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Abstract. On the real line, the Dunkl operators

Dν(f)(x) :=
df(x)

dx
+ (2ν + 1)

f(x)− f(−x)
2x

, x ∈ R, ν ≥ −1/2

are differential-difference operators associated with the reflection group Z2 on R. In the paper, in the
setting R we study the maximal commutators Mb,ν in the Orlicz spaces LΦ(R, dmν). We give necessary
and sufficient conditions for the boundedness of the operators Mb,ν on Orlicz spaces LΦ(R, dmν) when
b belongs to BMO(R, dmν) spaces.
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1 Introduction

On the real line, the Dunkl operators Λν are differential-difference operators introduced
in 1989 by Dunkl [8]. For a real parameter ν ≥ −1/2, we consider the Dunkl operator,
associated with the reflection group Z2 on R :

Dν(f)(x) :=
df(x)

dx
+ (2ν + 1)

f(x)− f(−x)
2x

, x ∈ R.

Note that D−1/2 = d/dx.
Let ν > −1/2 be a fixed number andmν be the weighted Lebesgue measure on R, given

by

dmν(x) :=
(
2ν+1Γ (ν + 1)

)−1 |x|2ν+1 dx, x ∈ R.

For any x ∈ R and r > 0, let B(x, r) := {y ∈ R : |y| ∈ ] max{0, |x| − r}, |x|+ r[ }. Then
B(0, r) =]− r, r[ and mνB(0, r) = cν r

2ν+2, where cν :=
[
2ν+1 (ν + 1)Γ (ν + 1)

]−1.
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The maximal operator Mν associated by Dunkl operator on the real line is given by

Mνf(x) := sup
r>0

(mν(B(x, r)))−1
∫
B(x,r)

|f(y)| dmν(y), x ∈ R.

The maximal commutator Mb,ν associated with Dunkl operator on the real line and with
a locally integrable function b ∈ Lloc

1 (R, dmν) is defined by

Mb,νf(x) := sup
r>0

(mν(B(x, r)))−1
∫
B(x,r)

|b(x)− b(y)| |f(y)| dmν(y), x ∈ R.

It is well known that maximal and fractional maximal operators play an important role
in harmonic analysis (see [7,24]). Also the fractional maximal function and the fractional
integral, associated with Dν differential-difference Dunkl operators play an important role
in Dunkl harmonic analysis, differentiation theory and PDE’s. The harmonic analysis of
the one-dimensional Dunkl operator and Dunkl transform was developed in [4,5,18]. The
Dunkl operator and Dunkl transform considered here are the rank-one case of the general
Dunkl theory, which is associated with a finite reflection group acting on a Euclidean space.
The Dunkl theory provides a useful framework for the study of multivariable analytic struc-
tures and has gained considerable interest in various fields of mathematics and in physical
applications (see, for example, [9]). The maximal function, the fractional integral and re-
lated topics associated with the Dunkl differential-difference operator have been research
areas for many mathematicians such as C. Abdelkefi and M. Sifi [1], V.S. Guliyev and Y.Y.
Mammadov [4–6], Y.Y. Mammadov [16], L. Kamoun [12], M.A. Mourou [19], F. Soltani
[22,23], K. Trimeche [25] and others. Moreover, the results on LΦ(R, dmν)-boundedness
of fractional maximal operator and its commutators associated with Dν were obtained in
[6,17].

Harmonic analysis associated to the Dunkl transform and the Dunkl differential-difference
operator gives rise to convolutions with a relevant generalized translation. In this paper, in
the framework of this analysis in the setting R, we study the boundedness of the maximal
commutatorMb,ν on Orlicz spacesLΦ(R, dmν), when b belongs to the spaceBMO(R, dmν),
by which some new characterizations of the space BMO(R, dmν) are given.

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2 Preliminaries in the Dunkl setting on R

To introduce the notion of Orlicz spaces in the Dunkl setting on R, we first recall the
definition of Young functions.

Definition 2.1 A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is convex,
left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) =∞.

