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1 Introduction

Branching processes are mathematical models of many physical, chemical, biological, ge-
netic, demographic, and other processes. Since third-party factors often exist, there is a
need to study different modifications of this process. Among them are branching processes
with immigration, emigration, or a combination of two processes, namely processes with
migration for the case of discrete and continuous time.

An important feature of the branching process is the generating function. In the classical
case, for processes with continuous time, it is obtained from the differential equation.

In the case of the branching process with immigration, the derivation of the differential
equation and finding its solution is shown in [8], where the process is defined as a process
with two types of particles.

In the case of the process of emigration, Formanov Sh. K. and Kaverin S. V. found the
form of a differential equation, and the solution of this equation without detailed inference
is shown in [4], [5].

The main results for branching processes with discrete time and different regimes of
immigration and emigration are described in [13].
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2 Theorems for branching processes with migration

The case of a branched process with migration and continuous time is considered in [3],
[7], [10], [6], [1]. Chen A. Y. and Renshaw E. [3] have considered a case of the process
which large immigration, i.e. the sum of immigration rates is infinite; excessively high pop-
ulation levels are avoided by allowing the carrying capacity of the system to be controlled
by mass emigration. Also in 2000, Rahimov I. and Al-Sabah W.S. [7] considered a family
of independent, equally distributed with continuous Markov branching processes. The mi-
gration was determined as follows: the particles first immigrate and stay in the population
for some time, and then emigrate.

The limit distribution theorem for the classical branching process with continuous time
is proved in [9].

In this article we consider a more general model of the branching processes with mi-
gration and continuous time [12]. Immigration, emigration, and evolution occur at random
moments of time and are determined by the intensity of the transition probabilities. The
form of a generating function for a branching process with migration and continuous time
and the Kolmogorov system of equations held for the transition probabilities of the process
are found in [12]. The limit theorems for the number of emigrated particles for a homo-
geneous branching process with continuous time, emigration one particle, and immigration
are proved in [2].

Also, we obtain the form of a generating function and prove the limit distribution theo-
rem for the classical branching process with continuous time and migration. Distribution of
the number of emigrating particles and its limiting distribution has been found.

2 Description of a branching process model with migration and continuous time

Consider a Markov branching process with one type of particles and migration µ(t), t ∈
[0,∞). Let µ(t) denote the number of particles at the time t ∈ [0,∞).

We suppose, that at the time t = 0, the process starts with one particle, in the system

µ(0) = 1. (2.1)

The process µ(t), t ∈ [0,∞) then ∆t→ 0 is given by transition probabilities

P{µ(t+∆t) = j|µ(t) = i} =

=



1 + q0∆t+ o(∆t), i = j = 0;
qj∆t+ o(∆t), i = 0, j = 1, 2, ...;

(p0 +
m∑
l=1

rl)∆t+ o(∆t), i = 1, j = 0;

1 + (q0 + r0 + p1)∆t+ o(∆t), i = 1, j = 1;
(pj + qj−1)∆t+ o(∆t), i = 1, j = 2, ...;
m∑
l=i

rl∆t+ o(∆t) 1 < i ≤ m, j = 0;

(p0 + r1)∆t+ o(∆t), i = 2, 3, ..., j = i− 1;
ri−j∆t+ o(∆t), i = 2, 3, ..., j < i− 1;
1 + (q0 + r0 + ip1)∆t+ o(∆t), i = 2, 3, ..., i = j;
(ipj−i+1 + qj−i)∆t+ o(∆t), i = 2, 3, ..., i < j;
o(∆t), in other cases,

(2.2)

where m is a fixed integer, and pk, qk, rn satisfy the conditions

pk ≥ 0, k 6= 1, p1 < 0,

∞∑
k=0

pk = 0,
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qk ≥ 0, k 6= 0, q0 < 0,

∞∑
k=0

qk = 0,

rn ≥ 0, n = 1,m, r0 < 0,
m∑
k=0

rk = 0.

