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Abstract. In this work, the inverse scattering method is applied to the integration of the loaded Korteweg-
de Vries equation with a self-consistent source in the class of rapidly decreasing complex-valued func-
tions. An example illustrating the described method is given.
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1 Introduction

In 1967, American scientists C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura
[1] showed that the solution of the Korteweg-de Vries (KdV) equation can be obtained for
all “rapidly decreasing” initial conditions, that is, conditions which in a certain way van-
ish as the coordinate tends to infinity. This method is called the inverse scattering method
(ISM), since it essentially uses the solution of the problem of reconstructing the potential of
the Sturm-Liouville operator on the entire axis, from the scattering data. This inverse scat-
tering problem was first solved by L.D. Faddeev [2], then in the works of V.A. Marchenko
[3], B.M. Levitan [4] and others. Further, P. Lax [5] noticed the universality of the ISM and
generalized the KdV equation by introducing the concept of the higher KdV equation. In
this direction, the next important result was obtained by V.E. Zakharov and A.B. Shabat [6],
who succeeded in integrating the non-linear Schrdinger equation (NLS). Soon M. Wadati
[7], based on the ideas of [6], proposed a method for solving the Cauchy problem for the
modified Korteweg-de Vries equation (mKdV). V.E. Zakharov, L.A. Takhtadzhyan, L.D.
Faddeev [8], and M. Ablowitz, D. Kaup, A. Newell, H. Sigur [9] showed that the ISM can
also be applied to the solution of the sine-Gordon equation. The application of the ISM to
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the NLS equation, mKdV and sine-Gordon equations is based on the scattering problem for
the Dirac operator on the entire axis:

M = i

(
d
dx −q(x)
r(x) − d

dx

)
, x ∈ R.

The inverse scattering problem for the Dirac operator on the entire axis was studied
in [10], [11]. It is known that the operator M is not self-adjoint, it has a finite number
of multiple complex eigenvalues in the “rapidly decreasing” case and may have spectral
singularities that lie in the continuous spectrum. In [6], [7], [8], [9] in the case when all
eigenvalues of the corresponding Dirac operator are simple and there are no spectral sin-
gularities, nonlinear equations such as NSE, mKdV, and sine-Gordon were integrated. In
this regard, it is relevant to search for a solution of nonlinear evolution equations without a
source and with a source corresponding to multiple eigenvalues of the Dirac operator. The
articles [12], [13], [14], [15] are devoted to these problems.

In [16], V.K. Melnikov showed that the KdV equation with a self-consistent source
can be solved using the ISM for the self-adjoint Sturm-Liouville operator on the whole
line. Integrable non-linear evolution equations with sources have attracted a lot of attention
in the modern scientific literature. They have important applications in plasma physics,
hydrodynamics, solid state physics, etc. [17], [18], [19]. For example, the KdV equation
with an integral source was considered in [20]. These equations can describe the interaction
of long and short capillary-gravity waves [21].

For the first time the term “loaded equation” was used in the works of A.M. Nakhushev,
where the most general definition of a loaded equation is given and various loaded equa-
tions are classified in detail, for example, loaded differential, integral, integro-differential,
functional equations, etc., and numerous applications are described. In the literature, loaded
differential equations are usually called equations containing in the coefficients or on the
right side any functionals of the solution, in particular, the values of the solution or its
derivatives on manifolds of lower dimension. The study of such equations is of interest both
from the point of view of constructing a general theory of differential equations and from
the point of view of applications. Among the works devoted to loaded equations, one should
especially note the works of A.M. Nakhushev [22], [23], A.I. Kozhanov [24] and others.

The KdV equation without a loaded term is also encountered in applied mechanics. For
example, in the works of A.A. Lugovtsov [25], [26], the system of equations describing the
propagation of one-dimensional nonlinear waves in an inhomogeneous gas-liquid medium
is reduced to one equation of the form

uτ + α(τ)uuη + β(τ)uηηη − µ(τ)uηη +
[
k

2τ
+ δ(τ)

]
u = 0.

In particular, for µ = 0, k = 1, δ = 0, it is shown that under certain conditions, cylindrical
waves can exist in the form of solitons.

Note that solutions of the KdV equation with a self-consistent source from the class
of rapidly decreasing complex functions were considered in [27]. Integration of the loaded
Korteweg-de Vries equation into the class of periodic functions was investigated in [28],
[29].

