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Abstract. In this paper, we study a class of p(·)-Laplace equation including nonstandard growth non-
linearity in a bounded smooth domain with homogeneous Dirichlet boundary condition. We establish the
conditions of non-extinction and extinction are studied of global weak solutions in finite time for any ini-
tial data u0. Moreover, we show the global existence results for N ≥ 1 with constant p for any initial data
u0.

Keywords. Parabolic equation, p(·)-Laplacian, variable exponent, parametric, non-extinction, extinction,
global existence.

Mathematics Subject Classification (2010): 35K35, 35B40, 35K57

1 Introduction

We discuss and determine the non-extinction and extinction for the following parabolic
equation involving the p(·)-Laplacian operator with parametric variable exponent growth
nonlinearity:  ut = div

(
|∇u|p(x)−2∇u

)
+ λuq(x), (x, t) ∈ QT ,

u (x, t) = 0, (x, t) ∈ ∂Ω × (0, T ) ,
u (x, 0) = u0 (x) , x ∈ Ω,

(1.1)

where Ω ⊂ RN (N ≥ 2) is a smooth bounded domain with a smooth boundary ∂Ω, QT :=
Ω × (0, T ), λ > 0 is a real parameter, T denotes the maximal existence time of solutions,
u0 is continuous and nonnegative in Ω. Moreover, variable exponents q is measurable and
p is log-Hölder continuous (see [7]), that is, there exists a constant C > 0 such that, for all
x, y ∈ Ω and

|p(x)− p(y)| ≤ C

|ln |x− y||
(1.2)
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for |x− y| ≤ 1
2 .

Let p, q satisfy that

1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ sup
x∈Ω

p(x) := p+ < 2, (1.3)

and
0 < q− := inf

x∈Ω
q(x) ≤ q(x) ≤ sup

x∈Ω
q(x) := q+ < 1. (1.4)

We denote by P (Ω) the set of all measurable real functions defined on Ω and C0, 1
| ln(.)|

(Ω) := Pln(Ω) the set of all p ∈ P (Ω) satisfying the conditions (1.2) and (1.3).
Nonlinear parabolic equations with nonstandard growth conditions of the type (1.1)

appear in various applications such as the mathematical modeling of heat and mass transfer
in nonhomogeneous media, in description of the filtration processes, in the processes of
recovery of digital images (see [1,14,18–20] and the references therein for an account of
such models in the stationary case). For the sake of presentation, we will regard problem
(1.1) as the mathematical model of a diffusion process.

The questions we address in this paper are already studied for the evolutional p-Laplacian
equation

ut = ∆pu ≡ div
(
|∇u|p−2∇u

)
, p ∈ (1,∞). (1.5)

It is well known that Eq. (1.5) is degenerate if p > 2 or singular if 1 < p < 2, since
the modulus of ellipticity is degenerate (p > 2) or blows up (1 < p < 2) at points where
∇u = 0, and therefore there is no classical solution in general. Unlike the linear case, for
p 6= 2 the solutions of the Dirichlet problem for Eq. (1.5) are localized either in space, or
in time. More precisely, the following alternative holds: if u is a solution of the Dirichlet
problem for Eq. (1.5) with p 6= 2, then either

1) 1 < p < 2 (fast diffusion)=⇒ ∃T1 : u ≡ 0 for all t ≥ T1,
2) p > 2 (slow diffusion) and u0 ≡ 0 in

Br (x0) =
{
x ∈ RN : |x− x0| < r

}
=⇒ ∃t∗ (x0) : u(x0, t) ≡ 0

for all t ∈ [0, t∗ (x0)]. These properties complement each other: the former is called ex-
tinction in a finite time, the latter is usually referred to as finite speed of propagation of
disturbances from the data. If p > 2 and the support of the initial function u0 is compact
in Ω, then the support of the solution is expanding with time and eventually covers the
whole of ΩRecently, many paper studied for parabolic problems with nonstandart growth
(see [2–6,9,10,12,16]).

Note that, problem (1.1) appears in a lot of applications to describe the evolution of dif-
fusion processes, in particular, fast diffusion for 1 < p(·) < 2. In combustion theory, for in-
stance, the function u(., t) represents the temperature, the term∆p(·)u≡div

(
|∇u|p(·)−2∇u

)
represents the thermal diffusion, and uq(.) is a source.