From the convexity and Φ(0) = 0 it follows that any Young function is increasing. If there
exists s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. The set of Young
functions such that

0 < Φ(r) <∞ for 0 < r <∞
is denoted by Y. If Φ ∈ Y , then Φ is absolutely continuous on every closed interval in
[0,∞) and bijective from [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) := inf{r ≥ 0 : Φ(r) > s}.
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If Φ ∈ Y , then Φ−1 is the usual inverse function of Φ. It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for any r ≥ 0, (2.1)

where Φ̃(r) is defined by

Φ̃(r) :=

{
sup{rs− Φ(s) : s ∈ [0,∞)}, r ∈ [0,∞)

∞, r =∞.

A Young function Φ is said to satisfy the ∆2-condition, denoted also as Φ ∈ ∆2, if

Φ(2r) ≤ C Φ(r), r > 0

for some C > 1. If Φ ∈ ∆2, then Φ ∈ Y . A Young function Φ is said to satisfy the
∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2C
Φ(Cr), r ≥ 0

for some C > 1. In what follows, for any subset E of R, we use χE to denote its charac-
teristic function.

Definition 2.2 (Orlicz Space). For a Young function Φ, the set

LΦ(R, dmν) :=

{
f ∈ Lloc

1 (R, dmν) :

∫
R
Φ(k|f(x)|) dmν(x) <∞ for some k > 0

}
is called the Orlicz space. If Φ(r) := rp for all r ∈ [0,∞), 1 ≤ p <∞, thenLΦ(R, dmν) =
Lp(R, dmν). If Φ(r) := 0 for all r ∈ [0, 1] and Φ(r) := ∞ for all r ∈ (1,∞), then
LΦ(R, dmν) = L∞(R, dmν). The space Lloc

Φ (R, dmν) is defined as the set of all functions
f such that fχB ∈ LΦ(R, dmν) for all balls B ⊂ R.

LΦ(R, dmν) is a Banach space with respect to the norm

‖f‖LΦ,ν := inf

{
λ > 0 :

∫
R
Φ
( |f(x)|

λ

)
dmν(x) ≤ 1

}
.

For a measurable function f on R and t > 0, let

m(f, t)ν := mν{x ∈ R : |f(x)| > t}.

Definition 2.3 The weak Orlicz space

WLΦ(R, dmν) := {f ∈ Lloc
1,ν(R) : ‖f‖WLΦ,ν <∞}

is defined by the norm

‖f‖WLΦ,ν := inf
{
λ > 0 : sup

t>0
Φ(t)m

(f
λ
, t
)
ν
≤ 1
}
.

The following analogue of the Hölder inequality is well known (see, for example, [21]).

Lemma 2.1 Let the functions f and g be measurable on R. For a Young function Φ and its
complementary function Φ̃, the following inequality is valid∫

R
|f(x)g(x)| dmν(x) ≤ 2‖f‖LΦ,ν‖g‖LΦ̃,ν .
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3 Maximal commutators Mb,α,ν in Orlicz spaces LΦ(R, dmν)

In this section we investigate the boundedness of the maximal commutatorMb,ν in Orlicz
spaces LΦ(R, dmν).

The following result completely characterizes the boundedness of Mν on Orlicz spaces
LΦ(R, dmν).

Theorem 3.1 [3] Let Φ be a Young function.
(i)The operator Mν is bounded from LΦ(R, dmν) to WLΦ(R, dmν), and the inequality

‖Mνf‖WLΦ,ν ≤ C0‖f‖LΦ,ν (3.1)

holds with constant C0 independent of f .
(ii) The operator Mν is bounded on LΦ(R, dmν), and the inequality

‖Mνf‖LΦ,ν ≤ C0‖f‖LΦ,ν (3.2)

holds with constant C0 independent of f if and only if Φ ∈ ∇2.

The following theorems were proved in [6].

Theorem 3.2 [6] Let b ∈ BMO(R, dmν) and Φ ∈ Y . Then the condition Φ ∈ ∇2 is
necessary and sufficient for the boundedness of Mb,ν on LΦ(R, dmν).