In this paper, we consider a system of loaded nonlinear equations of the form

ut − 6uux + uxxx + γ(t)u(0, t)ux = 2
N∑
j=1

mj−1∑
l=0

C lmj−1
∂

∂x

(
ϕljϕ

mj−1−l
j

)
, (1.1)

L(t)ϕlj = k2jϕ
l
j + lϕl−1j , (Imkj > 0), l = 0,mj − 1, j = 1, N, (1.2)
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where

L(t) := − d2

dx2
+ u(x, t), x ∈ R, t > 0, C ln =

n!

l!(n− l)!
,

and γ(t) is a given continuously differentiable function. The functions ϕlj = ϕlj(x, t) for
each nonnegative t belong to the space L2(R), and ϕ0

j = ϕ0
j (x, t) is an eigenfunction of the

operator L(t) corresponding to the eigenvalue λj(t) = k2j (t), (Imkj > 0) of multiplicity
mj(t), l = 0,mj − 1, j = 1, N .

The system of equations (1.1) - (1.2) is considered under the initial condition

u(x, 0) = u0(x), x ∈ R, (1.3)

where the initial function u0(x) is complex-valued and has the following properties:
1) for some ε > 0 ∫ ∞

−∞
|u0(x)| eε|x|dx <∞; (1.4)

2) non-self-adjoint operator L(0) has N complex eigenvalues λ1(0), λ2(0), . . . , λN (0)
with multiplicities m1(0), m2(0), . . . ,mN (0) respectively, and has no spectral singulari-
ties.

It is assumed that

1

(mj − 1− l)!

∫ ∞
−∞

ϕ
mj−1
j (x, t)ϕ

mj−1−l
j (x, t)dx = Ajmj−1−l(t),

l = 0,mj − 1, j = 1, N.

(1.5)

Here, Ajmj−1−l(t) are initially given continuous functions.
It is required to find a complex-valued function u(x, t) that is sufficiently smooth and

tends to its limits as x→ ±∞ rather quickly, i.e.∫ ∞
−∞

∣∣∣∣∂ju(x, t)∂xj

∣∣∣∣ eε|x|dx <∞, j = 0, 1, 2, 3. (1.6)

The main goal of this work is to find the equation of dynamics in time t for the scattering
data of a non-self-adjoint operator L(t) with a potential that is a solution to the loaded KdV
equation with a self-consistent source in the class of rapidly decreasing complex-valued
functions.

2 Preliminaries. Scattering data for a non-self-adjoint Sturm-Liouville operator

Consider the equation

L(0)y := −y′′ + u0(x)y = k2y, x ∈ R, (2.1)

where the potential u0(x) is assumed to be complex-valued and satisfies condition (1.4). In
this section, we present the information necessary for the further presentation concerning
the direct and inverse scattering problems for equation (2.1). We denote by f+(x, k) and
f−(x, k) the solutions of Eq. (2.1) with conditions at infinity for Imk > − ε

2 :

f+(x, k) = eikx + o(1), x→ +∞; f−(x, k) = e−ikx + o(1), x→ −∞.
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These solutions are called Jost solutions and the following representations are valid for
them:

f±(x, k) = e±ikx ±
∫ ±∞
x

K±(x, y)e
±ikydy. (2.2)

These solutions, under condition (1.4), exist, are unique, and holomorphic in k in the half-
plane Imk > − ε

2 . Moreover, the kernels K±(x, y) have continuous derivatives that satisfy
inequalities

|K+(x, y)| ≤ C+
a e
−εx+y

2 , y ≥ x ≥ a,

|K−(x, y)| ≤ C−a eε
x+y
2 , y ≤ x ≤ a,

∣∣K ′+x(x, y)∣∣ , ∣∣K ′+y(x, y)∣∣ ≤ 1

4

∣∣∣∣u0(x+ y

2

)∣∣∣∣+ C+
a e
−ε( 3x

2
+y), x > a.

In addition, the kernals K±(x, y) are related to the potential u0(x) as follows:

u0(x) = ∓2
dK±(x, x)

dx
. (2.3)

We also note that pairs of functions {f±(x, k), f±(x,−k)} form a system of fundamental
solutions in the strip |Imk| < ε

2 whose Wronskians are equal toW{f±(x, k), f±(x,−k)} =
∓2ik.

We denote by w(k) and v(k) Wronskians

w(k) := f−(x, k)f
′
+(x, k)− f ′−(x, k)f+(x, k),

v(k) := f+(x,−k)f ′−(x, k)− f−(x, k)f ′+(x,−k).