When p(·) ≡ p and q(·) ≡ q are constants in problem (1.1), the problem (1.1) is turning
the following p-Laplacian parabolic equation: ut = div

(
|∇u|p−2∇u

)
+ λuq, (x, t) ∈ Ω × (0,∞) ,

u (x, t) = 0, (x, t) ∈ ∂Ω × (0,∞) ,
u (x, 0) = u0 (x) , x ∈ Ω,

(1.6)

where Ω ∈ RN , N ≥ 2 is an open bounded domain with smooth boundary. In [23], the
authors investigated the problem (1.6) with 1 < p < 2, and λ, q > 0. They showed that if
q > p− 1, then any bounded and non-negative weak solution of problem (1.6) vanishes in
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finite time for appropriately small initial data u0. They showed that q = p− 1 is the critical
exponent of extinction for the weak solution. Furthermore, for 1 < p < 2 and q = p − 1
they proved the extinction and non-extinction conditions.

In [15], the authors emphasized that the small condition on the initial data u0 in [23] can
be removed for the case p − 1 < q < 1. Accurate estimates of the decay of the solution
were also obtained.

In [21], Tian and Mu dealt with the extinction of solutions of the initial-boundary value
problem of the p-Laplacian equation

ut = div
(
|∇u|p−2∇u

)
+ λuq

in a bounded domain of RN with N ≥ 2. For 1 < p < 2, λ > 0, q > 0 and 0 ≤ u0 ∈
L∞(Ω)∩W 1,p

0 (Ω) the authors showed that q = p− 1 is the critical exponent of extinction
for the weak solution.

Problem (1.6) with p > 1 and q > 0 has been investigated extensively in recent years.
For 1 < p ≤ 2, the conditions on quenching or extinction were studied in [11,17,22].

In this note, we establish the non-extinction and extinction results for a nonlinear parabolic
problem involving p(·)-Laplacian operator subject to homogeneous Dirichlet boundary con-
ditions. Namely, we prove energy estimate and the comparison principle of the ordinary dif-
ferential equation to study the non-extinction or extinction of solutions for any initial data
u0, also establish the precise decay estimates of solution. Moreover, we show the global
existence result for N ≥ 1 with constant p for any initial data u0.

Let h : Ω → (1,∞) be a measurable function in Ω. We define the Lebesgue space with
variable exponent as usual,

Lh(·)(Ω) :=

{
u : u ∈ P (Ω),

∫
Ω
|u(x)|h(x) dx < +∞

}
.

The set Lh(·)(Ω) equipped with the Luxemburg norm

‖u‖Lh(·)(Ω) := ‖u‖h(·) = inf

{
γ > 0 :

∫
Ω

∣∣∣∣u(x)γ
∣∣∣∣h(x) dx ≤ 1

}
,

becomes a Banach space. The modular ofLh(·) (Ω), which is the mapping ρh(·) : Lh(·) (Ω)→
R, is defined

ρh(·) (u) :=

∫
Ω
|u(x)|h(x) dx < +∞.

We define the Sobolev space with a variable exponent W 1,h(·) (Ω) as a linear space of
functions u ∈ Lh(·)(Ω), such that∇u ∈ Lh(·)(Ω) with the norm

‖u‖W 1,h(·)(Ω) = ‖u‖h(.) + ‖∇u‖h(·) , u ∈W 1,h(·) (Ω) .

Note that C0,1(Ω) ↪→ C
0, 1
| ln(.)| (Ω). Also, when h ∈ C0, 1

| ln(.)| (Ω), then W 1,h(·)
0 (Ω) :=

C∞0
(
Ω
)W 1,h(·)(Ω)

. Furthermore, for all u ∈W 1,h(·)
0 (Ω), we can define an equivalent norm

‖u‖
W

1,h(·)
0 (Ω)

such that

‖u‖
W

1,h(·)
0 (Ω)

:= ‖u‖0 = ‖∇u‖h(·) .



4 Extinction properties of solutions ...

Moreover, it is well known that if 1 < h− ≤ h+ <∞, then spaces
(
Lh(.) (Ω) , ‖.‖h(·)

)
and(

W
1,h(·)
0 (Ω) , ‖.‖

W
1,h(·)
0 (Ω)

)
are separable and reflexive Banach spaces. We refer to [7] for

further properties of variable exponent Lebesgue-Sobolev spaces.
We could get the following properties:

Proposition 1.1 (see [7]). If 1 < h− ≤ h+ < ∞ is satisfied, then for any u ∈ Lh(.) (Ω)
the following inequalities are provided.

