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1 Introduction

The aim of this study is to investigate the regularity properties of solutions to the following
Dirichlet problem

{diva(m,DU) =divf in 2, (1.1)

u =0 on 012,
where (2 is a bounded domain in R™, n > 2, and the nonlinearity a(z, &) = (a', ...,a") :

R™ x R™ — R™ is measurable in = for almost every &, differentiable in £ for almost every
x and satisfies the conditions given below. There exist constants A1, > 0 so that

la(x, &)| + €] - | Dea(x, &)| < Agfg)P (1.2)
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2 Regularity of solutions to nonlinear elliptic equations in generalized Morrey spaces

and

Dea(z,&)n-n > ~[€P~2|n)? (1.3)

for almost every (£,7) € R™ x R™ and almost every x € R™ with p € (1, 00). Note that the
primary structure conditions (1.2) and (1.3) imply the following inequality

(a(z, &) —a(z,n))(§ —n) = Aaf& —nl (1.4)

and a(x,0) = 0 for z € R™ while the universal constant Ay depends only on A;, 7, n.
Gradient estimates for nonlinear elliptic equations with discontinuous coefficients have
been studied extensively by several authors [2,4,5,7,8,10,13,14,19,12,21-25,27,28,33,
37]. Some of these developments are mainly based on the perturbation method developed
by Caffarelli and Peral [4] which allows us to investigate the discontinuous coefficient and
highly nonlinear structure of equation (1.1). For the elliptic equations where a is Lipschitz
continuous in both 2 and ¢ variables, the interior C'** regularity of locally bounded weak
solutions to corresponding homogeneous equation was established by DiBenedetto [6] and
Tolksdorf [35] extending the celebrated C'® estimates by Uraltseva [36], Uhlenbeck [37],
Evans [9], and Lewis [26] for the homogeneous p-Laplace equation. When a is not nec-
essarily continuous in x but has sufficiently small BMO oscillation, it was established by

Nguyen and Phan [32] if |f]p%1 € Ly loc, then Vu € L 1o for any ¢ > p.

Let B,(z) = B(x,r) = {y € R" : |x — y| < r} is an open ball in R" with center = and
radius 7 > 0, B, = By(xg) = {y € R" : |29 — y| < r}, Bi(z) = R" \ By(x), 2B, (x) =
B(z,2r), 2.(x) = 2N B.(x), x € 2, B (x9) = B*(x0,7) = B(xg,7) N {x, > 0},
where o = (2/,0).

In connection with elliptic partial differential equations, Morrey proposed a weak con-
dition for the solution to be continuous enough in [30]. Later on, his condition became a
family of normed spaces and they are called Morrey spaces Ly, 5 . Although the notion is
originally from the partial differential equations, the space turned out to be important in
many branches of mathematics. Moreover, various Morrey spaces have been defined dur-
ing the studies, for example, generalized Morrey spaces M, ,, were introduced in different
ways by the first author, Mizuhara and Nakai [16,29,31] (see, also [17,34]). The general-
ized Morrey spaces given by Guliyev are defined as:

Let ¢ : £2 x Ry — R, be a measurable function. A function f € L,({2),1 < p < oo,
belongs to the generalized Morrey space M), ,(2) if the following norm is finite

1 1 1/p
— p
1£laty o) = sup 5 ( /Q O dy) " < 0.

ze2,r>0 (T, 1) \1"

If p(z,r) = rO=2/P then M, ,(2) coincides with the classical Morrey space
Ly (£2), X € (0,n) (see [18]).

In this paper we study the general nonlinear problem (1.1) in generalized Morrey space
M, »(§2) when the principal part also depends on the variable { = Vu. Specifically, we find
the conditions on the nonlinearity of equation and the most general geometric requirement
to the boundary 92 to obtain the following global Wpl#,(Q) estimate

1
1 Dullar, ., (2) < CrllF1P 0y, o (2)- (1.5)

The method used in [13] is based on the boundedness of the maximal operator in gen-
eralized Morrey spaces and the Calder6n-Zygmund decomposition. In this study, unlike in
[13], we used the boundedness of the fractional maximal operator instead of the maximal
operator.
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The generalized Sobolev-Morrey space Wp{@(()) consists of all functions u € Wpl(Q)
with distributional derivatives D*u € M, ,({2) endowed with the norm

lullwy (@) = > D%, 0)-
0<[s|<1
The space W, ,(£2) N Wpl(_Q) consists of all functions u € Wpl((Z) with DSu € M, ,(£2),
0 < |s| < 1 and is endowed by the same norm. Recall that I/Vpl (£2) is the closure of C3°(2)
with respect to the norm in VVp1 (£2).
A function u € Wz} (£2) is said to be a weak solution to (1.1) if the following holds

