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Abstract. The results obtained in this paper can be obtained in a similar way for more complex problems,
such as variation problems with a finite number of delays. It is also possible to prove the validity of similar
results in a similar way for the problem of variation with both open ends.
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1 Introduction

The study of delayed argument processes are of great importance both from theoretical
and practical point of view. A hundreds of papens and monographs in this direction were
published (e.i. [2,3,6–8]).

The delayed variational problems were first studied by Kamensky. In his work [4] he
has obtained the analogue of the Euler equation for weak local extremum in a delayed
variational problem with closed ends.

In this paper we consider a delayed variational problem with closed left end and with
free right end. Using the variational method, the first and second variations of the studied
functional were determined. The analogues and transversality condition of the Euler equa-
tion, of the Legendre condition were obtained.

2 Problem statement

Let us consider the following variational problem:

J (x(·)) =

t1∫
t0

L ( t, x(t), x(t− h), ẋ(t), ẋ(t− h)) dt+ F (x(t1))→ min
x(·)

, (2.1)
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x (t) = ϕ (t) , t ∈ [t0 − h, t0]. (2.2)

Here t0 and t1 R = (−∞, +∞) are the given points of the real axis, x(·) ∈ Rn, Rn is
an n−dimensional Euclidean space and h = const > 0, so that t1 − t0 > h, and the given
function ϕ(t), t ∈ [t0 − h, t0] is a second order continuously differentiable function.

In problem (2.1)-(2.2) x(t) ∈ C2 ([t0 − h, t1]) is the desired function. The given func-
tion L(t, x, y, ẋ, ẏ) is said to be an integrant in problem (2.1), (2.2) and L(·) in a second
order continuously differentiable function of its arguments.

Definition 2.1 Every function x(t) t ∈ [t0 − h, t1] satistying the condition (2.2) and being
an element of space C2 ([t0 − h, t1]) is called an admissible function.

3 Neceessary conditions

At first we introduce the notions of the first and second variations of the functional for
problem (2.1), (2.2). Assume that x̄(·) is an admissible function. We accept the following
denotations:

y(t) = x(t− h), z(t) = (x(t), y(t))T ,

ż(t) = (ẋ(t), ẏ(t))T , z(t) = (x(t), y(t))T .
(3.1)

Here T indicates the transposition.
We use the following variation given first by Lagrange:

x̃ (t) =

{
x̄(t) + εδx(t), t ∈ [t0, t1],
x̄(t), t ∈ [t0 − h, t0], (3.2)

here ε ∈ R and δx(t) ∈ C2([t0 − h, t1]), such that δx(t) ≡ 0, t ∈ [t0 − h, t0].
Now using (3.1) and (3.2), we calculate the increment J(x̃(·))− J(x̄(·)) =: 4εJ(x̄(·))

of the functional (2.1).
We can write the following:

4εJ(x̄(·)) =

t1∫
t0

[L ( t, z̄(t) + εδz(t), ˙̄z(t) + ε δż(t))− L(t, z̄, ˙̄z(t))] dt+

+F (x̄(t1) + εδx(t1))− F (x̄(t1)).

From the last one, by the Taylor formula we get:

4εJ(x̄(·)) = εδJ(x̄(·); δx(·)) +
1

2
ε2δ2J(x̄(·); δx(·)) + o(ε2), (3.3)

here o(ε2)/ε2 → 0, if ε→ 0,

δJ(x̄(·); δx(·)) =

t1∫
t0

[
L̄TZ(t)δz(t) + L̄T

Ż
(t)δż(t)

]
dt+ F Tx (x̄(t1))δx(t1), (3.4)

δ2J(x̄(·); δx(·)) =

t1∫
t0

[
δzT (t)L̄ZZ(t)δz(t) + 2δzT (t)L̄ZŻ(t)δż(t) +

+δżT (t)L̄ŻŻ(t)δż(t)
]
dt+ δxT (t1)Fxx(x̄(t1))δx(t1). (3.5)
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Note that the expressions L̄Z(t), L̄Ż(t), L̄ZZ(t), L̄ZŻ(t) and L̄ŻŻ(t) are calculated
along (t, z̄(t), ˙̄z(t)).