(i)min
{
‖u‖h

−

h(·) , ‖u‖
h+

h(·)

}
≤ ρh(·) (u) ≤ max

{
‖u‖h

−

h(·) , ‖u‖
h+

h(·)

}
;

(ii) ‖u‖h
−

h(·) − 1 ≤ ρh(·) (u) ≤ ‖u‖h
+

h(·) + 1.

Proposition 1.2 (Hölder-type inequality, see [7]). Let h ∈ L∞+ (Ω).
(i)The conjugate space of Lh(·) (Ω) is Lh

′(·) (Ω), where 1/h(x) + 1/h′(x) = 1 for
almost every (a.e.) x ∈ Ω. Moreover, the following inequality hold∣∣∣∣∫

Ω
u(x)υ(x)dx

∣∣∣∣ ≤ 2 ‖u‖h(·) ‖υ‖h′(·) ,

for all u ∈ Lh(·) (Ω) and υ ∈ Lh′(·) (Ω).
(ii) If p1, p2 ∈ L∞+ (Ω), p1(x) ≤ p2(x) for any x ∈ Ω, then Lp2(x) (Ω) ↪→ Lp1(x) (Ω),

and the embedding is continuous.

Proposition 1.3 (see [8],[13]). LetΩ be a bounded domain in RN with smooth boundary ∂Ω
and p ∈ Pln(Ω). Let q : Ω → [1,+∞) be a measurable and bounded function and suppose
that q (x) ≤ p∗ (x) = Np(x)/ (N − p(x))+ for a.e. x ∈ Ω. Then W 1,p(·) (Ω) is contin-
uously embedded in Lq(.) (Ω). In addition, assume that ess inf

x∈Ω
{p∗ (x)− q(x)} > 0. Then

the embedding W 1,p(·)
0 (Ω) ↪→ Lq(.) (Ω) is compact.

In particular, if p− > 2N
N+2 , then there exists a positive constant K0 such that

‖u‖2 ≤ K0 ‖u‖W 1,p(·)
0 (Ω)

, ∀u ∈W 1,p(·)
0 (Ω) . (1.7)

We further, set
K = max {1,K0} , (1.8)

where K0 is the embedding constant of the (1.7).

Definition 1.1 We define a function u ∈ L∞(0, T ;W
1,p(·)
0 (Ω)} ∩C

(
[0, T ] , L2(Ω)

)
) with

ut ∈ L2(0, T ;L2(Ω)) to be a weak solution of problem (1.1), if it satisfies the initial
condition u(., 0) := u0 ∈ L∞(Ω) ∩W 1,p(·)

0 (Ω), and

(ut, υ) +
(
|∇u|p(x)−2∇u,∇υ

)
=
(
λ |u|q(x) , υ

)
,

for all υ ∈W 1,p(·)
0 (Ω), and for a.e. t ∈ (0, T ).

Definition 1.2 Let u = u(t) be a global solution of problem (1.1), we say that u vanishes
in finite time if there exists a t0 ∈ (0,+∞) such that limt→t−0

u(t)(x) = 0 for a.e. x ∈ Ω.
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Definition 1.3 A function u ∈ L∞(0, T ;W
1,p(·)
0 (Ω)} ∩ C

(
[0, T ] , L2(Ω)

)
) with ut ∈

L2(0, T ;L2(Ω)) is called to be a weak upper solution of problem (1.1) provided that for
any T > 0, λ > 0 and any 0 ≤ υ ∈ E

∫
QT

utυdxdt+
∫
QT
|∇u|p(x)−2∇u∇υdxdt ≥ λ

∫
QT

uq(x)υdxdt,

u (x, t) ≥ 0, x ∈ ∂Ω × (0, T ) ,
u (x, 0) ≥ u0 (x) , x ∈ Ω,

where E =
{
u ∈ L∞(0, T ;W

1,p(·)
0 (Ω)} ∩ C

(
[0, T ] , L2(Ω)

)
) : u|∂Ω = 0

}
.

Similarly, a weak lower solution u is defined by replacing ”≥” as ”≤” in the above
inequalities. Furthermore, if u is a weak upper solution as well as a weak lower solution,
then we call it a weak solution of problem (1.1) (see for example [17]).

2 Main Results

Let us introduce the functions

E(t) =

∫
Ω

|∇u(x, t)|p(x)

p(x)
dx− λ

∫
Ω

|u (x, t)|q(x)+1

q(x) + 1
dx, (2.1)

for all u ∈W 1,p(·)
0 (Ω), and

F (t) =

∫
Ω
u2dx, (2.2)

for all t > 0.
Multiplying the Eq. (1.1) by ut, integrating by parts and using the fact that

E′(t) =
d

dt
E(t) = −

∫
Ω
u2tdx ≤ 0,

which implies that E(t) ≤ E(0). (E (t)-nonincreasing).
Our main results can now be stated as follows.