/ a(x, Du) - Dpdx :/ fDpdx (1.6)
Q Q

for all ¢ € C°°({2) vanishing in a neighborhood of 0f2. Assume that the nonlinearity a
satisfy (1.2) and (1.3). We set

O, %)) = sup 208wl
geR™\{0} (314

where

_ . _ 1
agr(y)(ﬁ) = %QT(y) a(a:,§)dx - |Qr(y)| /.Qr(y) a(m,f)da:

The nonlinearity a is said to be satisfy the small (J, Rg) — BM O condition if

[alp, R, = sup sup 7{ |©(a, 2,(y))(x)[Pde < 6P, 6 > 0. 1.7
0<r<Ro yeR™ J 2, (y)

From the assumptions (1.2), (1.3) and the small (6, Ry) — BM O condition, it is easy to see
that for any v € [1, co) there exists € > 0 such that

[aly,r, = sup sup f |©(a, 2:(y))(x)|"dx < §°.
yeR” 0<r<Ryp Q,«(y)

Note that 02 satisfies the following a more general geometric requirement. We say that
(2 is (0, Rp) Reifenberg flat if for every x € 0f2 and every p € (0, Rp) there exists a
coordinate system {y1, ..., ¥, } Which depends on p and x such that = = 0 in this coordinate
system and

B,(0) N {yn > pé} C B,(0)N 2 C B,(0) N {yn > —pd}.

In the above definitions we assume 9 is to be a small positive constant while one can
assume R = 1 or any other constant by a scaling. If 2 is (0, Ry) Reifenberg flat, then there
is the following measure density condition

oo < (27

which can be found in [11].

It is well known that when f is regular, for example if f € Lo(f2), then according to
classical theory in [24] there exists a unique weak solution to problem (1.1).

‘We state our main theorem as follows.
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Theorem 1.1 Letp € (1,00), ¢1 € (p— 1,n(p — 1)), = e= 1% and (1, p2) satisfy
the condition

sup s74 ess inf ©1(2:(y)) a% < Cpa(2:(y)), (1.8)

r<s<00 §<o <00

where C' does not depend on y and r. Assume that (1.2) and (1.3) hold and v is a weak
solution to problem (1.1). There is a small §(n,A1,~v) > 0 such that if 2 is (J, Ry) -
Reifenberg flat and the nonlinearity a satisfies the small (5, Ry) — BMO condition for

some Ry > 0 and ]f|1'711 € My, o, (12), then Du € M, ,,(£2) with the estimate

1
1 Dull o, (2) < CLIFIP 0y, o(2) (1.9)

where the constant Cy depends on n, q, A1,7, Ro, |£2|.

If we take @1 (z,7) = @(r), p2(x,7) = rﬁgp(r), then from Theorem 1.1 we get the
following corollary.
Corollary 1.1 Let p € (1,00), 1 € (p—Lin(p—1)), &+ — 2 = zﬁ and @ satisfy the
conditions (2.3) and (2.4). Assume that (1.2) and (1.3) hold and u is a weak solution to
problem (1.1). There is a small §(n, Ay,~y) > 0 such that if 2 is (0, Ry) - Reifenberg flat
and the nonlinearity a satisfies the small (6, Ry) — BM O condition for some Ry > 0 and

1
|fIP=1 € Mg, o(£2), then Du€ M 1 (§2) with the estimate

q?rp_

w(r)

_1
[1Dullar 2 < CLllfIP g, o(02)> (1.10)

a,r P~ T o(r)
where the constant C depends on n, q, A1,7, Ro, |£2|.

This paper is organized as follows. In section 2 we give the boundedness of the fractional
maximal operator in generalized Morrey spaces. We also give a version of Vitali covering
lemma and use some standart arguments of measure theory. In sections 3 and 4 we study
interior and boundary estimates of the regularized problem, respectively. In Section 5 we
give Calder6n-Zygmund type estimates for weak solutions of a class of nonlinear elliptic
equations and prove our main result Theorem 1.1.

By A < B we mean that A < CB with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A ~ B and say that A and B are
equivalent.

