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Abstract. A boundary value problem generated on an interval by a diffusion equation with real coeffi-
cients and nonseparated boundary conditions is considered. One of these boundary conditions includes
the quadratic function of the spectral parameter. Some spectral properties of the boundary value prob-
lem are studied. It is proved that the eigenvalues are real and nonzero and that there are no associated
functions to the eigenfunctions, and an asymptotic formula for the spectrum of the problem is derived.
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1 Introduction

Consider the boundary value problem generated on the interval [0, π] by the diffusion
differential equation

y′′ + [λ2 − 2λp(x)− q (x)]y = 0 (1.1)
and boundary conditions

(mλ2 + αλ+ β)y(0) + y′(0) + ωy(π) = 0,
−ω̄y(0) + γy(π) + y′(π) = 0,

(1.2)

where the functions p(x) ∈ W 1
2 [0, π], q(x) ∈ L2[0, π] are real, λ is a spectral parameter,

ω is a complex number, ω̄ is the complex conjugate of ω, m,α, β, γ are the real numbers.
We denote by Wn

2 [0, π] the S.L. Sobolev space of functions f (x) , x ∈ [0, π] , where
the functions f (m)(x), m = 0, 1, 2, ... , n − 1, are absolutely continuous and f (n)(x) ∈
L2[0, π]. Problem (1.1) - (1.2) will be denoted by P .

For ω = 0, the boundary conditions (1.2) are separated. In this case, the spectral prop-
erties of the Sturm-Liouville and diffusion operators were studied in [2–5,9,13,16–18,20]
and other works. In [1,6–8,10–12,15,16,19,21] direct and inverse spectral problems for
equation (1.1) (for p (x) ≡ 0 and p (x) ̸≡ 0) with various types of nonseparated boundary
conditions are investigated.

In this paper some spectral properties of the boundary value problem P in casemω ̸= 0,
when one of the nonseparated boundary conditions contains a quadratic function of the
spectral parameter are studied. It is proved that the eigenvalues are real and nonzero and
that there are no associated functions to the eigenfunctions, and an asymptotic formula for
the spectrum of the problem P is derived.
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2 Some spectral properties of the boundary value problem P

In this section we will assume everywhere that m > 0 and the following condition is
satisfied: for all functions y (x) ∈ W 2

2 [0, π] , y (x) ̸≡0 satisfying conditions (1.2), the
following inequality holds:

Q = γ |y (π)|2 − 2ωRe
[
y (0) y (π)

]
− β |y (0)|2

+
∫ π
0

{
|y′ (x)|2 + q (x) |y (x)|2

}
dx > 0.

(2.1)

Note that inequality (2.1) is certainly satisfied if

β ≤ 0, γ ≥ 0, |ω| ≤
√
|β| γ, q (x) > 0.

Indeed, for q(x) > 0 the integral in (2.1) is positive. It’s clear that

Re
[
ωy(0)y(π)

]
≤ |ω| · |y(0)| · |y(π)| .

Then the expression in (2.1) outside the integral is nonnegative, since for β ≤ 0, γ ≥
0, |ω| ≤

√
|β| γ we have

−β |y(0)|2 − 2Re
[
ωy(0)y(π)

]
+ γ |y(π)|2

≥ −β |y(0)|2 − 2 |ω| · |y(0)| · |y(π)|+ γ |y(π)|2

≥ |β| · |y(0)|2 − 2
√

|β| γ |y(0)| · |y(π)|+ γ |y(π)|2

=
[√

|β| |y(0)| − √
γ |y(π)|

]2
≥ 0.

Definition 2.1 A complex number λ0 is called an eigenvalue of a boundary value problem
P , if the equation (1.1) has a nontrivial solution y0 (x) for λ = λ0 that satisfies boundary
conditions (1.2); in this case y0 (x) is called the eigenfunction of the problem P which cor-
responds to the eigenvalue λ0. The set of eigenvalues is called the spectrum of the problem
P . Functions

y1 (x) , y2 (x) , . . ., yr (x)

are called associated functions of the eigenfunction y0 (x) if these functions have an abso-
lutely continuous derivative and satisfy the differential equations

y′′j (x) +
[
λ20 − 2λp(x)− q (x)

]
yj (x) + [2λ0 − 2p(x)]yj−1 (x) + yj−2 (x) = 0

and boundary conditions

(mλ20 + αλ0 + β)yj(0) + y′j(0) + ω yj(π) + (2mλ0 + α)yj−1(0) +myj−2(0) = 0,
−ω̄y′j(0) + γyj(π) + y′j(π) = 0,
j = 1, 2, 3, ..., r (y−1 (x) ≡ 0) .