The functionw(k) extends analytically to the half-plane Imk > − ε
2 and has the asymptotics

w(k) = 2ik

[
1 +O

(
1

k

)]
, |k| → ∞, (2.4)

uniformly in each half-plane Imk ≥ η, η > − ε
2 . It follows from the asymptotics (2.4) and

the analyticity of w(k) that in the half-plane Imk ≥ 0 the function w(k) has a finite number
of zeros (in the general case, multiple ones). The requirement that there are no spectral
singularities for the operator L(0) means that the function w(k) does not have real zeros,
that is, w(k) 6= 0, k ∈ R. Let the non-real zeros w(k) be k1, k2, . . . , kN (Imkj > 0, j =

1, N), then λj = k2j , j = 1, N are the eigenvalues of the operator L(0). The multiplicity of
the root kj of the equation w(k) = 0 is denoted by mj , j = 1, N .

Unlike w(k), the function v(k) is defined only in the strip |Imk| < ε
2 . In the strip

|Imk| < ε
2 functions w(k) and v(k) satisfy the equality

w(k)w(−k)− v(k)v(−k) = 4k2. (2.5)

In addition, in the strip |Imk| < ε
2 the following equality holds:

f−(x, k) =
v(k)

2ik
f+(x, k) +

w(k)

2ik
f+(x,−k). (2.6)
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There exist so-called normalizing chains of numbers {χj0, χ
j
1, . . . , χ

j
mj−1} and {θj0, θ

j
1, . . . ,

θjmj−1}, j = 1, N such that the following relations hold

1

s!

(( d
dk

)sf−(x, k
))∣∣∣

k=kj
=

s∑
ν=0

χjs−ν
1

ν!

(( d
dk

)ν
f+(x, k)

)∣∣∣
k=kj

,

1

s!

(( d
dλ

)sf−(x,
√
λ
))∣∣∣

λ=k2j

=

s∑
ν=0

θjs−ν
1

ν!

(( d
dλ

)ν
f+(x,

√
λ
))∣∣∣

k=k2j

,

s = 0,mj − 1, j = 1, N,

(2.7)

while χj0 6= 0, θj0 6= 0.
Normalizing chains of numbers {χj0, χ

j
1, ..., χ

j
mj−1} and {θj0, θ

j
1, . . . , θ

j
mj−1}, j = 1, N

are interconnected by means of recurrence relations.
As it is known in [30], [31], the kernel K+(x, y) of the transformation operator (2.2)

satisfies the Gelfand-Levitan-Marchenko integral equation

K+(x, y) + F+(x+ y) +

∫ ∞
x

K+(x, s)F+(s+ y)ds = 0, x ≤ y, (2.8)

where

F+(x) =
1

2π

∫ ∞
−∞

S(k)eikxdk+
N∑
j=1

mj−1∑
ν=0

χjmj−ν−1
1

ν!

dν

dkν

(
2k(k − kj)mj

ω(k)
eikx

)
, (2.9)

S(k) :=
v(k)

ω(k)
, (2.10)

herewith the potential u0(x) is found by formula (2.3).

Definition 2.1 The set {S(k), λj , χj0, . . . , χ
j
mj−1, j = 1, N} or {S(k), λj , θj0, . . . , θ

j
mj−1,

j = 1, N} is called the scattering data for the operator L(0).

The problem that implies the determination of the complex-valued potential u0(x) from
scattering data is called the inverse problem.

The following theorem is true [30].

Theorem 2.1 The scattering data uniquely determine operator L(0).

In what follows, we will often use the results of the following lemmas.

Lemma 2.1 If the functions y(x, ζ) and z(x, η) are solutions of the equations Ly = ζ2y
and Lz = η2z, then the equality

d

dx
W{y, z} = (ζ2 − η2)yz,

is true.

Lemma 2.2 Let the functions f−, ϕlj , l = 0, 1, . . . ,mj − 1 be solutions of the following
equations

Le− = λe−; Lϕ lj = λjϕ
l
j + lϕ l−1j , l = 0, 1, . . . ,mj − 1, λ = k2.

Then the equality
d

dx
W{ϕlj , fj} = (λj − λ)ϕljf− + lϕl−1j f−,

is true.
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Corollary 2.1 Under the conditions of Lemma 2.2 and λ 6= λj , the following equalities

ϕljf− =
l∑

r=0

1

(λ− λj)r+1
· l!

(l − r)!
d

dx
W
{
f−, ϕ

l−r
j

}
,

ϕ
mj−1−l
j f− =

mj−1−l∑
r=0

(mj − 1− l)!
(λ− λj)mj−r(mj − 1− l − r)!

d

dx
W
{
f−, ϕ

mj−1−l−r
j

}
,

(2.11)

hold.