Theorem 2.1 (Non-extinction of global weak solutions). Assume that p ∈ Pln(Ω), q ∈
P (Ω), 0 ≤ u0 ∈ L∞(Ω) ∩W 1,p(·)

0 (Ω) and the following conditions (1.3) and (1.4) hold.

i) If λ ∈
(

p+

q−+1
+ p+E(0), p+

q−+1

)
, λ 6= 1 and −1

q−+1
< E(0) < 0, the non-negative

weak solution of problem (1.1) does not go extinct in finite time for any initial data u0.
Furthermore, we have the following estimate:

‖u (t)‖22 ≥ min

{
‖u0‖22 ,

(
A1

A0

) 2
q++1

}
,

for 0 < t < T , where A0 and A1 are positive constants which will be determined later.
ii) If λ = p+

q−+1
, λ 6= 1 and E(0) < 0, the non-negative weak solution of problem (1.1)

does not go extinct in finite time for any initial data u0. Furthermore, we have the following
estimate:

‖u (t)‖22 ≥ ‖u0‖
2
2 − 2p+E(0)t,

for 0 < t < T .
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iii) Assume that
1 < q− + 1 ≤ q+ + 1 ≤ p+ < 2.

If λ = 1 and E(0) < 0, the non-negative weak solution of problem (1.1) does not go extinct
in finite time for any initial data u0. Furthermore, we have the following estimate:

‖u (t)‖22 ≥ min

{
‖u0‖22 ,

(
D1

D0

) 2
q++1

}
,

for 0 < t < T , where D0 and D1 are positive constants which will be determined later.

Theorem 2.2 (Extinction of global weak solutions). Assume that p ∈ Pln(Ω), q ∈ P (Ω),
0 ≤ u0 ∈ L∞(Ω) ∩W 1,p(·)

0 (Ω) and the following condition holds

2N

N + 2
< p− ≤ p+ < q− + 1 ≤ q+ + 1 < 2, (2.3)

then the non-negative weak solution of problem (1.1) vanishes in finite time for any initial
data u0. More precisely speaking, we have the following estimates{

‖u (t)‖2−p
−

2 ≤ ‖u0‖2−p
−

2 + = (‖u0‖2) t−z (‖u0‖2) t, t ∈ (0, T0) ,
‖u (t)‖2 ≡ 0, t ∈ [T0,+∞) ,

where

= (‖u0‖2) := 2λ
(
2− p−

)
(|Ω|+ 1)(1−q

−)/2max
{
‖u0‖q

−−p−+1
2 , ‖u0‖q

+−p−+1
2

}
,

z (‖u0‖2) :=
(
2− p−

)
Kp+ min

{
1, ‖u0‖p

+−p−
2

}
,

and

λ ∈

0,
min

{
1, ‖u0‖p

+−p−
2

}
2 (|Ω|+ 1)(1−q

−)/2Kp+ max
{
‖u0‖q

−−p−+1
2 , ‖u0‖q

+−p−+1
2

}
 ,

T0 =
‖u0‖2−p

−

2

z (‖u0‖2)−= (‖u0‖2)
,

and K is a constant given in (1.8).

Theorem 2.3 (Extinction of global weak solutions). Assume that p ∈ Pln(Ω), q ∈ P (Ω)

with (2.3) and 0 ≤ u0 ∈ L∞(Ω) ∩W 1,p(·)
0 (Ω). Then the non-negative weak solution of

problem (1.1) vanishes in finite time for any initial data u0, B > 0 and
‖u (t)‖22 ≤ Be−σt, t ∈ [0, T1) ,

‖u (t)‖2 ≤
(
‖u0‖2−p

−

2 − K1(2−p−)
2 t

) 1
2−p−

, t ∈ [T1, T2) ,

‖u (t)‖2 ≡ 0, t ∈ [T2,+∞)

for some T1, where

K1 = 2Kp+ − 4λ (|Ω|+ 1)(1−q
−)/2 (Be−σT1) q−+1−p+

2 > 0,
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with

λ ∈

0,
Kp+ min

{
‖u0‖p

−

2 , ‖u0‖p
+

2

}
2 (|Ω|+ 1)(1−q

−)/2max
{
‖u0‖q

−+1
2 , ‖u0‖q

++1
2

}
 ,

σ =
Kp+

min
{
‖u0‖2(1−p

−)
2 , ‖u0‖2(1−p

+)
2

} ,
and

T2 =
2 ‖u(., T1)‖2−p

−

2

K1 (2− p−)
,

and K is a constant given in (1.8).