(2.2)

Theorem 2.1 The eigenvalues of the boundary value problem P are real and nonzero.
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Proof. Let λ0 be the eigenvalue of the problem P and y0 (x) be the corresponding eigen-
function. We put

ly0 = −y′′0(x) + q(x)y0(x).

We denote by (f, g) the usual scalar product of functions f (x) and g (x) in space L2[0, π]:

(f, g) =

∫ π

0
f(x)g(x)dx.

Scalarly multiplying both sides of the equality

y′′0(x) + (λ0
2 − 2λ0p(x)− q(x))y0(x) = 0

by y0(x), we get

(y′′0 , y0) + λ0
2(y0, y0)− 2λ0(py0, y0)− (qy0, y0) = 0

The last equality can be rewritten as

λ0
2(y0, y0)− 2λ0(py0, y0)− (ly0, y0) = 0, (2.3)

It is obvious that

(ly0, y0) =

∫ π

0

(
−y′′0 (x) + q(x)y0(x)

)
y0 (x)dx

= −
∫ π

0
y′′0 (x) y0 (x)dx+

∫ π

0
q(x) |y0(x)|2 dx. (2.4)

Applying the formula of integration by parts to the integral
∫ π
0 y

′′
0 (x) y0 (x)dx, we have∫ π

0
y0 (x)d(y

′
0(x)) = y0(x)y

′
0(x)

∣∣∣∣π0 −
∫ π

0
y′0(x)d(y0(x))

= y0(π)y
′(π)− y0(0)y

′(0)−
∫ π

0

∣∣y′0(x)∣∣2 dx.
Therefore, relation (2.4) can be written as follows:

(ly0, y0) = y′0 (0) y0 (0)− y′0 (π) y0 (π) +

∫ π

0

(∣∣y′0 (x)∣∣2 + q (x) |y0 (x)|2
)
dx. (2.5)

According to the boundary conditions (1.2)

y′0(0) = −ω y0(π)− (mλ0
2 + αλ0 + β)y0(0),

y′0(π) = ω̄y0(0)− γy0(π).

Then

y′0 (0) y0 (0)− y′0 (π) y0 (π) = y0 (0)
(
−ω y0(π)− (mλ0

2 + αλ0 + β)y0(0)
)

−y0 (π) (ω̄y0(0)− γy0(π)) = −y0 (0)ωy0(π)− |y0(0)|2 (mλ02 + αλ0 + β)

−y0 (π)ωy0(0) + γ |y0(π)|2 = − |y0(0)|2 (mλ02 + αλ0 + β)

−2Re(ωy(0)y(π)) + γ |y0(π)|2 .
Taking into account the last relation in (2.5), we have

(ly0, y0) = − |y0(0)|2 (mλ02 + αλ0 + β)− 2Re(ωy(0)y(π)) + γ |y0(π)|2 +A, (2.6)
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where A =
∫ π
0 [|y′0 (x)|2 + q(x) |y0(x)|2

]
dx. Substituting (2.6) into (2.3), we obtain

λ0
2(y0, y0)− 2λ0(py0, y0) + |y0(0)|2 (mλ20 + αλ0 + β) + 2Re(ωy(0)y(π))

−γ |y0(π)|2 −A = λ0
2(y0, y0)− 2λ0(py0, y0) +mλ20 |y0(0)|

2 + αλ0 |y0(0)|2

+ |βy0(0)|2 + 2Re(ωy(0)y(π))− γ |y0(π)|2 −A = 0

or

λ0
2
[
(y0, y0) +m |y0(0)|2

]
− λ0

[
2(py0, y0)− α |y0(0)|2

]
− [−β |y0(0)|

−2Re(ωy(0) y(π)) + γ |y0(π)|2 +A
]
= 0. (2.7)

We denote
V = (y0, y0) +m |y0(0)|2 , R = 2(py0, y0)− α |y0(0)|2 , (2.8)

Taking into account (2.1) and (2.8), from (2.7) we obtain the following quadratic equation
for λ0:

V λ20 −Rλ0 −Q = 0. (2.9)

It follows from inequalities m > 0 and (2.1) that V Q > 0, and therefore the discriminant
R2 +4V Q of the quadratic equation (2.9) is positive. Therefore, the roots of equation (2.9)
are real and nonzero. The theorem is proved.