Differentiating equalities (2.11) n times with respect to λ, and setting λ = λj , we obtain
the following corollary.

Corollary 2.2 The following equalities take place

ϕl−1j · f (n)− (x, kj) =
n

l
ϕlj · f

(n−1)
− (x, kj)−

1

l

d

dx
W
{
f
(n)
− (x, kj), ϕ

l
j(x, kj)

}
,

l = 1,mj − 1.
(2.12)

The following lemma can be proved by direct verification.

Lemma 2.3 If ϕj is the eigenfunction of the operator L(0) with the potential u0(x) that
corresponds to the eigenvalue k2j , then the equalities∫ ∞

−∞
u0(x)ϕ

′
jϕjdx = 0,

∫ ∞
−∞

u′0(x)ϕ
2
jdx = 0,

hold.

3 Evolution of the scattering data of a non-self-adjoint Sturm-Liouville operator

Consider the following KdV equation with the right-hand side

ut − 6uux + uxxx = G(x, t), (3.1)

where

G(x, t) = −γ(t)u(0, t)ux + 2

N∑
j=1

mj−1∑
l=0

C lmj−1
∂

∂x

(
ϕljϕ

mj−1−l
j

)
. (3.2)

For equation (3.1), we look for the Lax pair [32] in the following form

−Φxx + (u− λ)Φ = 0, (3.3)

Φt = (−ux + 4iλ
√
λ)Φ+ (2u+ 4λ)Φx + F (x, t). (3.4)

Using identity Φxxt = Φtxx, based on equalities (3.1) - (3.4), we obtain

−Fxx + (u(x, t)− λ)F = −GΦ. (3.5)

Assuming Φ(x, t) = f−(x,
√
λ; t), we are looking for a solution to equation (3.5) in the

form
F = B(x)f−(x,

√
λ; t) + C(x)f−(x,−

√
λ; t).



A.B. Khasanov, U.A. Hoitmetov 93

Then, to determine B(x) and C(x), we obtain the system of equations

B′(x)f−(x,
√
λ; t) + C ′(x)f−(x,−

√
λ; t) = 0,

B′(x)f ′−(x,
√
λ; t) + C ′(x)f ′−(x,−

√
λ; t) = Gf−(x,

√
λ; t),

whose the solution has the form

B(x) = − 1

2i
√
λ

∫ x

−∞
f−(s,

√
λ; t)f−(s,−

√
λ; t)Gds,

C(x) =
1

2i
√
λ

∫ x

−∞
f2−(s,

√
λ; t)Gds.

Therefore, in this case, the second equation of the Lax pair has the form

∂f−(x,
√
λ; t)

∂t
= (−ux + 4iλ

√
λ)f−(x,

√
λ; t) + (2u+ 4λ)

∂f−(x,
√
λ; t)

∂x

−f−(x,
√
λ; t)

2i
√
λ

∫ x

−∞
f−(s,

√
λ; t)f−(s,−

√
λ; t)Gds

+
f−(x,−

√
λ; t)

2i
√
λ

∫ x

−∞
f2−(s,

√
λ; t)Gds.

(3.6)

Passing to the limit x → ∞ in equality (3.6), by virtue of (2.5), (2.6) and the asymptotics
of the Jost solution, we derive

dw(
√
λ; t)

dt
= −w(

√
λ; t)

2i
√
λ

∫ ∞
−∞

f−(x,
√
λ; t)f−(x,−

√
λ; t)G(x, t)dx

−v(−
√
λ; t)

2i
√
λ

∫ ∞
−∞

f2−(x,
√
λ; t)G(x, t)dx, (3.7)

dv(
√
λ; t)

dt
= 8iλ

√
λv(
√
λ; t)− v(

√
λ; t)

2i
√
λ

∫ ∞
−∞

f−(x,
√
λ; t)f−(x,−

√
λ; t)G(x, t)dx

−w(−
√
λ; t)

2i
√
λ

∫ ∞
−∞

f2−(x,
√
λ; t)G(x, t)dx. (3.8)

Multiplying (3.8) by w and subtracting it from equality (3.7) multiplied by v, according to
(2.10), we obtain

dS(
√
λ; t)

dt
= 8iλ

√
λS(
√
λ; t)− 2i

√
λ

w(
√
λ; t)

∫ ∞
−∞

f2−(x,
√
λ; t)G(x, t)dx.

