w (E (2, 2))
q’ r

1

q
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is valid. Thus

=

1
1MLy e) S N2 L (571 [wliﬂw(g)’?sup 1112y 0 (6 w(E (2, 8)) 7.

q

Letalsol < p < ¢, p # 1 and wi=? € A, . Since fi € Lpw(R"), M‘(i)fl €

p'/q'

Ly,w(R™) and from the boundedness of M 4 in Ly, (R") forw! ™" € A, g and 1 <p<gq
(see Theorem 2.2) it follows that
1
IME 1L, w6y < IME L, winy SRl sm-1) P15 1l 0@

q

\\H

[w! =7 ]27 1 fllz,.w(26)-

7

~ ||92]|L,(sm-1)

q

Ifl1<p<g,p#1and w'? e A then Minkowski theorem and Holder inequality,

p'/q>

M fallz, ) < (/ <Sup yg(x,t)\—l/
E \t>2r E(x,t)

)

< sup |E(z, 1) / 120 = Iz, o)) f @)l dy

t>2r

P

|2(x = y)| If(y)ldy> w(w)d:v>

t

1
< E 1t (- — P d
- tS;IQE)”’ (@) /E(x,t) I y)HLq(S) HwHL(Q/p)’(E) /W)l dy

1 1
SNy wllz, ) sop |5(w,t)|_1/g( ) 0,7+ plz —y)| [f(y)| dy

S12laygsnn [0l ey 590 1€ D1 Sl etaan [EO.+ 0

|=

> / 7 1
S 120z, sn-1) HwaL(g) sup 1€ @, O Ny ey 10PN oy 1E (@ D)8
q—p T
1 , L
SNz, smn) Nl ey 590 16O ey wieton 10777 N ey G )
q—p i

Q=

1 1
is obtained. By applying (3.3) for [|w! ' HZ’I(E(:C #)) and (3.5) for wllf (¢) We have the
following inequality o

IMbfallz, o)

1 1 1
1_17/
Sy W' Wl 590 15ty 19127, (otaan
q’ -
is valid. Thus
. b !
IMA Tl ) S 12y 0 25 Il 590 1ty 1017,y

ql

Thus we complete the proof of Lemma 4.1.
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Theorem 4.1 Suppose that (2 be satisfies the condition (1.1) and 2 € L,(S" 1), 1 < ¢ <
00. Let also, for ¢ < p < oo, w € Ay /q the pair (1, p2) satisfies the condition (3.6) and

forl<p<gquw' ™" e Ay g the pair (o1, 2) satisfies the condition

. 1/p
gssinfer(@ Dlwlly o

3 =

£
o < Coaa,r) 2@ gy

Lﬁw(z,t)) H

sup
t>r [[w]]

wll?
”Lﬁwm))

where C' does not depend on x and r.
Then the operator M is bounded from My, ,, (w) to M, o, (w). Moreover

HMflszMp,wz,d(w) Sl agy g, (w)-

Proof. When ¢/ < p < oo, w € A by Lemma 4.1 and Theorem 2.3 with v5(r) =

p/q’

a2, 7)1 (1) = 1 (2, 7) " w(Ew, 1)) TF, g(r) = 1 £y (€ (e, and w(r) = w(&(z, 7))
we have

=

_1
||M;12f”Mp7¢27d(w) = 6£3p>04p2($a7‘)_1 w(é’(:n,r)) P ||M;12f||Lp,w(5(ac,r))

1
< osup oz, )Tt sup || flln, () wE (@, ) P
z€R™, r>0 t>r

AN

_1
sup  1(z,7) " w(E(@, )7 (1 fllL, 0 (@)
zeR™,r>0

= £, 4, aw)-

For the case of 1 < p < q, w'™? € A by Lemma 4.1 and Theorem 2.3 with
1

p'/q">

vo(r) = ealw,r) (@) ully , () = eaa ) T w(E ) P g(r) =

1

1F11L, (& () and w(r) = kugimz L ve have
q—p ?