2 Boundedness of the fractional maximal operator in generalized Morrey spaces

Firstly we introduce some notations. For a measurable function f on a measurable subset

FE of R™ we define
- 1
fEZ}I{fdx:/fdx.
E \E| JE

The fractional maximal function M, f of a locally integrable function f defined in R™ is a
function (see [1]) such that

Maf(y) = sup | By ()" 75 f@)ldz, € [0,n).
p>0 By(y)
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In particular, we get My f(y) = M f(y) as the usual Hardy-Littlewood maximal function
when a = 0. If f is defined on a bounded subset £ of R", then we define the restricted
maximal function Mg f by Mg(f) = M(fxg), where xg is the standard characteristic
function on E. Moreover, when o« = 1, M f(y) can be defined as

Pl fllLyB,)
M f(y) = sup ————
)=, )

The boundedness results of maximal operators in generalized Morrey spaces is obtained
in [18].

Lemma 2.1 [18] Assume that 1 < g1 < oo and the condition

sup s ess inf ©(2:(x)) o < Co(2:(x)), (2.1)

r<s<oo s§<o<0o0

holds, where C does not depend on x and r. Then there is a constant Cy, > 0 such that

118z, @y < NMFllagy, oy < Coll Fllnty, o@rys | € Mgy o(R”).

In the following we give the boundedness of the fractional maximal operator in general-
ized Morrey spaces.

Theorem 2.1 /20, Theorem 4.3]Let1 < q; < oo, 0<a< &, & —

n o _
) - a’qa g = aand (¢1, p2)
satisfy the condition

sup s ¢ essinf ©1(£25(y)) g < C pa(2:(y)), (2.2)

r<s<00 §<o <00

where C' does not depend on y and r.
Then for 1 > 1, M, is bounded from My, ., (£2) to My ,,(§2) and

||Maf||Mq,<p2 S HfHMql,cpl
and for q = 1, My, is bounded from M ,, (£2) to W Mg, (£2) and

1Mo fllwntg ey S F 110y, -
Corollary 2.1 Letp € (1,00), 1 € (p—Lin(p—1)), &+ — 7 = p%l and (p1, p2) satisfy
the condition (2.2). Then
1 1
IMLF) 7= M ay gy (2) S TP Mty 0 (2)-

Corollary 2.2 Let1 < ¢ < o0, 0<a< &, I —

no_ . ..
o a g @ and o satisfy the condition

sup s ess inf o(2:(y)) gt < Cr® o(2:(y)),

r<s<00 s<o<oo

where C does not depend on y and r.
Then for 1 > 1, My, is bounded from My, ,(§2) to M o,y (§2) and

||MOéfHMq,raLp(T)(.Q) rg |’fHMq1,<p(.Q)

and for q1 = 1 M, is bounded from My ,(§2) to W M e (§2) and

Mo fllwnt, o) S Wl o 2)-
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Corollary 2.3 Letp € (1,00), 1 € (p — Ln(p — 1)), o+ —
condition

n _ 1 ;
¢ = 1 and @ satisfy the

sup s 4 ess inf o(2:(y)) g < = o(2:-(y)), (2.3)
r<s<oo s§<o<oo

where C' does not depend on y and r. Then
1 1
Iy @ SN  g, o2)-

arP=To(r)

Fix yo € (2 and denote K, = K, (yo).

Lemma 2.2 Assume that (2 is (0,1)- Reifenberg flat. Let E C F C K, be measurable
subsets of K, satisfying the following conditions: there exists € € (0, 1) such that for each
yeklk

|[EN21(y)| <elf(y)|

and for all y € E and for every p € (0,1] with |E () £2,(y)| > €[2,(y)
n
Then we have |E| < {11—_05} elF|.

,2,(y)N K, CF.

We also use the following arguments of measure theory.

Lemma 2.3 Let f € Li(f2) be a non-negative and measurable function in R™, ¢ satisfy
the conditions (2.1) and

(2 ()T r" < p(2(2) s™ forall 2.(y) C 24(2), 2.4)

where q1 € (1,00), and § > 0, A > 1 are constants. Then f € Mg, ,(12) if and only if

ka1 . k
oo wp SNl € 2): Sa) > Y
yeN,r>0 k>1 QO(Qr(y))ql rr

Moreover, we have
1
c
where C' > 0 is a constant depending only on 6, )\, ¢ and q;.

q1
S <IIFI%, (o) S CO+5),

Now we give normalization invariance property of problem (1.1).