Lemma 3.1 The following identities hold∫ ∞
−∞

G(x, t)f2−(x,
√
λ; t)dx = −γ(t)u(0, t)v(

√
λ; t)w(

√
λ; t),

∫ ∞
−∞

G(x, t)f−(x,
√
λ; t)f−(x,−

√
λ; t)dx = γ(t)u(0, t)v(

√
λ; t)v(−

√
λ; t), (3.9)

where the function G(x, t) is defined by equality (3.2).
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Proof. Indeed, using expression (3.2), we have∫ ∞
−∞

Gf2−(x,
√
λ; t)dx = −γ(t)u(0, t)

∫ ∞
−∞

f2−(x,
√
λ; t)ux(x, t)dx

+2

∫ ∞
−∞

N∑
j=1

mj−1∑
l=0

C lmj−1
∂

∂x

(
ϕljϕ

mj−1−l
j

)
f2−(x,

√
λ; t)dx

= 2γ(t)u(0, t)

∫ ∞
−∞

(
f ′′−(x,

√
λ; t) + λf−(x,

√
λ; t)

)
f ′−(x,

√
λ; t)dx

+

∞∫
−∞

( N∑
j=1

mj−1∑
l=0

C lmj−1

[
ϕljf

2
−
∂

∂x
ϕ
mj−1−l
j + ϕ

mj−1−l
j f2−

∂

∂x
ϕ
mj−1−l
j ϕlj

−2ϕljϕ
mj−1−l
j

∂

∂x
f−

])
dx = γ(t)u(0, t)

∞∫
−∞

[((
f ′−(x,

√
λ; t)

)2)′
+k2

(
f2−(x,

√
λ; t)

)′]
dx

=

∞∫
−∞

( N∑
j=1

mj−1∑
l=0

C lmj−1

[
ϕljf−W

{
f−, ϕ

mj−1−l
j

}
+ ϕ

mj−1−l
j f−W

{
f−, ϕ

l
j

}])
dx.

According to (2.11), we obtain∫ ∞
−∞

Gf2−(x,
√
λ; t)dx = γ(t)u(0, t) lim

R→∞

[
k2f2−(x, k; t) +

(
f ′−(x, k; t)

)2]∣∣∣R
−R

+

∫ ∞
−∞

[
N∑
j=1

mj−1∑
l=0

C lmj−1

l∑
r=0

l!

(l − r)!(λ− λj)r+1

d

dx

(
W
{
f−, ϕ

l−r
j

})

+

mj−1−l∑
r=0

(mj − 1− l)!
(mj − 1− l − r)!(λ− λj)r+1

W
{
f−, ϕ

l
j

} d

dx

(
W{f−, ϕ

mj−1−l−r
j }

)]
dx

= γ(t)u(0, t) lim
R→∞

λ(v(√λ; t)
2i
√
λ

ei
√
λR +

w(
√
λ; t)

2i
√
λ

e−i
√
λR

)2

− λe2i
√
λR

+

(
v(
√
λ; t)

2
ei
√
λR − w(

√
λ; t)

2
e−i
√
λR

)2

+ λe2i
√
λR


+

∫ ∞
−∞

( N∑
j=1

mj−1∑
l=0

C lmj−1

mj−1−l∑
r=0

(mj − 1− l)!
(mj − 1− l − r)!(λ− λj)r+1

× d

dx

(
W
{
f−, ϕ

l
j

}
W
{
f−, ϕ

mj−1−l−r
j

}))
dx = −γ(t)u(0, t)v(

√
λ; t)w(

√
λ; t).

Equality (3.9) is proved similarly. This is complete the proof.
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According to Lemma 3.1 and equality (3.7), we have wt(
√
λ, t) = 0. Therefore, we

deduce that
dλj(t)

dt
= 0, (3.10)

St(
√
λ, t) =

[
8iλ
√
λ− 2i

√
λγ(t)u(0, t)

]
S(
√
λ, t). (3.11)

Now we turn to finding the evolution of the normalization chain {θn0 , θn1 , . . . , θnmn−1}
corresponding to λn, n = 1, N . For this, we rewrite equality (3.6) in the following form

∂f−(x,
√
λ; t)

∂t
= (−ux + 4iλ

√
λ)f−(x,

√
λ; t) + (2u+ 4λ)

∂f−(x,
√
λ; t)

∂x

− 1

2i
√
λ

[
f−(x,

√
λ; t)

∫ x

−∞
f−(s,

√
λ; t)f−(s,−

√
λ; t)G(s, t)ds

− f−(x,
√
λ; t)

∫ x

−∞
f2−(s,

√
λ; t)G(s, t)ds

]
= (−ux+4iλ

√
λ)f−+(2u+4λ)

∂f−(x,
√
λ; t)