In this Theorem, we give some global existence results of the solution of problem (1.1)
for N ≥ 1 with constant p (x) ≡ p by making use of sub and super solution techniques. Let
ϕ(x) satisfies the following elliptic problem:{

−div
(
|∇ϕ (x)|p−2∇ϕ (x)

)
= 1 in x ∈ Ω,

ϕ(x) = 1 on x ∈ ∂Ω.
(2.4)

By using the result in [24], we can see that the above nonlinear problem has a unique
solution, and the following inequalities hold:

M := sup
x∈Ω

ϕ(x) < +∞, ϕ(x) > 1 and ∇ϕ · ν < 0, x ∈ ∂Ω,

where ν is the unit outer normal vector on ∂Ω and M is a positive constant.

Theorem 2.4 (Global existence). Let u(x, t) be the solution of problem (1.1).
(i) For any initial data u0, if p > q+ + 1 and λ > 0, then u(x, t) exists globally;
(ii) For any initial data u0, if p < q+ + 1 and λ > 0, then u(x, t) exists globally;
(iii) For any initial data u0, if p = q+ + 1 and

0 < λ ≤M−q+ ,
then u(x, t) exists globally.

Theorem 2.1 implies that, when 1 < q− + 1 ≤ q+ + 1 < p+ < 2, the nonlinear
diffusion dominates the property of weak solutions, which have some positive lower bound
at any finite time, provided that 0 < q− ≤ q+ < 1. The condition 2N

N+2 < p+ < q−+1 < 2
in Theorem 2.2, Theorem 2.3 means that the effect of reaction on the solutions is higher
than the diffusion.

3 Proof of the Results

Now, we give some lemmas, which will be needed for proof of the Theorem 2.1.

Lemma 3.1 (lemma 1.2 in [11]). Suppose that constants d > 0, α > 0, β > 0 and h is a
nonnegative and absolutely continuous function satisfying that

h′(t) + αhd(t) ≥ β, t ∈ (0,+∞) .

Then there exists an estimate as follows:

h(t) ≥ min

{
h(0),

(
β

α

)1/d
}
.
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Proof of Theorem 2.1. Multiplying the Eq. (1.1) by u, integrating over Ω and from (2.1)
with E(t) ≤ E(0) < 0, we have

F ′(t) = 2

∫
Ω
uutdx = 2λ

∫
Ω
|u|q(x)+1 dx− 2

∫
Ω
|∇u|p(x) dx

≥ 2

(
λ− p+

q− + 1

)∫
Ω
|u|q(x)+1 dx− 2p+E(t)

≥ 2

(
λ− p+

q− + 1

)∫
Ω
|u|q(x)+1 dx− 2p+E(0). (3.1)

We consider the following three cases:
i) Let λ ∈

(
p+

q−+1
+ p+E(0), p+

q−+1

)
such that −1

q−+1
< E(0) < 0. Since q (x) + 1 < 2,

∀x ∈ Ω and by Proposition 1.1 (i), Proposition 1.2 (ii), we obtain∫
Ω
uq(x)+1dx ≤ ‖u‖q

++1
q(·)+1 + 1

≤ Bq++1 ‖u‖q
++1

2 + 1 = Bq++1F
q++1

2 (t) + 1, (3.2)

where B is the embedding constant of the embedding L2 (Ω) ↪→ Lq(·)+1 (Ω). From (3.1)
and (3.2), we obtain

F ′(t) + 2

(
p+

q− + 1
− λ
)(

Bq++1F
q++1

2 (t) + 1

)
≥ −2p+E(0),

so

F ′(t) +A0F
q++1

2 (t) ≥ A1, (3.3)

where

A0 = 2Bq++1

(
p+

q− + 1
− λ
)
> 0,

and

A1 = 2

(
λ− p+

q− + 1

)
− 2p+E(0) > 0

with −1
q−+1

< E(0) < 0. Lemma 3.1 and (3.3) imply

F (t) ≥ min

{
F (0) ,

(
A1

A0

) 2
q++1

}
, t > 0.

