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1 Introduction

Fractional differential equations have attracted much attention and have been the focus
of many studies due mainly to their varied applications in many fields of science and engi-
neering. In other words, fractional differential equations are widely used to describe many
important phenomena in various fields such as physics, biophysics, chemistry, biology, con-
trol theory, economy and so on; see [8]. For an extensive literature in the study of fractional
differential equations, we refer the reader to [4]. However, it should be noted that in recent
years, there have been many works related to fractional integro-differential equations, see
[1], [2] and the references therein.

In this work we give a characterization for boundedness of Riemann-Liouville fractional
integral by nonlinear ordinary fractional differential equation on Lebesgue spaces. The main
contribution in this paper is the characterization of best possible constant by specially quan-
tity. Similar problems for classical Hardy operator were studied in [5]-[7], [9], [10], [12],
[13] and e.t.c.

The paper is structured as follows. Section 2 contains some preliminaries along with the
standard ingredients used in the proofs. The main results are stated and proved in Section 3.
Namely, in Section 3 we found the interval for the best possible constant for boundedness
of Riemann-Liouville fractional integral on Lebesgue spaces.
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2 Preliminaries

For convenience, in this section we recall some basic definitions and properties of the frac-
tional calculus theory and auxiliary lemmas which will be used throughout this work, see
[11].
Let 1 < p < oo and let p’ be Holder conjugate of p defined by p’ = Ll We denote
p —_—

by L, (0, 1) the space of Lebesgue measurable functions f on (0, 1) such that

P

1
1 lzon = Il = / FOPd] <o
0

It is well known that the space L, (0, 1) is a Banach spaces.

The set of all absolutely continuous functions on (0, 1) is denoted by AC(0, 1).

In this section, we present a review of some definitions and preliminary facts which are
particularly relevant for the results of the book [11].

Definition 2.1 Ler f € L1(0,1). For almost all t € (0,1) and o > 0, the left and right
Riemann-Liouville fractional integrals of order o are defined by

0 = g [ =1

0

and .
50 = g [ =0

oo
respectively, where I'(«) = f to—L e~t dt is the Euler gamma function.
0

Definition 2.2 Let f € AC(0,1). For almost all t € (0,1) and 0 < « < 1, the left and
right Caputo fractional derivatives of order « are defined by

t

CD8+f(t) = 1_‘(11_06) /(t — T)_Oéf/('r)dT,
0
and 1 .
“Df_f(t) = “T—a) /(T — )~ f'(1)dr,
t
respectively.

It is obvious that the Caputo fractional derivative of a constant is equal to zero.
Theorem 2.1 Let 0 < o < 1 and let f € C*(0,1). Then,
“Df I8 f(t) = F(1), “DEIGf(1) = f(1),

and

I8 ODg, f(t) = f(t) — £0), I&-“D§ f(t) = f(t) — £(1).



R.A. Bandaliyev, I.A. Alekperova 3

3 Main results.

Suppose that A is a positive number. Let us consider the nonlinear fractional integro-differential

equation
1

A (ODgy)" ™ — I¢yP (1) =0, (3.1)
where
y(t) >0, “Dg.y(t) >0, “Dg y(t) € AC(0,1), 0 <t < 1. (3.2)

We say that y is a solution of the problem (3.1)-(3.2), if y satisfies the nonlinear frac-
tional integro-differential equation (3.1) almost everywhere on (0, 1) and the condition
(3.2). We set y(0) = tlirJrrloy(t).

—

First we prove the following theorem.

Theorem 3.1 Let 1 < p < oo and let ) be a positive number given in (3.1). Suppose that u
is an absolutely continuous function on (0, 1) satisfies condition u(0) = u(+0) = 0. If the
problem (3.1)-(3.2) has a solution, then

1
= ||IC
lullp < X¥ [|“Dgul], -
Proof. By Theorem 2.1 for any absolutely continuous function the integral representa-
tion

u(z) = u(0) + I€+CD8‘+u(ac) = u(0) + F(la) /Ox(x — )t CD&u(t) dt

holds. Since u(0) = 0, it follows that

_ L N T — a—1 C na U
) = e [ =07 gl i

Let a function y be a solution of problem (3.1)-(3.2). Then using Holder inequality, we
have

)| < 77 | =0 D5 utt)] at
— i | =0T @07 °Dguto)] [CDgp0])  [CDg.u(o]” de

P
7

1 ‘ a— o i 1 ‘ a— ol p @ P
< (e ) o0 sawa)” (g [ = 0r sl (0D

(«

3 =

— (13 D8@)” (e [ =0 OBl (D5 000)] 7 )

=

p

= ) 007 (g ) =0 DR (“DRve]) ' )

=

P

< 0@ (Fa [ @00 D5 €05 u0)" " at)

P

~ (e | @00 €050 €D5n0)] ™ () at)

)

3=
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([ |u<x>|pdx)’1’
- </0 (7 [ =02 D800l D00 o)y at) d:c)é
- (r(loo /o /01(9” — )" D) [ D5y 0)] T @) X (0) de d”f)
= ([ gl (€0ge) ™ (7 [ =0 ey ) dt>’lj
) (/ €D u(t)]” [DEu(n)] " I () dt>; =N (/ D u(r)|” dt);

This completes the proof.
We need the following Theorem.