_1
HMflszMp%d(w) = Eﬂigpwwz(fﬁﬂ“ylw(f‘:(%ﬂ‘)) P IMEFN L, (e
1 1

_1
< sup go(a, )T w(E(@, ) SUp [| flz,, u (e ) 10

p “p
L Iz
zER™, >0 75 > 75 (E@0)

_1
fs sup 901(:Ear)_1 w(E(x,r)) P ||f||Lp,w(€(:c,'r))
zeR™,r>0

= 1 fllaz, 0, aw)-

Remark 4.1 Note that, if {2 = 1, Theorem 4.1 were proved in [33].

5 Commutator of anisotropic maximal operator with rough kernels [b, M ‘(il] in the
spaces M, , q(w)

We recall the definition of the space of BMO(R™).
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Definition 5.1 Suppose that b € L'°°(R"™), and let

1
bll. = sup / E(Y) — be(z.m|dy < o0,
H H |5($,7")| 5(z,r)’ ( ) E(x, )‘

zER™,r>0
where )
bewr) = o b(y)dy.
0 el Jewan
Define
BMO(R™) = {b € LI*(R") : ||b]|s < oo}
Modulo constants, the space BAM O(R™) is a Banach space with respect to the norm || - ||..
Lemma 5.1 [41] Let w € Ax. Then the norm || - || is equivalent to the norm
1

bll«w = sup / b(y) — be w(y) dy,

bl =50 oy o 100 bl vl
where

1
b = b dy.
E(z,r),w w(S(a:, ’l“)) /E(x,r) (y) w(y) Y

The following lemma is proved in [24].

LemmaS5.2 [ Letw € Ax andb € BMO(R"). Letalso 1 < p < oo, z € R" and
ri,72 > 0. Then,

1 . 1
N el udn) < (1 [ 72]) bl
(w(é’(m,rl)) /S(w,rl) |b(y) bB(x,rg),w‘ w(y)dy> = O( + | 1n T ) ||bH )

where C' > 0 is independent of f, w, x, r1 and ro.
2 Letw € Apandb € BMO(R™). Let also 1 < p < oo, x € R™ and 1,13 > 0. Then,

1 / / i/
—_— b(y) — b P Py )"
(wl,p/(g(m’m) /g(m)\ (¥) = be(ara)0l” W(Y) y)

go(u\ln% )11l

where C > 0 is independent of b, w, x, r1 and 3.
Remark 5.1 ([31])

(1) The John-Nirenberg inequality : There are constants C, Co > 0, such that for all
be BMO(R"™)and 5 >0

{z €& : |b(z) —be| > B} < C1|Ele” B/l e c R™
(2) The John-Nirenberg inequality implies that

1 p
bll« & sup / b(y) — bezm|Pdy 5.D
H H z€R™,r>0 (’5(_1’77”)’ 5(38,7")| ( ) et )|
forl<p<u1

(3) Letb € BMO(R™). Then there is a constant C' > 0 such that
t
[B(ar) = be(ay| < ClIofluIn— for 0 < 2r <t, (52)

where C' is independent of b, x, r and ¢.
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In the following lemma we get Guliyev weighted local estimate (see, for example, [24]
) for the maximal commutator operator My, ;.

Lemma 5.3 Let 1 < p < coandb € BMO(R™). Suppose that {2 be satisfies the condition
(1.1)and 2 € Ly(S"1), 1 < g < o0
If¢ <p<ocandw € A, /q'» then the inequality

HM?Z,beLp,w(S(x,r)
S ol w(&(z, 7))

)
1
P

t _1
sup (14 In— sonw(&(x,t)) P
sup (1100 e (€ 1)

holds for any ball £ (x,r), and for all f € L°¢ (R™).

p7w
Ifl<p<qandw'? € A then the inequality

p'/q">

IME o fIIL, oo

1 1

ES t 1
< P e P
S Y (R | i PRy T

q—p

(@,t))
holds for any ball E(x,r), and for all f € L;??;(R”).