Corollary 2.1 If y0 (x) is the eigenfunction of the problem P corresponding to the eigen-
value λ0, then

2V λ0 −R ̸= 0, (2.10)

where V and R are determined by equalities (2.8). Moreover, the sign of the left side of this
inequality coincides with the sign of λ0:

sign (2V λ0 −R) = signλ0. (2.11)

Proof. Solving equation (2.9), we obtain

λ0 =
R±

√
R2 + 4V Q

2V
. (2.12)

Since R2 + 4V Q > 0, it follows from (2.12) that

2V λ0 −R = ±
√
R2 + 4V Q ̸= 0.

Therefore, (2.10) holds. It is also clear from (2.12), that for λ0 > 0 there must be a ”+” sign
in front of the root, and for λ0 < 0 there must be a ”-” sign. From here we find that the
sign of the expression 2V λ0 − R coincides with the sign of λ0, i.e. equality (2.11) is true,
which should have been proved.

Theorem 2.2 The boundary value problem P has no associated functions of the eigenfunc-
tions.
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Proof. Let us assume the opposite. Let us suppose there is an associated function y1 (x) of
the eigenfunction y0 (x) of problem P , which corresponds to the eigenvalue λ0. Then the
equalities

y′′0 (x) +
[
λ20 − 2λ0p(x)− q (x)

]
y0 (x) = 0, (2.13)

y′′1 (x) +
[
λ20 − 2λ0p(x)− q (x)

]
y1 (x) + [2λ0 − 2p(x)] y0(x) = 0 (2.14)

hold.
Let us pass in equality (2.13) to the complex conjugate and then multiply the resulting
equality by y1 (x), and multiply relation (2.14) by y0 (x).

y′′0 (x)y1(x) +
[
λ20 − 2λ0p(x)− q (x)

]
y0(x)y1(x) = 0,

y′′1 (x) y0(x) +
[
λ20 − 2λ0p(x)− q (x)

]
y0(x)y1(x) + [2λ0 − 2p(x)] y0(x)y0(x) = 0.

Subtract the second result from the first:

2 [λ0 − p(x)] y0(x)y0(x) = y′′0 (x)y1(x)− y′′1(x)y0(x).

The last equality can be rewritten as

2 [λ0 − p(x)] |y0(x)|2 =
d

dx

[
y′0(x)y1(x)− y′1(x)y0(x)

]
.

After integrating this relation over x from 0 to π, we get

2

∫ π

0
[λ0 − p(x)] |y0(x)|2 dx =

[
y′0(x)y1(x)− y′1(x)y0(x)

] ∣∣∣∣π0
= y′0(π)y1(π)− y′0(0)y1(0)− y′1(π)y0(π) + y′1(0)y0(0). (2.15)

From the boundary conditions (1.2) and (2.2) for y0 (x) and y1 (x) we find y′0(0), y
′
0(π),

y′1(0), y
′
1(π) and substitute in (2.15):

2

∫ π

0
[λ0 − p(x)] |y0 (x) |2 dx =

(
ωy0(0)− γy0(π)

)
y1(π) +

[
(mλ0

2 + αλ0 + β)y0(0)

+ωy0(π)
]
y1(0)− [ω̄y1(0)− γy1(π)] y0(π)−

[
(mλ0

2 + αλ0 + β)y1(0) + ωy1 (π)

+(2mλ0 + α)y0(0)] y0(0) = ωy0(0)y1(π)− γy0(π)y1(π) +mλ2oy0(0)y1(0)

+αy0(0)y1(0) + ωy0(π)y1(0) + βy1(0)y0(0)− ωy1(0)y0(π) + γy1(π)y0(π)

−mλ20y1(0)y0(0)− αλ0y1(0)y0(0)− βy1(0)y0(0)− ωy1(π)y0(0)

−2mλ0y0(0)y0(0)− αy0(0)y0(0) = −(2mλ0 + α) |y0(0)|2 .

From this we get

2

∫ π

0
[λ0 − p(x)] |y0 (x) |2 dx+ (2mλ0 + α) |y0(0)|2 = 0

or 2V λ0 −R = 0 (see [11]), which contradicts the inequality (2.10).
The theorem is proved.
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3 Asymptotics of the eigenvalues

Let c(x, λ), s(x, λ) be the fundamental system of solutions of equation (1.1), determined
by the initial conditions

c(0, λ) = s′(0, λ) = 1, c′(0, λ) = s(0, λ) = 0. (3.1)

For any x the functions c(x, λ), s(x, λ), c′(x, λ), s′(x, λ) are entire functions (of exponen-
tial type) of the variable λ. The general solution of equation (1.1) is written as

y (x, λ) = A1c (x, λ) +A2s (x, λ) , (3.2)

where A1, A2− are arbitrary constants. Taking into account the initial conditions (3.1), we
obtain

y (0, λ) = A1c (0, λ) +A2s (0, λ) = A1,

y′ (0, λ) = A1c
′ (0, λ) +A2s

′ (0, λ) = A2.