Taking into account z = (x, y)T , δz(t) = (δx(t), δx(t− h))T and δż(t) = (δẋ(t), δẋ(t− h))T

from (3.4), we can easily write the following:

δJ(x̄(·); δx(·)) =

t1∫
t0

{[
L̄Tx (t) + L̄Ty (t+ h)

]
δx(t)+

+
[
L̄Tẋ (t) + L̄Tẏ (t+ h)

]
δẋ(t)

}
dt+ F Tx (x̄(t1))δx(t1), (3.6)

here for t > t1 L̄y(t) = L̄ẏ(t) = 0.

Definition 3.1 The expression δJ(x̄(·); δx(·)) determined by (3.6), in the problem (2.1),
(2.2) is called the first variation, the δ2J(x̄(·); δx(·)) determined by (3.5) is called the
second variation.

Using (3.3), we easily prove the following theorem.

Theorem 3.1 Assume that the admisible function x̄(t) in problem (2.1), (2.2) is a weak
local minimum. Then the followings are valid:

δJ(x̄(·); δx(·)) = 0, ∀δx(·) ∈ C2([t0 − h, t1]), (3.7)

δ2J(x̄(·); δx(·)) ≥ 0, ∀δx(·) ∈ C2([t0 − h, t1]). (3.8)

Note that the following theorem showing that the Euler equation, the analogues of the
transverality conditions are obtained for problem (2.1), (2.2) by using the minimality con-
ditions (3.7) and (3.8) and by means of certain yudgements (see [1], [5]) is valid.

Theorem 3.2 Assume that the admissible function x̄(t), t ∈ [t0 − h, t1] is a weak local
minimum in problem (2.1), (2.2). Then the following is valid:

 L̄x(t)− d
dt L̄ẋ(t) = 0, t ∈ [t1 − h, t1],

L̄x(t) + L̄y(t+ h)− d
dt

(
L̄ẋ(t) + L̄ẏ(t+ h)

)
= 0, t ∈ [t0, t1 − h),

(3.9)

 ξT
[
L̄ẋẋ(t) + L̄ẏẏ(t+ h)

]
ξ ≥ 0, ∀ξ ∈ Rn, ∀t ∈ [t0, t1],

L̄ẏẏ(t) = 0, t > t1,
(3.10)

L̄ẋ(t1 − 0) + Fx(x̄(t1)) = 0. (3.11)

Note that the minimality condition (3.9) obtained here is called the analogous of the
Euler equation, (3.10) of the Legendre condition, (3.11) of the transversality condition. The
result similar to the condition (3.9) was obtained in [4, p. 391-398]) the result similar to
(3.10) was obtained in [9].

Proof of Theorem 3.1. Since the admissible function x̄(t) is a weak local minimum in
problem (2.1), (2.2), there exists wich a number ε0 ≥ 0 that the inequality4εJ(x̄(·)) ≥ 0,
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∀ε ∈ (−ε0, ε0) is valid. Taking into account this inequality and ∀ε ∈ (−ε0, ε0), ε→ 0, we
can write the following:

δJ(x̄(·); δx(·)) ≥ 0 and δJ(x̄(·); δx(·)) ≤ 0,

∀δx(·) ∈ C2([t0 − h, t1]).
Thus, δJ(x̄(·); δx(·)) = 0, i.e. we prove the validity of equality (3.7).
We now show the validity of the inequality (3.8).
Taking into account (3.7) in (3.3), along the admisible function x̄(·), i.e. for a weak local

minimum we can write the following inequality:

1

ε2
4εJ(x̄(·)) =

1

2
δ2J(x̄(·); δx(·)) +

o(ε2)

ε2
≥ 0,∀ε ∈ (−ε0, ε0).

Here, as ε→ 0 we obtain the proof of the inequality (3.8). So, Theorem 3.1 is proved.

Proof of Theorem 3.2. At first we prove (3.9) and (3.11). Taking into account the state-
ment (3.7) of Theorem 3.1 and expression (3.6), we can write the following:

δJ(x̄(·); δx(·)) =

t1∫
t0

{[
L̄Tx (t) + L̄Ty (t+ h)

]
δx(t) +

[
L̄Tẋ (t) + L̄Tẏ (t+ h)

]
δẋ(t)

}
dt+

+F Tx (x̄(t1)) δx(t1) = 0, ∀δx(t) ∈ C2([t0 − h, t1]), (3.12)

here
L̄y(t) = L̄ẏ(t) ≡ 0, ∀t ∈ (t1,+∞). (3.13)

Applying the method of integration by parts, we can write equation (3.12) as follows:

δJ(x̄(·); δx(·)) =

t1∫
t0

{
L̄Tx (t) + L̄Ty (t+ h)− d

dt

(
L̄Tẋ (t) + L̄Tẏ (t+ h)

)}
δx(t)dt+

+
(
L̄Tẋ (t) + L̄Tẏ (t+ h)

)
δx(t) |t1t0 +F Tx (x̄(t1))δx(t1) = 0. (3.14)

Here as variation δx(·) we accept the condition δx(t0) = δx(t1) = 0. Then we prove
that by the Lagrange lemma (see, e.i. [1, p. 61]), (3.9) is valid at the points t ∈ [t0, t1].