Theorem 3.3 [6] LetΦ be a Young function withΦ ∈ ∇2. Then the condition b ∈ BMO(R, dmν)
is necessary and sufficient for the boundedness of Mb,ν on LΦ(R, dmν).

We recall the definition of the space BMO(R, dmν).

Definition 3.1 Suppose that b ∈ Lloc
1 (R, dmν), let

‖b‖BMO(ν) := sup
x∈R,r>0

1

mν(B(x, r))

∫
B(x,r)

|b(y)− bB(x,r)(x)| dmν(y),

where

bB(x,r) :=
1

mν(B(x, r))

∫
B(x,r)

b(y) dmν(y).

Define
BMO(R, dmν) := {b ∈ Lloc

1 (R, dmν) : ‖b‖BMO(ν) <∞}.

Modulo constants, the spaceBMO(R, dmν) is a Banach space with respect to the norm
‖ · ‖BMO(ν).

We will need the following properties of BMO-functions (see [10]):

‖b‖BMO(ν) ≈ sup
x∈R,r>0

(
1

mν(B(x, r))

∫
B(x,r)

|b(y)− bB(x,r)|pdmν(y)

) 1
p

, (3.3)

where 1 ≤ p <∞ and the positive equivalence constants are independent of b, and∣∣bB(x,r) − bB(x,t)

∣∣ ≤ C‖b‖BMO(ν) ln
t

r
for any 0 < 2r < t, (3.4)

where the positive constant C does not depend on b, x, r and t.
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For any measurable set E with mν(E) < ∞ and any suitable function f , the norm
‖f‖L(logL),E is defined by

|f‖L(logL),E = inf

{
λ > 0 :

1

mν(E)

∫
E

|f(x)|
λ

(
2 +
|f(x)|
λ

)
dmν(x) ≤ 1

}
.

The norm ‖f‖expL,E is defined by

|f‖expL,E = inf

{
λ > 0 :

1

mν(E)

∫
E
exp

( |f(x)|
λ

)
dmν(x) ≤ 2

}
.

Then for any suitable functions f and g the generalized Hölders inequality holds (see
[21])

1

mν(E)

∫
E
|f(x)||g(x)|dmν(x) . ‖f‖expL,E ‖g‖L(logL),E . (3.5)

The following John-Nirenberg inequalities on spaces of homogeneous type come from
[13, Propositions 6, 7].

Lemma 3.1 Let b ∈ BMO(R, dmν). Then there exist constants C1, C2 > 0 such that for
every ball B ⊂ R and every α > 0, we have

mν

({
x ∈ B : |b(x)− bB| > α

})
≤ C1mν(B) exp

{
− C2

‖b‖BMO(ν)
α
}
.

By the generalized Hölder’s inequality in Orlicz spaces (see [21, page 58]) and John-
Nirenberg’s inequality, we get (see also [14, (2.14)]).

1

|B|

∫
B

∣∣b(x)− bB∣∣|g(x)|dmν(x) . ‖b‖BMO(ν) ‖g‖L(logL),B. (3.6)

We refer for instance to [11] and [15] for details on this space and properties.

Lemma 3.2 [17] Let b ∈ BMO(R, dmν) and Φ be a Young function with Φ ∈ ∆2, then

‖b‖BMO(ν) ≈ sup
x∈R,r>0

Φ−1
(
mν(B(x, r)−1

) ∥∥b(·)− bB(x,r)

∥∥
LΦ,ν(B(x,r))

, (3.7)

where the positive equivalence constants are independent of b.