Substituting function (3.2) into boundary conditions (1.2) and using the last relations, we
obtain the following system for A1 and A2 :{

A1

[
mλ2 + αλ+ β + ωc (π, λ)

]
+A2 [1 + ωs (π, λ)] = 0,

A1 [−ω̄ + γc (π, λ) + c′ (π, λ)] +A2 [γs (π, λ) + s′ (π, λ)] = 0.

For the number λ to be an eigenvalue of the boundary value problem P , it is necessary and
sufficient that the last system has a nonzero solution. But this system has a nonzero solution
if and only if its determinant is equal to zero. Therefore, the eigenvalues of the boundary
value problem P coincide with the zeros of the function

∆ (λ) =

∣∣∣∣mλ2 + αλ+ β + ωc (π, λ) 1 + ωs (π, λ)
−ω̄ + γc (π, λ) + c′ (π, λ) γs (π, λ) + s′ (π, λ)

∣∣∣∣ .
This function is called the characteristic function of the problem P . Let us expand this
determinant and take into account the identity c (x, λ) s′ (x, λ)− c′ (x, λ) s (x, λ) = 1 :

∆ (λ) =
[
mλ2 + αλ+ β + ωc (π, λ)

]
·
[
γs (π, λ) + s′ (π, λ)

]
− [1 + ωs (π, λ)] ·

[
−ω̄ + γc (π, λ) + c′ (π, λ)

]
= mλ2γs (π, λ)

+mλ2s′ (π, λ) + αλγs (π, λ) + αλs′ (π, λ) + ωγc (π, λ) s (π, λ)

+ωc (π, λ) s′ (π, λ) + βγs (π, λ) + βs′ (π, λ) + ω − γc (π, λ)

−c′ (π, λ) + ωωs(π, λ)− ωγs(π, λ)c(π, λ)− ωs(π, λ)c′(π, λ)

=
[
mλ2 + αλ+ β

]
s′(π, λ) +

[
mλ2 + αλ+ β

]
γs(π, λ)

+ω [c(π, λ) s′(π, λ)− c′(π, λ)s(π, λ)
]
− γc(π, λ)− c′(π, λ)

+ |ω|2 · s(π, λ) + ω = 2Reω + |ω|2 · s(π, λ)

+
[
mλ2 + αλ+ β

] (
s′ (π, λ) + γ s (π, λ)

)
− γc(π, λ)− c′(π, λ).

Denote
η (λ) = c′ (π, λ) + γ c (π, λ) , σ (λ) = s′ (π, λ) + γ s (π, λ) .

Then
∆ (λ) = 2Reω − η (λ) + |ω|2 s (π, λ) +

(
mλ2 + αλ+ β

)
σ (λ) . (3.3)
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Theorem 3.1 For the eigenvalues µk (k = ±0, ±1, ±2, ...) of the boundary value prob-
lem P for |k| → ∞ the following asymptotic formula holds :

µk = k − 1

2
signk + a+

A

mπk
+
mk

k
, (3.4)

where a = 1
π

∫ π
0 p(t)dt, A = 1 +mπa1 +mγ, a1 =

1
2π

∫ π
0 [q(t) + p2(t)]dt, mk ∈ l2.

Proof. It is known [10] that the following representations are valid for the functions c (π, λ) ,
c′ (π, λ), s (π, λ) and s′ (π, λ):

c (π, λ) = cosπ (λ− a)− c1
cosπ (λ− a)

λ
+ π a1

sinπ (λ− a)

λ
+

1

λ

∫ π

−π
ψ1 (t) e

iλtdt,

c′ (π, λ) = −λ sinπ (λ− a)+c0 sinπ (λ− a)+π a1 cosπ (λ− a)+
1

λ

∫ π

−π
ψ2 (t) e

iλtdt,

s (π, λ) =
sinπ (λ− a)

λ
+ c0

sinπ (λ− a)

λ2
− π a1

cosπ (λ− a)