∂x

+
γ(t)u(0, t)f−(x,

√
λ; t)

2i
√
λ

[
f−(x,

√
λ; t)f−(x,−

√
λ; t)u(x, t)

−
∫ x

−∞
u(s, t)

(
f ′−(s,

√
λ; t)f−(s,−

√
λ; t) + f−(s,

√
λ; t)f ′−(s,−

√
λ; t)

)
ds

]
−γ(t)u(0, t)f−(x,−

√
λ; t)

2i
√
λ

[
f2−(x,

√
λ; t)u(x, t)−

∫ x

−∞
2f ′−(s,

√
λ; t)f−(s,

√
λ; t)u(s, t)ds

]

+

∫ x

−∞

N∑
j=1

mj−1∑
l=0

C lmj−1

mj−1−l∑
r=0

(mj − 1− l)!
(mj − 1− l − r)!(λ− λj)r+1

× d

dx
(W{f−(s,

√
λ; t), ϕ

mj−1−l−r
j })ds · ϕlj = (−ux + 4iλ

√
λ)f−(x,

√
λ; t)

+(2u+ 4λ)
∂f−(x,

√
λ; t)

∂x
− γ(t)u(0, t)f ′−(x,

√
λ; t)− i

√
λγ(t)u(0, t)f−(x,

√
λ; t)

+ϕlj

∫ x

−∞

( N∑
j=1

mj−1∑
l=0

C lmj−1ϕ
mj−1−l
j f−(s,

√
λ; t)

)
ds. (3.12)

Differentiating equality (3.12)mn−1 times with respect to λ, setting λ = λn and taking
into account the asymptotics of the Jost solution at x→ +∞, we obtain

∂f
(mn−1)
− (x,

√
λn; t)

∂t
= 4i

[
(λn)

3
2 f

(mn−1)
− (x,

√
λn; t)+

3

2
C1
mn−1(λn)

1
2 f

(mn−2)
− (x,

√
λn; t)

+
3

4
C2
mn−1(λn)

− 1
2 f

(mn−3)
− (x,

√
λn; t)−

3

8
C3
mn−1(λn)

− 3
2 f

(mn−4)
− (x,

√
λn; t)

+3

mn−1∑
r=4

Crmn−1
(−1)r

2r+1

(2r − 5)!

(r − 3)!
(λn)

− (2r−3)
2 f

(mn−1−r)
− (x,

√
λn; t)

]
+4λn

∂

∂x
f
(mn−1)
− (x,

√
λn; t) + 4(mn − 1)

∂

∂x
f
(mn−2)
− (x,

√
λn; t)
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−γ(t)u(0, t)
[
∂

∂x
f
(mn−1)
− (x,

√
λn; t) + i(λn)

1
2 f

(mn−1)
− (x,

√
λn; t)

+
i

2
C1
mn−1(λn)

− 1
2 f

(mn−2)
− (x,

√
λn; t)−

i

4
(λn)

− 3
2C2

mn−1f
(mn−3)
− (x,

√
λn, t)

+
3i

8
(λn)

− 5
2C3

mn−1f
(mn−4)
− (x,

√
λn, t)

−
mn−1∑
r=4

Crmn−1
(−1)r(2r − 3)!

22r−2(r − 2)!
(λn)

− (2r−1)
2 f

(mn−1−r)
− (x,

√
λn, t)

]

+

mn−1∑
l=0

C lmn−1

∫ ∞
−∞

ϕmn−1−l
n f

(mn−1)
− (x,

√
λn; t)dx · ϕln. (3.13)

Using formulas (2.12), one can show that

mn−1∑
l=0

C lmn−1

∫ x

−∞
ϕmn−1−l
n f

(mn−1)
− (x,

√
λn; t)dx · ϕln

=

mn−1∑
l=0

C lmn−1

∫ x

−∞
ϕmn−1
n f

(mn−1−l)
− (x,

√
λn; t)dx · ϕln +

mn−1∑
l=0

Ql(x) · ϕln,

where Ql(x) is a linear combination of expressions of the form W{ϕrn, f
(q)
− }, (r − q = l),

and therefore lim
x→∞

Ql(x) = 0. According to the definition of the functions ϕsn and fs−,
s = 0, 1, 2, . . . ,mn − 1, there are numbers d0, d1, . . . , dmn−1 such that

ϕln =

l∑
s=0

Csl dl−sf
s
−, l = 0, 1, 2, . . . ,mn − 1.