Lemma 3.3 Let f ∈ Lloc
1 (R, dmν). Then

Mν

(
Mνf

)
(x) ≈ sup

B3x
‖fχB‖L(1+log+ L),ν . (3.8)

Proof. LetB be a ball in R. We are going to use weak type estimates (see [24], for instance):
there exist positive constants c > 1 such that for every f ∈ Lloc

1 (R, dmν) and for every
t >

(
1/mν(B)

) ∫
B |f(x)|dmν(x) we have

1

c t

∫
{x∈B:|f(x)|>t}

|f(x)|dmν(x) ≤ mν({x ∈ B :Mν(f χB )(x) > t})

≤ c

t

∫
{x∈B:|f(x)|>t/2}

|f(x)|dmν(x).
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Then ∫
B
Mν(f χB )(x)dmν(x) =

∫ ∞
0

mν({x ∈ B :Mν(f χB )(x) > λ})dλ

=

∫ |f |B
0

mν({x ∈ B :Mν(f χB )(x) > λ})dλ

+

∫ ∞
|f |B

mν({x ∈ B :Mν(f χB )(x) > λ})dλ

= mν(B) |f |B +

∫ ∞
|f |B

mν({x ∈ B :Mν(f χB )(x) > λ})dλ

≥ mν(B) |f |B +
1

c

∫ ∞
|f |B

(∫
{x∈B:|f(x)|>λ}

|f(x)|dmν(x)
)dλ
λ

= mν(B) |f |B +
1

c

∫
{x∈B:|f(x)|>|f |B}

(∫ |f(x)|
|f |B

dλ

λ

)
|f(x)|dmν(x)

= mν(B) |f |B +
1

c

∫
{x∈B:|f(x)|>|f |B}

|f(x)| log |f(x)|
|f |B

dmν(x)

≥ 1

c

∫
B
|f(x)|

(
1 + log+

|f(x)|
|f |B

)
dmν(x).

On the other hand,

∫
B
Mν(f χB )(x)dmν(x) =

∫ ∞
0

mν({x ∈ B :M(f χB )(x) > λ})dλ

≈
∫ ∞
0

mν({x ∈ B :Mν(f χB )(x) > 2λ})dλ

=

∫ |f |B
0

mν({x ∈ B :Mν(f χB )(x) > 2λ})dλ

+

∫ ∞
|f |B

mν({x ∈ B :Mν(f χB )(x) > 2λ})dλ

≤ mν(B) |f |B + c

∫ ∞
|f |B

(∫
{x∈B:|f(x)|>λ}

|f(x)|dmν(x)
)dλ
λ

= mν(B) |f |B + c

∫
{x∈B:|f(x)|>|f |B}

|f(x)| log |f(x)|
|f |B

dmν(x)

≤ c
∫
B
|f(x)|

(
1 + log+

|f(x)|
|f |B

)
dmν(x).

Therefore, for all f ∈ Lloc
1 (R, dmν) we get

Mν

(
Mνf

)
(x) ≈ sup

B3x
mν(B)−1

∫
B
|f(x)|

(
1 + log+

|f(x)|
|f |B

)
dmν(x). (3.9)

Since

1 ≤ 1

mν(B)

∫
B
|f(x)|

(
1 + log+

|f(x)|
|f |B

)
dmν(x),
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then

|f |B ≤ ‖fχB‖L(1+log+ L),ν .

Using the inequality log+(ab) ≤ log+ a+ log+ with a, b > 0, we get

1

mν(B)

∫
B
|f(x)|

(
1 + log+

|f(x)|
|f |B

)
dmν(x)

=
1

mν(B)

∫
B
|f(x)|

(
1 + log+

( |f(x)|
‖fχB‖L(1+log+ L),ν

‖fχB‖L(1+log+ L),ν

|f |B

))
dmν(x)

=
1

mν(B)

∫
B
|f(x)|

(
1 + log+

|f(x)|
‖fχB‖L(1+log+ L),ν

)
dmν(x)

+
1

mν(B)

∫
B
|f(x)| log+

‖fχB‖L(1+log+ L),ν

|f |B
dmν(x)

≤ ‖fχB‖L(1+log+ L),ν + |f |B log+
‖fχB‖L(1+log+ L),ν

|f |B
.