Note, that pk (k = 0, 1, ...) is the intensity of reproduction particle, qk (k = 0, 1, ...) is
the intensity of immigration, and rn (n = 0,m) is the intensity of emigration.

We introduce the following notation,

F (t, s) =

∞∑
n=0

P{µ(t) = n}sn,

f(s) =

∞∑
n=0

pns
n, |s| ≤ 1, s ∈ C,

g(s) =
∞∑
n=0

qns
n, |s| ≤ 1, s ∈ C,

r(s) =
m∑
n=0

rns
−n, 0 < |s| ≤ 1.

Let F̂ (t, s) is the generating function of a branching process with continuous time (with-
out migration) ([8], page 24).

The process µ(t) has the following conditions.

Theorem 2.1 [12] The generating function µ(t) satisfies the differential equation,

∂F (t, s)

∂t
= f(s)

∂F (t, s)

∂s
+ g(s)F (t, s)

+

m∑
n=0

P{µ(t) = n}
(
sn

n−1∑
k=0

rks
−k +

m∑
k=n

rk

)
+

∞∑
n=m+1

P{µ(t) = n}snr(s), (2.3)

with the initial condition
F (0, s) = s. (2.4)

Theorem 2.2 [12] The Kolmogorov system of equations holds for the process µ(t), t ∈
[0,∞)

dP{µ(t)=0}
dt = P{µ(t) = 0}q0 + P{µ(t) = 1}p0 +

m∑
k=1

P{µ(t) = k}
m∑
j=k

rj ,

dP{µ(t)=n}
dt =

n∑
k=0

P{µ(t) = k}qn−k +
n+1∑
k=1

kP{µ(t) = k}pn+1−k+

+
n+m∑
k=n

P{µ(t) = k}rk−n, n ≥ 1.

(2.5)
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3 Generation function of a branching process with migration and continuous time

In this section, we find a generation function of the branching process with migration. The
method of generating functions is widely used in the study of processes with continuous
time, because in some cases it can be found in the form of its generating, and then calculate
the corresponding probabilities of the process are calculated. The generating function of the
process will uniquely determine the distribution of the process and the limiting behavior of
the process.

Theorem 3.1 The equation (2.3) with initial condition (2.4) has the solution

F (t, s) = F̂ (t, s)e

t∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du

+

m∑
n=0

t∫
0

P{µ(x) = n}
m∑
k=n

rk(1− F̂n−k(t− x, s))e
∫ t−x
0 (g(F̂ (u,s))+r(F̂ (u,s)))dudx, (3.1)

which is unique in the class of continuous-differentiated functions in the interval ∆(ε) =
{s : s ∈ [ε, 1], 0 < ε < 1}.

Proof. Consider the differential equation for the generation function of the process µ(t)

∂F (t, s)

∂t
= f(s)

∂F (t, s)

∂s
+ g(s)F (t, s)

+
m∑
n=0

P{µ(t) = n}
(
sn

n−1∑
k=0

rks
−k +

m∑
k=n

rk

)
+

∞∑
n=m+1

P{µ(t) = n}snr(s).

We represent it in the form,

∂F (t, s)

∂t
= f(s)

∂F (t, s)

∂s
+ g(s)F (t, s) + r(s)F (t, s)

+
m∑
n=0

P{µ(t) = n}
m∑
k=n

rk(1− sn−k).

We get the equation of characteristics,

dt = − ds

f(s)
=

dF

F (t, s)(g(s) + r(s)) +
m∑
n=0

P{µ(t) = n}
m∑
k=n

rk(1− sn−k)
.

We find the first integrals of this equation.
Consider

dt = − ds

f(s)

and we get

t = −
s∫

0

du

f(u)
+ C1. (3.2)
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Thus,

C1 = t+

s∫
0

du

f(u)
.