Since F (0) = ‖u0‖22 > 0, we derive F (t) > 0 for all t ∈ (0, T ).
ii) Let λ = p+

q−+1
. Using (3.3) with E(0) < 0, it easily follows that

F (t) ≥ F (0)− 2p+E(0)t > 0

for all t ∈ (0, T ).
iii) If λ = 1, q− + 1 < p+ and E(0) < 0. Using (3.3), we obtain

F ′(t) + 2

(
p+ − q− − 1

q− + 1

)
Bq++1F

q++1
2 (t) ≥ 2

(
p+ − q− − 1

q− + 1

)
− 2p+E(0),
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then

F ′(t) +D0F
q++1

2 (t) ≥ D1, (3.4)

By Lemma 3.1 and (3.4) imply

‖u (t)‖22 ≥ min

{
‖u0‖22 ,

(
D1

D0

) 2
q++1

}
,

where

D0 = 2Bq++1

(
p+ − q− − 1

q− + 1

)
> 0,

and

D1 = 2

(
p+ − q− − 1

q− + 1

)
− 2p+E(0) > 0.

The above three cases imply ‖u(., t)‖22 = F (t) > 0 for all t > 0. Then for any s > 1,
by interpolation inequality, we obtain

‖u‖2 ≤ ‖u‖
1
2
s ‖u‖

1
2
s′ ,

where s′ = s/(s − 1) > 1, which combines with ‖u(., t)‖2 > 0 imply that every s > 1,
there does not exist T ∗ > 0 such that

lim
t→T ∗

‖u‖s = 0.

Thus the proof of Theorem 2.1 is complete.
Proof of Theorem 2.2
In order to obtain the extinction properties of weak solutions, we introduce an auxiliary

lemma on the ordinary differential inequality as follows.

Lemma 3.2 Assume that 0 < l1 ≤ l2 < r1 ≤ r2 ≤ 1 and α ≥ 0, β ≥ 0 and ϕ is a
nonnegative and absolutely continuous function, which satisfies

ϕ′(t) + αmin
{
ϕl1(t), ϕl2(t)

}
≤ βmax {ϕr1(t), ϕr2(t)} , t ≥ 0,

ϕ(0) > 0, βmax
{
ϕr1−l1(0), ϕr2−l1(0)

}
< αmin

{
1, ϕl2−l1(0)

}
,

then ϕ holds {
ϕ(t) ≤

[
ϕ1−l1(0)− α0 (1− l1) t

] 1
1−l1 , 0 < t < T0,

ϕ(t) ≡ 0, t ≥ T0,

where

α0 = αmin
{
1, ϕl2−l1(0)

}
− βmax

{
ϕr1−l1(0), ϕr2−l1(0)

}
> 0,

and

T0 = α−10 (1− l1)−1 ϕ1−l1(0) > 0.
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Proof of Lemma 3.2. For t ≥ 0, we have

ϕ′(t) ≤ −αϕl1(t)
[
min

{
1, ϕl2−l1(t)

}
− β

α
max

{
ϕr1−l1(t), ϕr2−l1(t)

}]
. (3.5)

Since
βmax

{
ϕr1−l1(0), ϕr2−l1(0)

}
min {1, ϕl2−l1(0)}

< α,

there exists a sufficiently small constant ε > 0 such that

βmax
{
ϕr1−l1(t), ϕr2−l1(t)

}
min {1, ϕl2−l1(t)}

< α, t ∈ [0, ε] ,

and ϕ(t) is decreasing in [0, ε]. Noticing that r1 − l1 > 0 and r2 − l1 > 0. Therefore, we
have

α >
βmax

{
ϕr1−l1(ε), ϕr2−l1(ε)

}
min {1, ϕl2−l1(ε)}

> 0.

From (3.5) we obtain
ϕ′(t) ≤ −α0ϕ

l1(t), (3.6)

where
α0 = αmin

{
1, ϕl2−l1(0)

}
− βmax

{
ϕr1−l1(0), ϕr2−l1(0)

}
> 0.

Then integrating (3.6) from 0 to t, we have

ϕ1−l1(t) ≤ ϕ1−l1(0)− α0 (1− l1) t.

Thus, from ϕ(t) ≥ 0, we get{
ϕ(t) ≤

[
ϕ1−l1(0)− α0 (1− l1) t

] 1
1−l1 , 0 < t < T0,

ϕ(t) ≡ 0, t ≥ T0,

where
T0 = α−10 (1− l1)−1 ϕ1−l1(0) > 0.

Thus the proof of Lemma 3.2 is complete.
Proof of Theorem 2.2. By using (3.1), we have

F ′(t) + 2

∫
Ω
|∇u|p(x) dx = 2λ

∫
Ω
|u|q(x)+1 dx.