Thus, we get

3=

Theorem 3.2 Let 1 < p < oo and let 0 < o < 1. Then the inequality
16 £1l, < € 1If1, (3.3)

1
holds if and only if a > —.

Besides, if C' > 0 is the best constant in (3.3), then

) ( 7 v) : <C<
2 ((a—1)p+ 1)» (ap/)7@ 070 I'(a) (a—1)p+1)

Proof. Sufficiency. By Minkowski’s inequality,we have

5l < s ([ ([ w00 |f<t>|dt)pdx)’l’
s ([ ([ =m0 dt>pd$>;
< ( [ ([a-neior d:c>3’dt)
- < [1sen ([ dx)’l’dt)
:<<a—1>p+ </| a0 )

Applying Holder’s inequality in the last 1ntegral, we get

1 ! :
I - 1—t) 14 »
Il < e ([0

S|

(ap)¥ T'(a)

=
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- ST
((a—Dp+1)7 (ap)¥ I'(a)

Necessity. Let us suppose that I§, : L,(0,1) — L,(0,1) is bounded and (3.3) holds.
Let t > 0 be fixed. We define the test function f as fi(y) = X(0,2) (y). We have
2

s, = s ([ ([t a2
s ([ (U

1
(z—y)*'d ' dx ’ > L /1 2@~ VP g : t
Y Y T 20(e) \

1
1 1 — la=D)p+1 D
= t
2INa) \ (a—=1)p+1
Weset A, = {a: (e —1)p+1>0}andlet Ay = {a: (a«—1)p+1<0}. Then, we
have

(1 — t(al)p+1> , (1- t(a—l)p+1)

@=0p1) " (@ nprnp

(VIS

(teDp+1 _ 1)%

[~ ((a—Dp+ 1)

X4 (@)

(1- t(afl)pﬂ)%

T ((a—Dp+ 1)
By (3.3), we have
o 1 o :
118, ], > . (1 _ 4 1)p+1> vy
2((a=1p+1)r I'(e)

1
N
On the other hand, || f¢[|,, = <2) " So, by (3.3), one has

1
: ! - sup (1 - t(o‘*l)PH) P g <C.
2 (o~ p+1)7 I(a) 01<1

It is obvious that
L 1\ e
sup (1 _ t(afl)pﬂ)p iy <1 B )P ( 1 >p cral
o<t<1 ap, ap/

Thus, we get
1
1 4
(- av)

1 1
27 ((a = Dp+1)7 (ap) 7@ I(a)
This completes the proof.

< C.
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Theorem 3.3 Let 1 < p < oo and let ]% < «a < 1. Suppose that v is an absolutely

continuous function on (0, 1) satisfies condition u(0) = 0. Let A\ > 0 is a possible best
constant such that

lully < A% [|€Dg ],

Then
1—--L
= p—1 S A S 1 pfl .
%=1 ((a —1)p+1) (ap/)@DrrT I'/P(a) (= Dp+1) (ap/)P™" I't/P(a)

Proof. Substituting f with CD(‘)" ', v and take into account u(0) = 0 in inequality (3.3),
we prove Theorem 3.3.
Now we reduce integro-differential equation which corresponds to (3.1).

Theorem 3.4 Let 0 < a < 1. Then every solution to the nonlinear integral equation

1
A (CDgy) /Ka (t,u)yPH(u)du = 0 (3.4)
0

is a solution to nonlinear fractional differential equation

o @ —1 _
ACDg_ (CDgyy)" (1) =P (1),

where
t
q
Kot u /t—Tlo‘ o
0
S u-mt if 0<T<u<l1
Q(“’T>_{o, if 0<u<Tt<l.
Proof. We have

0/1 Kolt,u ;a) 0/1 WP () O/t (tq_(“T’;)adeu

t 1

/t—Tlo‘/ypl T)du

0 0

t 1

1 dr 1 yP~1(u) o e
- I(a) / (t —7)1= () / (u— 1)@ du = I¢, (I§-y"~") (1)

0 T

Therefore, we can rewrite the equation (3.4) in the form

MG, (ODg ) (1) - 19 (I8P (1) = 0. (3.5)

By Theorem 2.1, we can prove that CDO‘ CD8‘+ (Ig‘Jr (Ig‘ yp_l)) = yP~1. Thus, by
applying operator CDa o CDO‘ to (3.5) we prove Theorem 3.4.
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Remark 3.1 Let p = 2. Then equation (3.1) is a linear fractional integro-differential equa-
tion

DG, y(t) — I§ y(t) = 0.

It is obvious that the last equation can be reduced to a differential equation

A“Dg_ (“Dyy) () — y(t) =0,

which contains the left and right fractional Caputo derivatives. Similar differential equations
were studied in [3].
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