The functions P{µ(t) = n}, n = 0, 1, ... can be determined from the Kolmogorov equa-
tion system (2.5) the only possible way − satisfying the condition of regularity P{µ(t) <
∞} = 1, ∀t ∈ (0,+∞), and Theorems 15, 16 ([11], page 71)

Consider the equation

∂F (t, s)

∂t
= F (t, s)(g(s) + r(s)) +

m∑
n=0

P{µ(t) = n}
m∑
k=n

rk(1− sn−k).

Find the solution of the corresponding homogeneous equation,

∂F (t, s)

∂t
= F (t, s)(g(s) + r(s)).

Since
∂F̂ (t, s)

∂t
= f(F̂ (t, s))

and
dF̂ (t, s)

f(F̂ (t, s))
= dt,

where F̂ (t, s) is the generating function branching process with continuous time (without
migration), we get the general solution of the homogeneous equation

F (t, s) = C2e

t∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
.

The method of variation of parameters is obtained

F (t, s) =
m∑
n=0

t∫
0

P{µ(x) = n}
m∑
k=n

rk(1− F̂n−k(t− x, s))e
t−x∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
dx.

Finally, the general solution of the nonhomogeneous equation is written, as

F (t, s) = C2e

t∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
+

+
m∑
n=0

t∫
0

P{µ(x) = n}
m∑
k=n

rk(1− F̂n−k(t− x, s))e
t−x∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
dx.

Thus, we get

C2 = F (t, s)e
−

t∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
−

m∑
n=0

t∫
0

P{µ(x) = n}

×
m∑
k=n

rk

(
1− F̂n−k(t− x, s)

)
e

t−x∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
dxe

−
t∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
.
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Thus, according to ([14] page 97), we obtain

V

(
t+

s∫
0

du

f(u)

)
= F (t, s)e

−
t∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
−

m∑
n=0

t∫
0

P{µ(x) = n}
m∑
k=n

rk

×
(
1− F̂n−k(x, s)

)
e

t−x∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
dx e

−
t∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
,

where V (·) is any continuously differentiable function.
Therefore, the generation function of the process µ(t) becomes

F (t, s) = V

(
t+

s∫
0

du

f(u)

)
e

t∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du

+

m∑
n=0

t∫
0

P{µ(x) = n}
m∑
k=n

rk

(
1− F̂n−k(t− x, s)

)
e

t−x∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
dx,

where V (·) is any continuously differentiable function.
Since it is the initial condition, we obtain

V

( s∫
0

du

f(u)

)
= s.

If s = 1, we get

F (t, 1) = V

(
t+

1∫
0

du

f(u)

)
e

t∫
0

(g(F̂ (u,1))+r(F̂ (u,1)))du
+

m∑
n=0

t∫
0

P{µ(x) = n}

×
m∑
k=n

rk

(
1− F̂n−k(t− x, 1)

)
e

t−x∫
0

(g(F̂ (u,1))+r(F̂ (u,1)))du
dx = V

(
t+

1∫
0

du

f(u)

)
= 1.

Thus, 
V

(
s∫
0

du
f(u)

)
= s

V

(
t+

1∫
0

du
f(u)

)
= 1.

(3.3)

Suppose, that immigration and emigration don’t occur, so g(s) = 0 and r(s) = 0 then
we get

V

(
t+

s∫
0

du

f(u)

)
= F̂ (t, s).

Clearly, that the function F̂ (t, s) also satisfies (3.3). Hence (3.1) follows.
Prove uniqueness. We suppose, that two solutions F1(t, s) and F2(t, s) exist. Consider

their difference
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F0(t, s) = F1(t, s)− F2(t, s).

Since the function F̂ (t, s) is known and independent of the process µ(t), the functions
g(s) and r(s) are defined, and the probabilities P{µ(t) = n}, n = 0, 1, ... are uniquely
determined from the Kolmogorov equation (2.5). Hence, we get that |F0(t, s)| = 0.