Proof. Let p € (1,1) and b € BMO(R™). For arbitrary zy € R", set £ = E(x, r) for the
ball centered at = and of radius r, 26 = £(x, 2r). We represent f as (4.2) and have

IME o fllny ) < NIME il wE) + IME s f2llr, )

Since f1 € Lyw(R"), M%,fi € L, (R") and from the boundedness of My, in
Lpw(R"™) forw € A,/ and ¢ < p < oo (see Theorem 2.2) it follows that

d
1My llL, i) < 1M fillL, . @

1
S 1920y sny [wli, [0l 1f1llz,, 0 @)
ql

1
=120z, sn-1) [wiG, [0l [ f]]L,.2B)-
q/
Let z be an arbitrary pointin & = E(z, 7). If E(z, )N EE(a:, 2r) # &, thent > r. Indeed,
ifye(z,t)N GS(:C, 2r),thenwe gett > p(y —2) > p(x —y) —plx —2) > 2r —r =r.

On the other hand, £(z,t) N GS(JI, 2r) C E(x,2t). Indeed, if y € E(z,t) N Gg(x, 2r),
then we get p(x —y) < p(y — z) + p(z — z) < t+r < 2t. Hence, forall z € £

M, f2(2) = sup \E(Zﬂf)ll/ ) b(y) — b(2)|[£2(y — 2)[ | f2(y)| dy

>0 E(zt)

=sup |€(z, 1) /g( e 2)Ib(y)—b(Z)HQ(y—Z)\\f(y)\dy

t>0

Ssup\g(x,%)!l/ t b(y) — b(2)|12(y — 2)[|f (y)] dy

t>r

)

t>2r

= sup |€(z,2t)| 7 /g( ) b(y) — b(2)|[£2(y — 2)[|f(w)] dy.
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Therefore, for all z € £ we have

M pf2(2) S sup [€(z, 2t)| ™! / [b(y) = b(2)| [2(y = 2)| [f ()| dy-

E(z,t)

By applying Hélder’s inequality for ¢’ < p < co,p# land w € A, /q'» We get

M f2(2) < sup S(wyt)l_l/ t [b(y) = b(2)[12(z = )| [ (y)|dy

t>2r 8(,)
S sup 1€ (@, ) THI92(2 = Ly 10(y) = b)) fllL @)
1
S0, sy sup €@, )7 Ly e 11 (BY) — b(2)) w4 /p||2(p/q,)/(g(x7t)) 1£(0,t + p(z — 2))|

1 1 1 1
S 120,500y [l 59D € O 1oty wlECes) 7 G DI 0,84

t>2

l _1
~ 9], (571 [w]ﬁﬂ sup 120w (€ (1)) P. (5.3)

Moreover, for all ¢ < p < oo, p # 1 the inequality

[

1 1 _1
IME fallL, (o) S 19201, (sn-1) [w ]ﬁ% w(&)? sup £l 2y (& @iy w(E(z, )
is valid. Thus

1 _1
IMafllL,.) S 19201, s [w]iﬁw(g)psup 111z 0 (2w (E (2, 2)) 7.

q

Ifl<p<gqg,p#1and wir € Ay /q'» then Minkowski theorem and Holder inequality,

Mapfollr,.e

S (/B (sup |5(a:,t)’1/6(“)\13(3/)—1)(2)\\Q(y—z)\]f(y)]dy)pw(z) dz)

B =

t>2r

S (/B (sup Is(x,t)!‘l/g(“)\b(y)—bg,w\n<y_z)uf(y),dy)pw(z) dz)

t>2r

S =

S =

([ (st /g ) = bewl 12 =) F(w)ldy)” w(z)d2)

t>2r
=J1+ Jo.