Furthermore, by using (2.2), Proposition 1.1 and Proposition 1.3 we obtain

2

∫
Ω
|∇u|p(x) dx

≥ 2min
{
‖u‖p

−

0 , ‖u‖p+0
}
≥ α1min

{
‖u‖p

−

2 , ‖u‖p
+

2

}
= α1min

{
F

p−
2 (t), F

p+

2 (t)

}
, (3.7)

where
α1 = 2K−p

+
.
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By Proposition 1.2 we have

2λ

∫
Ω
|u|q(x)+1 dx ≤ 4λ

∥∥∥|u|q(.)+1
∥∥∥

2
q(.)+1

‖1‖ 2
1−q(·)

≤ λβ1max
{
‖u‖q

−+1
2 , ‖u‖q

++1
2

}
= λβ1max

{
F

q−+1
2 (t) , F

q++1
2 (t)

}
, (3.8)

where
β1 = 4 (|Ω|+ 1)(1−q

−)/2 .

By (3.7) and (3.8), we arrive at the following relation

F ′(t) + α1min

{
F

p−
2 (t), F

p+

2 (t)

}
≤ λβ1max

{
F

q−+1
2 (t) , F

q++1
2 (t)

}
(3.9)

with 0 < p−

2 ≤
p+

2 < q−+1
2 ≤ q++1

2 < 1. By using Lemma 3.2, we obtain

F ′(t) ≤ −α0F
p−
2 (t), (3.10)

where

α0 = α1min

{
1, F

p+−p−
2 (0)

}
− λβ1max

{
F

q−−p−+1
2 (0), F

q+−p−+1
2 (0)

}
> 0,

with

0 < λ <

α1min

{
1, F

p+−p−
2 (0)

}
β1max

{
F

q−−p−+1
2 (0), F

q+−p−+1
2 (0)

} ,
that is

F (t) ≤
(
F

2−p−
2 (0)− α0 (2− p−)

2
t

) 2
2−p−

, t ≥ 0. (3.11)

Thus, from F (t) ≥ 0 with F (0) > 0, we get

F
2−p−

2 (t) ≤ F
2−p−

2 (0)

−2− p−

2

(
α1min

{
1, F

p+−p−
2 (0)

}
+ λβ1max

{
F

q−−p−+1
2 (0), F

q+−p−+1
2 (0)

})
t

for t ∈ (0, T0), and
F (t) ≡ 0

for t ∈ [T0,+∞), where

T0 =
2F

2−p−
2 (0)

(2− p−)
(
α1min

{
1, F

p+−p−
2 (0)

}
− λβ1max

{
F

q−−p−+1
2 (0), F

q+−p−+1
2 (0)

}) .
Thus the proof of Theorem 2.2 is complete.

Proof of Theorem 2.3
We introduce an auxiliary lemma on the ordinary differential inequality as follows.
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Lemma 3.3 Assume that 0 < l1 ≤ l2 < r1 ≤ r2 ≤ 1, and η > 0, µ > 0 and ϕ (t) ≥ 0 is
a solution of the differential inequality{

ϕ′(t) + ηmin
{
ϕl1(t), ϕl2(t)

}
≤ µmax

{
ϕr1 (t) , ϕ

r2 (t)
}
, t ≥ 0,

ϕ (0) = ϕ0 > 0,
(3.12)

where η > 0 and

µ ≤
min

{
ϕl10 , ϕ

l2
0

}
max {ϕr10 , ϕ

r2
0 }

(
η − σmin

{
ϕ1−l1
0 , ϕ1−l2

0

})
,

and
σ =

η

2min
{
ϕ1−l1
0 , ϕ1−l2

0

} .
Then there exists B > 0 such that

0 ≤ ϕ(t) ≤ Be−σt, t ≥ 0.

Proof of Lemma 3.3. Since ϕ(t) ≡ 0 is a subsolution of (3.12), we only need to choose
σ, B properly such that ϕ(t) = Be−σt is a supersolution of (3.12). In fact, we first choose
B = ϕ (0) = ϕ0 > 0. Then, we obtain

−σBe−σt + ηmin
{
Bl1e−σl1t, Bl2e−σl2t

}
≥ µmax

{
Br1e−σr1t, Br2e−σr2t

}
,∀t ≥ 0.