The theorem proved.

4 Limiting theorem for a subcritical branching process with continuous time and
migration

In this section, we consider the subcritical branching process and find limiting distribution.

Theorem 4.1 If a0 = f ′(1) < 0, a1 = g′(1) < ∞, a2 = r′(1) < ∞ and
∞∫
0

Mµ(x)dx <

∞, then limiting distribution µ(t) exists

lim
t→∞

P{µ(t) = n} = P ∗n .

Proof. Taking into account ([8], page 222).
We know that a generating function of a branching process with migration has the form,

F (t, s) = F̂ (t, s)e

t∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du

+
m∑
n=0

t∫
0

P{µ(x) = n}
m∑
k=n

rk(1− F̂n−k(t− x, s))e
t−x∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
dx.

In the case of a subcritical process a0 < 0, a1 <∞, a2 <∞.
Prove that limit exists

lim
t→∞

F (t, s) = exp


∞∫
0

(g(F̂ (u, s)) + r(F̂ (u, s)))du


+

m∑
n=0

∞∫
0

P{µ(x) = n}
m∑
k=n

rk(1− F̂n−k(t− x, s))e
t−x∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
dx,

moreover, the convergence is uniform on |s| ≤ 1.
We need to show that improper integral is the limit

∞∫
0

(g(F̂ (u, s)) + r(F̂ (u, s)))du, (4.1)

m∑
n=0

∞∫
0

P{µ(x) = n}
m∑
k=n

rk(1− F̂n−k(t− x, s))e
t−x∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
dx (4.2)

uniform convergence on |s| ≤ 1, s 6= 0.
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Since |g(s)| ≤ a1|s− 1|, |r(s)| ≤ a2|s− 1| and |F̂ (u, s)− 1| ≤ ea0u|s− 1|, then

|g(F̂ (u, s)) + r(F̂ (u, s))| ≤ (a1 + a2)e
a0u|s− 1| ≤ 2(a1 + a2)e

a0u.

Thus, there is uniform convergence of the integral (4.1) on s in |s| ≤ 1, s 6= 0.
Thus, there is a limiting distribution with the generation function

F (s) =

∞∑
k=0

Pks
k = exp{

∞∫
0

(g(F̂ (u, s)) + r(F̂ (u, s)))du}

+
m∑
n=0

∞∫
0

P{µ(x) = n}
m∑
k=n

rk(1− F̂n−k(t− x, s))e
t−x∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
dx.

We differentiate the improper integrals by s

∂

∂s

∞∫
0

(g(F̂ (u, s)) + r(F̂ (u, s)))du

=

∞∫
0

(
dg(F̂ (u, s))

dF̂ (u, s)
+
dr(F̂ (u, s))

dF̂ (u, s)

)
∂F̂ (u, s)

∂s
du.

From the equation for the generation function ∂F̂ (u,s)
∂t = f(s)∂F̂ (u,s)

∂s , we get

∞∫
0

(
dg(F̂ (u, s))

dF̂ (u, s)
+
dr(F̂ (u, s))

dF̂ (u, s)

)
∂F̂ (u, s)

∂u

du

f(s)

=
g(F̂ (∞, s))− g(F̂ (0, s))

f(s)
+
r(F̂ (∞, s))− r(F̂ (0, s))

f(s)
= −g(s) + r(s)

f(s)
.

Clearly, that
lim
t→∞

g(F̂ (t, s)) = 0, lim
t→∞

r(F̂ (t, s)) = 0,

uniformly on |s| ≤ 1 and F̂ (0, s) = s [8].
Convergence is also uniform across by |s| ≤ 1, s 6= 0 in

lim
t→∞

g(F̂ (t, s)) + r(F̂ (t, s))

f(s)
= 0,

therefore differentiation by the parameter integral (4.1) is legal.
Note, that the limit distribution of stationary, that is, a generation function satisfies the

partial differential equation if we substitute ∂F (t,s)
∂t = 0.