Furthermore, taking into account (3.9), and also for δx(t0) = 0 and t > t1 the equations
L̄y(t) = L̄ẏ(t) = 0, from (3.14) we get:[

L̄Tẋ (t1 − 0) + F Tx (x̄(t1))
]
δx(t1) = 0, ∀δx(t1) ∈ Rn.

Here we get the proof of the equation (3.11).
We now prove the validity of statement (3.10) of Theorem 3.2. Assume that x̄(t) is a

weak local minimum. Then, by the statement (3.8) of Theorem 3.1, taking into account
˙̄z = ( ˙̄x, ˙̄y) and (3.5), we consider new expression of δ2J(x̄(·); δx(·)):

δ2J(x̄(·); δx(·)) =

t1∫
t0

[
δzT (t)L̄ZZ(t)δz(t) + 2δzT (t)L̄ZŻ(t)δż(t) + δẋT (t)L̄ẋẋ(t)δẋ(t)+

+2δẋT (t)L̄ẋẏ(t)δẏ(t) + δẏT (t)L̄ẏẏ(t)δẏ(t)
]
dt+ δxT (t1)Fxx(x(t1))δx(t1) ≥ 0, (3.15)
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∀δz(t) = (δx(t), δy(t)) ∈ C2([t0 − h, t1]).
Let us consider the following variation:

δx(t) =

 ξ sin2 π t−θ+ε2ε , t ∈ [θ − ε, θ + ε],

0, t ∈ [t0, t1]\[θ − ε, θ + ε],
(3.16)

here θ ∈ (t0, t1), ε > 0, ε < h
2 , ξ ∈ Rn, [θ − ε, θ + ε] ⊂ [t0, t1].

It is clear that δy(t) = 0, t ∈ [θ − ε, θ + ε], and also δẏ(t) = 0, t ∈ [θ − ε, θ + ε]
and δx(t1) = 0. Take these and (3.16) into account in (3.15). Then δ2J(x̄(·); δx(·)) is as
follows:

δ2J(x̄(·); δx(·)) =
θ+ε∫
θ

{
δxT (t)

[
L̄xx(t) + L̄yy(t+ h)

]
δx(t)+

+2
[
δxT (t)(L̄xẋ(t) + L̄yẏ(t+ h))δẋ(t)

]
+

+δẋT (t)
[
L̄ẋẋ(t) + L̄ẏẏ(t+ h)

]
δẋ(t)

}
dt ≥ 0,

(3.17)

here L̄yy(t) = L̄yẏ(t) = L̄ẏẏ(t) = 0, t > t1.
In the last inequality we take into account (3.16) and also

δẋ(t) =

 ξ π2ε sin 2π t−θ+ε2ε , t ∈ [θ − ε, θ + ε],

0 ∈ Rn, t ∈ [t0, t1]\[θ − ε, θ + ε],
(3.18)

and prove the validity of (3.10). Assume the contrary, i.e. exists such a point θ ∈ (t0, t1)
that at the certain point ξ ∈ Rn

Q(t) |t=θ= ξ
[
L̄ẋẋ(θ) + L̄ẏẏ(θ + h)

]
ξ < −q, q > 0. (3.19)

According to the feature of a continuous function, for a rather small ε > 0 the inequality
(3.19) is valid for ∀t ∈ (θ − ε, θ + ε) as well.

Taking into account the continuity of the integrand expression (3.6), (3.18), and also
(3.19), we can write the following evaluation of the second variation of δ2J(x̄(·); δx(·)) in
(3.17) as follows:

δ2J(x̄(·); δx(·)) < m1 +m2ε−
qπ2

ε
, (3.20)

here m1 > 0, m2 > 0 are certain numbers.
From (3.20) for a rather small ε > 0 we obtain δ2J(x̄(·); δx(·)) < 0. This contradicts

(3.17). So, we prove that statement (3.10) of Theorem 3.2 is valid.
So, Theorem 3.2 was proved.
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