Since
‖fχ

B
‖L(1+log+ L),ν

|f |B ≥ 1 and log t ≤ t when t ≥ 1, we get

1

mν(B)

∫
B
|f(x)|

(
1 + log+

|f(x)|
|f |B

)
dmν(x) ≤ 2‖fχB‖L(1+log+ L),ν . (3.10)

On the other hand, since

‖fχB‖L(1+log+ L),ν =
1

mν(B)

∫
B
|f(x)|

(
1 + log+

|f(x)|
‖fχB‖L(1+log+ L),ν

)
dmν(x),

on using

|f |B ≤ ‖fχB‖L(1+log+ L),ν ,

we get that

‖fχB‖L(1+log+ L),ν .
1

mν(B)

∫
B
|f(x)|

(
1 + log+

|f(x)|
|f |B

)
dmν(x). (3.11)

Therefore, from (3.9), (3.10) and (3.11) we have (3.8).

For proving our main results, we need the following estimate.

Lemma 3.4 Let b ∈ BMO(R, dmν) Then there exists a positive constant C such that

Mb,νf(x) ≤ C‖b‖BMO(ν) Mν

(
Mνf

)
(x) (3.12)

for almost every x ∈ R and for all functions f ∈ Lloc
1 (R, dmν).
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Proof. Let x ∈ R, r > 0, B = B(x, r) and λB = B(x, λr). We write f as f = f1 + f2,
where f1(y) = f(y)χ3B (y), f2(y) = f(y)χ

{
(3B)

(y), and χ3B denotes the characteristic

function of 3B. Then for any y ∈ R

Mb,νf(y) =Mν

(
(b− b(y))f

)
(y) =Mν

(
(b− b3B + b3B − b(y))f

)
(y)

≤Mν

(
(b− b3B)f

)
(y) +Mν

(
(b3B − b(y))f

)
(y)

≤Mν

(
(b− b3B)f1

)
(y) +Mν

(
(b− b3B)f2

)
(y) +

∣∣b3B − b(y)∣∣Mνf(y).

For 0 < δ < 1 we have( 1

mν(B)

∫
B

(
Mb,νf(y)

)δ
dmν(y)

) 1
δ ≤

( 1

mν(B)

∫
B

(
Mν

(
(b− b3B)f1

)
(y)
)δ
dmν(y)

) 1
δ

+
( 1

mν(B)

∫
B

(
Mν

(
(b− b3B)f2

)
(y)
)δ
dmν(y)

) 1
δ

+
( 1

mν(B)

∫
B

∣∣b(y)− b3B∣∣(Mνf
)
(y)
)δ
dmν(y)

) 1
δ

= I1 + I2 + I3.

We first estimate I1. Recall that Mν is weak-type (1, 1), (cf. [5]). We have

Iδ1 ≤
1

mν(B)

∫
B

∣∣Mν

(
(b− b3B)f1

)
(y)
∣∣δdmν(y)

≤ 1

mν(B)

∫ mν(B)

0

[(
Mν

(
(b− b3B)f1

))∗
(t)
]δ
dt

≤ 1

mν(B)

[
sup

0<t<mν(B)
t
(
Mν

(
(b− b3B)f1

))∗
(t)
]δ ∫ mν(B)

0
t−δdt

.
1

mν(B)

∥∥(b− b3B) f1∥∥δL1,ν
mν(B)−δ+1

.
∥∥(b− b3B) fχ3B

∥∥δ
L1,ν

mν(B)−δ.

Thus

I1 ≤ mν(B)−1
∫
3B
|b(y)− b3B| |f(y)|dmν(y).

Then, by (3.5) and Lemmas 3.1 and 3.4 , we obtain

I1 ≤ ‖b− b3B‖expL,3B ‖f‖L(logL),3B
. ‖b‖BMO(ν) ‖f‖L(logL),3B
≤ ‖b‖BMO(ν) Mν

(
Mνf

)
(x).

Let us estimate I2. Since for any two points x, y ∈ B, we have

Mν

(
(b− b3B)f

)
(y) ≤ CMν

(
(b− b3B)f

)
(x)

with C an absolute constant (see, for example, [2, p. 160]).