Let’s now consider (4.2)

lim
t→∞

m∑
n=0

t∫
0

P{µ(x) = n}
m∑
k=n

rk(1− F̂n−k(t− x, s))e
t−x∫
0

(g(F̂ (u,s))+r(F̂ (u,s)))du
dx
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< lim
t→∞

m∑
n=0

t∫
0

nP{µ(x) = n}
m∑
k=n

|r0|(1− F̂n−k(t− x, s))e
a1+a2
|a0|

|s−1|
dx.

Let P{ξ(t) > 0} > 0. For the subcritical process F̂ (t, s) increases by s, so F̂ (t, s) > s
where ∀s ∈ (0, 1), so where s ∈ [s0, 1)

1

F̂ (t, s)
<

1

s
<

1

s0
.

Thus, we get

lim
t→∞

m∑
n=0

t∫
0

nP{µ(x) = n}
m∑
k=n

|r0|(1− F̂n−k(t− x, s))e
2
a1+a2
|a0| dx

< lim
t→∞

t∫
0

m∑
n=0

nP{µ(x) = n}
m∑
k=n

|r0|
2

|s0|m
e
2
a1+a2
|a0| dx

< lim
t→∞

t∫
0

m∑
n=0

Mµ(x)(m− n− 1)|r0|
2

|s0|m
e
2
a1+a2
|a0| dx

< m(m+ 1)|r0|
2

|s0|m
e
2
a1+a2
|a0|

∞∫
0

Mµ(x)dx <∞

The theorem is proved.

5 Distribution of the number of emigrating particles

In this section, we find the distribution of the number of emigrating particles and its limiting
distribution.

Let τ1, τ2, τ3, ... is independent, identically distributed random variables that determine
the intervals between particle transformations in the system. Therefore, the first transfor-
mation of particles in the system took place at the moment τ1, the second transformation of
particles in the system is τ1 + τ2 etc.

We also introduce random variables θ1, θ2, θ3, ... that are defined as follows

θ0 = 0, θ1 = τ1, θ2 = τ1 + τ2, ..., θn = τ1 + ...+ τn, ....

Let ρ(t) is determines the number of transformations in the system up to the time t. Note
that ρ(t) is a random process.

Let the random process ν(t) determine the number of particles µ(t) that have emigrated
before the time t.

Given the previous notation it is easy to see that

ν(t) = ν0 + ν1 + ν2 + ...+ νρ(t), (5.1)

where νk (k = 1, ..., ρ(t)) − the number of particles that emigrated during the k-th trans-
formation in the system. Since at the initial moment in the process µ(t) there can be no
emigration of particles, so the initial distribution of the process ν(t)

ν(0) = ν0 = 0.
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Define the distribution of the process ν(t).
Note that at the first distribution of random variables should be determined as νk (k =

1, ..., ρ(t)). Also νk (k = 1, ..., ρ(t)) − are independent of each other and depend only on
the value of µ(θk−1).

Let µ(θk−1), then νk (k = 1, ..., ρ(t)) has the following distribution

– in case m ≤ n
– 0 particles with probability r0∆t+ o(∆t),
– 1 particles with probability r1∆t+ o(∆t),
– 2 particles with probability r2∆t+ o(∆t),
– ...
– n− 1 particles with probability rn−1∆t+ o(∆t),
– n particles with probability

∑m
l=n rl∆t+ o(∆t).

– in case m ≤ n
– 0 particles with probability r0∆t+ o(∆t),
– 1 particles with probability r1∆t+ o(∆t),
– 2 particles with probability r2∆t+ o(∆t),
– ...
– m− 1 particles with probability rm−1∆t+ o(∆t),
– m particles with probability rm∆t+ o(∆t).