Therefore,
mn−1∑
l=0

C lmn−1

∫ ∞
−∞

ϕmn−1−l
n f

(mn−1)
− (x,

√
λn; t)dx · ϕln

=

mn−1∑
s=0

Csmn−1

∫ ∞
−∞

ϕmn−1
n ϕmn−1−s

n dx · f (s)− .

Thus, equality (3.13) can be rewritten as

∂f
(mn−1)
− (x,

√
λn; t)

∂t
= 4i

[
(λn)

3
2 f

(mn−1)
− (x,

√
λn; t)+

3

2
C1
mn−1(λn)

1
2 f

(mn−2)
− (x,

√
λn; t)

+
3

4
C2
mn−1(λn)

− 1
2 f

(mn−3)
− (x,

√
λn; t)−

3

8
C3
mn−1(λn)

− 3
2 f

(mn−4)
− (x,

√
λn; t)

+3

mn−1∑
r=4

Crmn−1
(−1)r

2r+1

(2r − 5)!

(r − 3)!
(λn)

− (2r−3)
2 f

(mn−1−r)
− (x,

√
λn; t)

]
+4λn

∂

∂x
f
(mn−1)
− (x,

√
λn; t) + 4(mn − 1)

∂

∂x
f
(mn−2)
− (x,

√
λn; t)

−γ(t)u(0, t)
[
∂

∂x
f
(mn−1)
− (x,

√
λn; t) + i(λn)

1
2 f

(mn−1)
− (x,

√
λn; t)
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+
i

2
C1
mn−1(λn)

− 1
2 f

(mn−2)
− (x,

√
λn; t)

− i
4
(λn)

− 3
2C2

mn−1f
(mn−3)
− (x,

√
λn, t) +

3i

8
(λn)

− 5
2C3

mn−1f
(mn−4)
− (x,

√
λn, t)

−
mn−1∑
r=4

Crmn−1
(−1)r(2r − 3)!

22r−2(r − 2)!
(λn)

− (2r−1)
2 f

(mn−1−r)
− (x,

√
λn, t)

]

+

mn−1∑
r=0

Crmn−1

∫ ∞
−∞

ϕmn−1
n ϕmn−1−r

n dx · f (r)− (x,
√
λn; t).

Using (2.7) and equating the coefficients at (ix)l · ei
√
λnx, l = mn − 1, mn − 2, . . . , 1, 0,

we find an analogue of the Gardner-Greene-Kruskal-Miura equations

dθn0 (t)

dt
=
(
8i(λn)

3
2 +An0 (t)− 2i(λn)

1
2γ(t)u(0, t)

)
θn0 (t),

dθn1 (t)

dt
=
(
8i(λn)

3
2 +An0 (t)− 2i(λn)

1
2γ(t)u(0, t)

)
θn1 (t)

+

(
12i(λn)

1
2 +An1 (t)−

i

2

(
(λn)

− 1
2 + 2

)
γ(t)u(0, t)

)
θn0 (t),

dθn2 (t)

dt
=
(
8i(λn)

3
2 +An0 (t)− 2i(λn)

1
2γ(t)u(0, t)

)
θn2 (t)

+

(
12i(λn)

1
2 +An1 (t)−

i

2

(
(λn)

− 1
2 + 2

)
γ(t)u(0, t)

)
θn1 (t)

+

(
3i(λn)

− 1
2 +An2 (t) +

i

8
(λn)

− 3
2γ(t)u(0, t)

)
θn0 (t),

dθn3 (t)

dt
=
(
8i(λn)

3
2 +An0 (t)− 2i(λn)

1
2γ(t)u(0, t)

)
θn3 (t)

+

(
12i(λn)

1
2 +An1 (t)−

i

2

(
(λn)

− 1
2 + 2

)
γ(t)u(0, t)

)
θn2 (t)

+

(
3i(λn)

− 1
2 +An2 (t) +

i

8
(λn)

− 3
2γ(t)u(0, t)

)
θn1 (t)

+

(
i

2
(λn)

− 3
2 +An3 (t)−

i

16
(λn)

5
2γ(t)u(0, t)

)
θn0 (t), (3.14)

dθnp (t)

dt
=
(
8i(λn)

3
2 +An0 (t)− 2i(λn)

1
2γ(t)u(0, t)

)
θnp (t)

+

(
12i(λn)

1
2 +An1 (t)−

i

2

(
(λn)

− 1
2 + 2

)
γ(t)u(0, t)

)
θnp−1(t)

+

(
3i(λn)

− 1
2 +An2 (t) +

i

8
(λn)

− 3
2γ(t)u(0, t)

)
θnp−2(t)

+

(
i

2
(λn)

− 3
2 +An3 (t)−

i

16
λ
− 5

2
n γ(t)u(0, t)

)
θnp−3(t)
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+

p∑
r=4

(
24i(−1)r

2r+1
· (2r − 5)!

r!(r − 3)!
λ
− (2r−3)

2
n +Anr (t)

+
i(−1)r

22r−2
· (2r − 3)!

r!(r − 2)!
(λn)

− (2r−1)
2 γ(t)u(0, t)

)
θnp−r(t),

p = 4, 5, . . . ,mn − 1; n = 1, 2, . . . , N.