F.A. Muslumova 9

Therefore, by (3.5) and Lemma 3.4 we obtain

I2 =
( 1

mν(B)

∫
B

(
Mν

(
(b− b3B)f2

)
(y)
)δ
dmν(y)

) 1
δ

.Mν

(
(b− b3B)f

)
(x)

= sup
B3x

mν(B)−1
∫
B
|b(y)− b3B| |f(y)|dmν(y)

≤ sup
B3x
‖b− b3B‖expL,3B ‖f‖L(logL),3B

. ‖b‖BMO(ν) sup
B3x
‖f‖L(logL),3B

≤ ‖b‖BMO(ν) Mν

(
Mνf

)
(x).

Therefore we get

I2 . ‖b‖BMO(ν) Mν

(
Mνf

)
(x).

Finally, for estimate I3, applying Hölders inequality with exponent a = 1/δ, 0 < δ < 1,
by Lemmas 3.2 for Φ(t) = ta, 1 < a <∞ we get

I3 ≤
( 1

mν(B)

∫
B

∣∣b(y)− b3B∣∣admν(y)
) 1
a 1

mν(B)

∫
B
Mνf(y)dmν(y)

. ‖b‖BMO(ν) Mν

(
Mνf

)
(x).

Lemma 3.4 is proved by the estimate of I1, I2, I3 and the Lebesgue differentiation
theorem.

The following theorem gives necessary and sufficient conditions for the boundedness of
the operator Mb,ν on LΦ(R, dmν), when b belongs to the BMO(ν) space.

Theorem 3.4 Let b ∈ Lloc
1 (R, dmν) and Φ ∈ Y be a Young function.

1. If Φ ∈ ∇2, then the condition b ∈ BMO(R, dmν) is sufficient for the boundedness
of Mb,ν on LΦ(R, dmν).

2. The condition b ∈ BMO(R, dmν) is necessary for the boundedness of Mb,ν on
LΦ(R, dmν).

3. If Φ ∈ ∇2, then the condition b ∈ BMO(R, dmν) is necessary and sufficient for the
boundedness of Mb,ν on LΦ(R, dmν).

Proof. 1. Let b ∈ BMO(R, dmν). Then from Lemma 3.12 we have

Mb,νf(x) . ‖b‖BMO(ν) Mν

(
Mνf

)
(x) (3.13)

for almost every x ∈ R and for all functions from f ∈ Lloc
1 (R, dmν).

Combining Theorem 3.1, Lemma 3.4 and from (3.13), we get

‖Mb,νf‖LΦ,ν . ‖b‖BMO(ν)‖Mν

(
Mνf

)
‖LΦ,ν

. ‖b‖BMO(ν)‖Mνf‖LΦ,ν

. ‖b‖BMO(ν)‖f‖LΦ,ν .

.
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2. We shall now prove the second part. Suppose that Mb,ν is bounded from LΦ(R, dmν)
to LΨ (R, dmν). Choose any ball B = B(x, r) in R, by Lemma 2.1 and (2.1)

1

mν(B)

∫
B
|b(y)− bB|dmν(y) =

1

mν(B)

∫
B

∣∣∣ 1

mν(B)

∫
B
(b(y)− b(z))dmν(z)

∣∣∣dmν(y)

≤ 1

mν(B)2

∫
B

∫
B
|b(y)− b(z)|dmν(z)dmν(y)

=
1

mν(B)1

∫
B

1

mν(B)

∫
B
|b(y)− b(z)|χB (z)dmν(z)dmν(y)

≤ 1

mν(B)

∫
B
Mb,ν

(
χB
)
(y)dmν(y)

≤ 2

mν(B)
‖Mb,ν

(
χB
)
‖LΦ(B)‖1‖L

Φ̃
(B) ≤ C.

Thus b ∈ BMO(R, dmν).
3. The third statement of the theorem follows from the first and second parts of the

theorem.

If we take Φ(t) = tp in Theorem 3.4 we get the following corollary.

Corollary 3.1 Let 1 < p <∞ and b ∈ Lloc
1 (R, dmν). ThenMb,ν is bounded onLp(R, dmν)

if and only if b ∈ BMO(R, dmν).
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