Thus, the distribution is given for the process ν(t) by the following transient probabilities,

P{ν(t+∆t) = j | ν(t) = i, µ(t) = n} =

=




r0∆t+ o(∆t), i = j;
rj−i∆t+ o(∆t), i < j < i+ n;∑m

l=n rl∆t+ o(∆t), j = i+ n;
o(∆t), in other cases;

m > n;

{
rj−i∆t+ o(∆t), i ≤ j ≤ i+m;
o(∆t), in other cases; m ≤ n.

Theorem 5.1 Let ν(t) is the number of particles that emigrated during the time period [0, t]
from the process µ(t), then at t→∞

lim
t→∞

P

{
ν(t)−Mν(t)√

Dν(t)
< x|µ(t) > 0

}
=

1√
2π

∫ x

−∞
e−

t2

2 dt.

Proof. Let θk − is the moment of the k-th jump, and then the probability of emigration
is equal to

P{νj+1 = j|µ(t) = n, θj = t} = r̃k =


rj∆t+ o(∆t), n ≥ m;
m∑
l=n

rl∆t+ o(∆t), n > m.

Let Bjk is the event when j particles are emigrating during the k-th transformation. Then

P{Bjk} =
r̃j

−r0 − q0 − p1
.

First, we assume that the number of particles in the system is not zero. Let t→∞.
It shows that the number of transformations also approaches∞. This obvious because

the probability that an arbitrary particle will not have been transformed by the time t is
equal to ep1t. The probability that all particles will not have been transformed by the time
t is equal to enp1t assuming that there were n particles in the system. In this case, there
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should be no immigration and emigration of particles, so the corresponding probability is
equal to e(np1+q0+r0)t. For t→∞ get that e(np1+q0+r0)t → 0.

Consider the case when the number of particles in the system is zero. Consider the case
when the number of particles in the system is zero. Since it is possible to get out of the
zero state due to the immigration of particles, the probability that the transformation will
not take place is eq0t. In case t→∞ it is obtained that eq0t → 0.

It follows that the number of transformations in the system ρ(t) for t → 0 approaches
∞.

Show that the conditions of Lyapunov’s theorem are hold for νk (k = 1, ..., ρ(t)) using
the representations ν(t) (5.1) is hold:

1. Mνk <∞, k = 1, 2, 3, ....

2. lim
n→∞

m∑
k=1

M |νk −Mνk|3

B3
n

= 0,

where Bn =
n∑
k=1

Dνk. Note that νk (k = 1, ..., ρ(t)) are independent with a known distri-

bution.
Consider the mathematical expectation νk, k = 1, 2, ...

Mνk =
n∑
j=0

jP{νk = j} =


n∑
j=0

jrj∆t+ o(∆t), n > m;

n−1∑
j=0

jrj∆t+ n
∑m

j=n rj∆t+ o(∆t), n ≤ m.

Since the number of particles that emigrated during the k-th transformation in the system
can increase from 0 to m and accordingly, after k transformations can emigrate from 0 to
mk particles, then Mνk < mk. Condition 1 holds.

Show that condition 2 also holds.
Obviously,

Mνk ≤ m.
Here it is obtained that

|νk −Mνk| < m ⇒ |νk −Mνk|3 < m3 ⇒ M |νk −Mνk|3 ≤ m3.

Therefore,
n∑
k=1

M |νk −Mνk|3 ≤ nm3.

Let σ2 = min
k
Dνk > ‘0.

Then,

B3
n =

(√√√√ n∑
k=1

M |νk −Mνk|2
)3

≥ (
√
nσ2)3 = (

√
n)3σ3.

So,

lim
n→∞

nm3

(
√
n)3σ3

= 0.

The theorem is proved.
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Conclusions.
This article investigates a more general model of the process than in [3], [7], [10], [6],

[1]. The form of the generating function has been found. The limit theorem for the sub-
critical branching process with migration has been proved. Distribution of the number of
emigrating particles and its limiting distribution has been found.
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