Q=
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Let us estimate J;. Applying Holder’s inequality and by Lemma 5.2 we get

RS

J1 = (/g (Sup E(z, )] /g(x ) 1b(y) — be wl |£2(y — 2)| |f(y)|dy)pw(z) dz)

t>2r

< sup 0171 [ 100 sy 10) el )

it

1
< -1 2y — - P _
Ssup €@ [ 120 = aye ol ey ) = beool £y

,t

1 1
S92y el ey 12O 18+ o= I o) bl )

1
S 195 0l ey sup G017 [ 0 = el @)y

1
< 120 sy ] Ex,1)| " Fa / b(y) — bewl” w(y) ¥ dy)”
<12z 0l 0 sup GO (L 10) = bewl w7 dy) ™ Il wieteo
S 1Bl 121|571 HwIIL(/),( sup £, 1)~ H 0 ) 017 g 1y ety
- —14+1 -1 L
< lbll 19215y el zﬁ(g) sup £ 078 (1INl 7, €D o)

1 1
= [0 1210y Wl ey sup € F n (e D)l 1y wietey
LZ*P q—p ’

In order to estimate .Jo note that

D=

B = ( [ (suple@.o /5 o ) = bl 1200 = D W) w(e) dz)

t>2r

< sup €@z, )" l/g(m </ [(b(2) = bew) 2 (y—Z)\pw(Z)dZ); £ (y)ldy.

With similar techniques for 1 < p < g, w' e Ay /¢ can be achieved and the proof is
finished.

Theorem 5.1 Suppose that {2 be satisfies the condition (1.1) and {2 € Lq(S"_l), 1<g<
oc. Letb € BMO(R™). Let also, for ¢ < p < oo, w € A,y the pair (¢1, p2) satisfies the

condition (3.7) and for 1 < p < g, wl=? € A the pair (1, 2) satisfies the condition

P'/q
ess inf ¢ (z, T)||w|| 1
o0 N ter< L 4 @) dt w(&(z,r))?
/ (1—1—111 ) = p 7<C pa(z, )M, (5.4)
r " HwHLL(g( t)) ||U)H£
q—p % ﬁ(‘f(ﬂc,ﬂ)

where C' does not depend on x and r.
Then the operator M}i)’b is bounded from M, ,, 4(w) to My, ,, a(w).

d
HMQ,beM og,d(W < ”fHM sop,d(Ww):
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Proof. When ¢’ < p < oo, w € 4,

_1 _1
pa(z, )" (r) = @i(z, ) Tw(E(x, 7)) 7, g(r) = (1 fll L, (e (@) and w(r) = w(E(z, ) Fr!
we have

/q'» by Lemma 5.3 and Theorem 2.3 with vo(r) =

1
IME o fllare )= sup  a(x,r)  w(€(@,r)"? | M, fllL, e @)

P <P2 Tz€ER™ r>0
< _1dt
Slolle_sw_ o)™ (1w )1y iy wE 1) 5 L

S 116l Eﬂzgp>0¢1(x,r)_lw(g(ww))_g 1120y

= [0l [1f a1, o, (e
For the case of 1 < p < ¢, w'™? ¢ Ap s
1

Lﬂﬂz@@ﬂ*w@@ﬂYWMﬁimwﬁﬂﬂZ%@JT%®@MY?Mﬂ=

by Lemma 4.1 and Theorem 2.3 with

1 £ 2.0 (E@,r)) and w(r) = |Jw r~! we have

HL L5 (E@r)

_1
prpo,d(W) T sup QOQ(ZU,T)_I’LU((C;(%',T)) P HM;l)fHLp,w(E(x,r))
zeR™,r>0

1M 0f 1,

1

_1
< sup go(a,r) T w(E(x,r) e lwl|]
zERM, >0 &)

. _1 dt
141 ) . t
/T ( +In =) fllz,..ce0 )”wHL (@) t

S sup 901(%7”)_1 w(g( )) p ||f||pr E(z,r)) — ”f” proq,d (W)

z€R™,r>0
Remark 5.2 Note that, if {2 = 1, Theorem 5.1 were proved in [33].
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