Thus, we have proved the following theorem.

Theorem 3.1 If the system of functions u(x, t), ϕlj(x, t), l = 0, 1, . . . ,mj−1, j = 1, N is
a solution to problem (1.1) - (1.6), then the scattering data

{
S(
√
λ, t), λn(t), θ

n
0 (t), θ

n
1 (t),

. . . , θnmn−1(t), n = 1, N
}

of the operator L(t) with potential u(x, t) satisfy differential
equations (3.10), (3.11), and (3.14).

Remark 3.1 Consider the kernel of the Gelfand-Levitan-Marchenko integral equation

F+(x, t) =
1

2π

∫ ∞
−∞

S(k, t)eikxdk +
N∑
j=1

mj−1∑
ν=0

χjmj−ν−1(t)
1

ν!

dν

dkν

(
2k(k − kj)mj

w(k, t)
eikx

)
with the scattering data from Theorem 3.1. Then the data {S(k, t), λj(t), χj0(t), χ

j
1(t), . . . ,

χjmj−1(t), j = 1, N} satisfies all the necessary conditions given in the second paragraph of
this article. Therefore, according to Theorem 2.1, the potential u(x, t) in the operator L(t)
is uniquely determined.

Remark 3.2 The obtained relations completely determine the evolution of the scattering
data for the operator L(t) and thus allow us to apply the inverse scattering method to solve
problem (1.1) - (1.4).

Let the function |u0(x)| eε|x| ∈ L1(R) be given. The solution to the problem is found by
the following algorithm.

We solve the direct scattering problem with the initial function u0(x) and obtain the
scattering data {S(k), λj , χj0, . . . , χ

j
mj−1, j = 1, N} for the non-self-adjoint operator L(0).

Using Theorem 3.1, we find the scattering data for t > 0:

{S(k, t), λj(t), χj0(t), χ
j
1(t), . . . , χ

j
mj−1(t), j = 1, N}.

Using the method based on the Gel’fand-Levitan-Marchenko integral equation, we solve
the inverse scattering problem, i.e. find u(x, t) from the scattering data for t > 0 obtained
in the previous step.

Example 3.1 Consider the following problemut − 6uux + uxxx = −γ(t)u(0, t)ux + 2 ∂
∂x(ϕ

2
0(x, t)),

Lϕ0 = k20ϕ0,
(3.15)

u(x, 0) =
8a2e2iax

(1 + e2iax)2
, Ima > 0, x ∈ R. (3.16)

Here

A(t) =

∫ ∞
−∞

ϕ2
0(x, t)dx =

i

2a
e−2arcsht, γ(t) = 2(t2+1)+

(t2 + 1)e−2arcsht

8a4
−
√
t2 + 1

2ia3
.
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It is easy to find the scattering data for the operator L(0) = − d2

dx2
+ u0(x), x ∈ R :

λ(0) = k20 = a2, v(k, 0) = 0, S(k, t) = 0, θ0(0) = χ0(0) = 1.

By Theorem 3.1, we have

λ(t) = λ(0) = a2; S(k, t) = 0, χ0(t) = eβ(t),

where

β(t) = 8ia3t+

∫ t

0
A(τ)dτ − 2ia

∫ t

0
γ(τ)u(0, τ)dτ.

Substituting these data into formula (2.9), we find the kernel of the Gelfand-Levitan-
Marchenko integral equation:

F+(x, t) = −2iaeiax+β(t).

Further, solving the integral equation

K+(x, y; t)− 2iaeβ(t) · eia(x+y) − 2iaeβ(t) · eiay
∫ ∞
x

K+(x, s; t)e
iasds = 0,

we get

K+(x, y; t) =
2iaeβ(t) · eia(x+y)

1 + eβ(t) · e2iax
.

From where we find the solution of the Cauchy problem (3.15) - (3.16)

u(x, t) =
8a2e2iax+2arcsht

(1 + e2iax+2arcsht)
2 , ϕ0(x, t) =

eiax

1 + e2iax+2arcsht
.
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