λ2
+

1

λ2

∫ π

−π
ψ3 (t) e

iλtdt,

s′ (π, λ) = cosπ (λ− a) + c1
cosπ (λ− a)

λ
+ π a1

sinπ (λ− a)

λ
+

1

λ

∫ π

−π
ψ4 (t) e

iλtdt,

where c0 = 1
2 [p (0) + p (π)] , c1 = 1

2 [p (0)− p (π)] , ψm (t) ∈ L2 [−π, π] , m =
1, 2, 3, 4.
From these representations and (3.3) according to the Paley–Wiener theorem [14, p. 69] we
obtain that the characteristic function ∆ (λ) of the boundary value problem P has the form

∆ (λ) = 2Reω +mλ2 cosπ(λ− a) + λ[sinπ(λ− a)

+mc1 cosπ(λ− a) +mπa1 sinπ(λ− a) + α cosπ(λ− a)

+mγ sinπ(λ− a)]− c0 sinπ(λ− a)− πa1 cosπ(λ− a)

−γ cosπ(λ− a) + αc1 cosπ(λ− a) + απa1 sinπ(λ− a)

+β cosπ(λ− a) +mc0γ sinπ(λ− a)

−mγπa1 cosπ(λ− a) + αγ sinπ(λ− a) + λg1(λ) + g2(λ)

= mλ2 cosπ(λ− a) + λ[(1 +mπa1 +mγ) sinπ(λ− a)

+(mc1 + α) cosπ(λ− a) + g1(λ)]

+(απa1 − c0 +mc0γ + αγ) sinπ(λ− a)

+(αc1 − πa1 − γ + β −mγπa1) cosπ(λ− a) + g2(λ) + 2Reω, (3.5)

where

gj(λ) =

∫ π

−π
g̃j(t)e

iλtdt, g̃j(t) ∈ L2[−π;π], j = 1, 2.

We denote by Γn the contour bounding the square

Kn = {λ : |Reλ− a| ≤ n, |Imλ| ≤ n } .

By virtue of relation (3.5) we have

∆ (λ) = f (λ) + g (λ) ,
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where f (λ) = mλ2 cosπ(λ− a),

g (λ) = λ[(1 +mπa1 +mγ) sinπ(λ− a) + (mc1 + α) cosπ(λ− a)
+g1(λ)] + (απa1 − c0 +mc0γ + αγ) sinπ(λ− a) + (αc1 − πa1 − γ
+β −mγπa1) cosπ(λ− a) + g2(λ) + 2Reω.

It is easy to prove that the inequality |f (λ)| > |g (λ)| holds on Γn for sufficiently large n.
Then, by Rouché’s theorem the square Kn contains the same number of zeros ∆ (λ) and
f (λ), i.e. 2n + 2 zeros. Using representation (2.13) and Rouche’s theorem, it is easy to
establish that the roots µk (k = ±0, ±1, ±2, ...) of the equation ∆ (λ) = 0 for |k| → ∞
obey the asymptotics

µk = k − 1

2
signk + a+ εk, (3.6)

where εk = O
(
k−1

)
. Taking into account the asymptotics (3.6) and the expansions cosx =

1 +O
(
x2

)
, sinx = x+O

(
x3

)
, 1

1−x = 1 + x +O
(
x2

)
(x→ 0) , we have

sinπ (µk − a) = (−1)k sinπ

(
−1

2
signk + εk

)
= (−1)k+1 signk cosπεk

= (−1)k+1 signk +O

(
1

k2

)
, (3.7)

cosπ (µk − a) = (−1)k cosπ

(
−1

2
signk + εk

)
= (−1)k signk sinπεk

= (−1)k πεksignk +O

(
1

k3

)
, (3.8)

1

µk
=

1

k
(
1− 1

2k signk +
a
k + εk

k

) =
1

k

[
1 +

1

2k
signk − a

k
+O

(
1

k2

)]

=
1

k
+O

(
1

k2

)
. (3.9)

Moreover, using Lemma 1.4.3 in [16], we obtain the asymptotics

gj (µk) = θjk +
ρjk
k
, (3.10)

where {θjk} , {ρjk} ∈ l2, j = 1, 2. Substituting (3.6) into ∆ (µk) = 0 and taking into
account relations (3.7) - (3.10), we obtain the asymptotics

εk =
A

mπk
+
mk

k
,mk ∈ l2. (3.11)

Then from (3.6) by virtue of (3.11) the asymptotic formula (3.4) follows.
The theorem is proved.
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