Then
−σBe−σt + ηmin

{
Bl1 , Bl2

}
e−σl2t ≥ µmax {Br1 , Br2} e−σr1t,

that is
ηmin

{
Bl1 , Bl2

}
e−σl2t ≥ µmax {Br1 , Br2} e−σr1t + σBe−σt,

or
ηmin

{
Bl1 , Bl2

}
eσ(r1−l2)t ≥ µmax {Br1 , Br2}+ σBe−σ(1−r1)t,

we only demand that

eσ(r1−l2)t ≥ µmax {Br1 , Br2}+ σB

ηmin {Bl1 , Bl2}
,∀t ≥ 0,

since 0 < l1 ≤ l2 < r1 ≤ r2 ≤ 1. For this purpose, we need

µmax {ϕr10 , ϕ
r2
0 }+ σϕ0

ηmin
{
ϕl10 , ϕ

l2
0

} ≤ 1,

that is

µ ≤
ηmin

{
ϕl10 , ϕ

l2
0

}
− σϕ0

max {ϕr10 , ϕ
r2
0 }

=
min

{
ϕl10 , ϕ

l2
0

}
max {ϕr10 , ϕ

r2
0 }

(
η − σmin

{
ϕ1−l1
0 , ϕ1−l2

0

})
.
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Therefore, we only need to choose

σ =
η

2min
{
ϕ1−l1
0 , ϕ1−l2

0

} .
Thus the proof of Lemma 3.3 is complete.

Proof of Theorem 2.3. By (3.9) we have

F ′(t) + α1min

{
F

p−
2 (t), F

p+

2 (t)

}
≤ λβ1max

{
F

q−+1
2 (t) , F

q++1
2 (t)

}
, (3.13)

where
α1 = 2K−p

+
,

and
β1 = 4 (|Ω|+ 1)(1−q

−)/2 .

By Lemma 3.3, there exist σ > 0, B > 0, such that

0 ≤ F (t) ≤ Be−σt, t ≥ 0,

provided that

λ ≤
α1min

{
F

p−
2 (0), F

p+

2 (0)

}
β1max

{
F

q−+1
2 (0) , F

q++1
2 (0)

} .
Furthermore, there exists T1, for t ∈ [T1,+∞)

α1 −
λβ1max

{
F

q−+1
2 (t) , F

q++1
2 (t)

}
min

{
F

p−
2 (t), F

p+

2 (t)
}

≥ α1 −
λβ1max

{(
Be−σT1

) q−+1
2 ,

(
Be−σT1

) q++1
2

}
min

{
(Be−σT1)

p−
2 , (Be−σT1)

p+

2

}

= α1 −
λβ1

(
Be−σT1

) q−+1
2

(Be−σT1)
p+

2

= α1 − λβ1
(
Be−σT1

) q−+1−p+

2 := K1 > 0

holds, where
σ =

α1

2min
{
F 1−p−(0), F 1−p+ (0)

} .
Therefore, when t ∈ [T1,+∞), by (3.13) we obtain

F ′(t) +K1F
p−
2 (t) ≤ 0.
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By (3.10) and (3.11), we obtain

F (t) ≤
[
F

2−p−
2 (0)− K1 (2− p−)

2
t

] 2
2−p−

for t ∈ [T1, T2), and

F (t) ≡ 0

for t ∈ [T2,+∞), where

T2 =
2F

2−p−
2 (0)

K1 (2− p−)
.

Thus the proof of Theorem 2.3 is complete.
Proof of Theorem 2.4. (i) In case p > q+ + 1, λ > 0.
Set u = Aϕ(x), ϕ function is the solution of problem (2.4), A > 0 is a constant will be

determined later. Then we have

−div
(
|∇u|p−2∇u

)
− λuq(x) ≤ −Ap−1 + λM q+Aq

+ ≤ ut = 0,

where constant A satisfies that

A ≥ max

{(
λM q+

) 1
p−q+−1 ,max

x∈Ω
u0(x)

}
.

(ii) In case p < q+ + 1, λ > 0.
We can write

div
(
|∇u|p−2∇u

)
+ λuq(x) ≤ −Ap−1 + λM q+Aq

+ ≤ ut = 0,

with

λM q+Aq
+−p+1 ≤ 1,

where

A = max {maxu0 (.) , 1} .

(iii) In case p = q+ + 1, λ > 0 the following inequality is true:

div
(
|∇u|p−2∇u

)
+ λuq(x) ≤ −Aq+ + λM q+Aq

+
= Aq

+
(
λM q+ − 1

)
≤ ut = 0,

with λ ≤M−q+ .
We know that, u ≥ 0 on ∂Ω× (0, T ) and u(x, 0) ≥ u0(x) in Ω. By the comparison

principle, u is a globally bounded supersolution of (1.1). Thus the proof of Theorem 2.4 is
complete.
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