Lemma 2.4 Assume the nonlinearity a(x,§) satisfies the conditions (1.2), (1.3) and u €

Wpl(_Q) is the weak solution to problem (1.1). Let a(x, &) satisfy the small (§, Ry) - BMO
condition. For each A\ > 1 if we define

ar(e,€) = 20Ny = 1D ) T

then ay(x, &) satisfies the conditions (1.2) and (1.3) with the same constants Ay, vy, and the
small (6, Ro)-BMO condition. Moreover, uy € W, (£2) is the weak solution to

divay(z, Duy) =div fy, in £2,
uy =0, on 0f2.
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3 Interior estimates

Together with problem (1.1), we consider the following problem

{diva(:t,w) =0, in (R, 3.1)

w = u, on 0fkpg,
where 0 < R < %, Bog = BQR(JJ()) C 2and (i = QQR(CCU) = Bogr x {2 for xg € f2.
Let u be a weak solution to problem (1.1) and w € W21 (B2r) be a weak solution to problem
(3.1). Due to the lack of regularity with respect to the time variable, the weak solutions u

and w could not be chosen as a test function. However, in order to overcome this trouble,
we can make use of the Steklov averages. Then we have the following estimate.

Lemma 3.1 ([18]) Let u € WI}(Q) be a weak solution to problem (1.1) and w be a weak
solution to problem (3.1). Then there exists a constant C(n, A1, ) so that

C
?{ |Du — Dw|dx < 7Hf”£i(lﬂm)
2R R

and thus

c
7{ |Dw|dz < / | Du|dx + 7Hf”£i(19m).
2R 2R R

We consider reverse Holder inequality from [2] for the higher integrability property.

Lemma 3.2 ([2]) For any given xo = xo(n, A1,7v) > 1 and q € (0, 2] there exists a con-
stant C = C(n, A1, f, X0, q) such that for any (295(x¢) C (2op the following inequality

holds
(7{2/)(:60) |Dw[2X°dx)2iO < C(?{Q

From Holder inequality and Lemma 3.2 we can directly obtain the following result.

1/
|Dw\qu) !

2p(20)

Corollary 3.1 Under the above assumptions and estimate of Lemma 3.2 the following in-
equality holds

}1{ |Dw|Pdz < C( |Dw|d:c>p
25(z0) Q2p(w0)

for some constant C = C(n, Ay,v) > 0.

Let w be a weak solution to (3.1) and consider the problem

{dwam(Dv)za in {2, (3.2)

v =w, on 012,
In the following lemmas we give some estimates for solution to problem (3.2).
Lemma 3.3 ([7]) Let v be a weak solution to (3.2). Then there exist C and o1 so that

7{ ID(w — v)[Pde < C[a]g}Ro(fQ |Dwydx>p.

T

For the gradient of a weak solution to (3.2) the following well-known L, estimate holds.
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Lemma 3.4 (/24]) Let v be a weak solution to (3.2). Then
D0l S Dol

In cylinder $2,.(z) we define

F(f. 0, (2)) = Wit

Then we have the following approximation result.

Lemma 3.5 Ifu € Wpl,loc(BR) is a weak solution to (1.1) in {295 and 2R < Ry, then there
is a function v € Wy (Br) with Dv € Loo(£2g/2) such that

D0l (0 S § 1Dulds + CF(f, Darlan) (3.3)
2R
and
74 Du — Dolde < F(f, an(ao)
25

CaPR(f IDude + P Qa(@). G4)

Proof. Let w and v be as in (3.1) and (3.2). By interior regularity and Corollary 3.1 we have

IDulr0n)0) S 74 Doldz < 74 Dwldz < 74 |Dwldz.
[om (2

2R

From Lemma 3.1 we have
¢ IDulds S §  |Dulds + (. Qanlan).
Q’V‘ QQR

Then we get the estimate (3.3). On the other hand, from Lemma 3.3 and Holder inequal-
ity we find

f ID(w — v)|dz < [a];lggf | Dw|dz.
’ 2R

T

Thus we have
o1/2
j{ |D(u—v)|dx§% |D(u — w)|dx + [a}p}}éojg | Dw|dz.
2 02 2R

Then inequality (3.4) follows from Lemma 3.1.
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4 Boundary estimates

In this section we consider boundary estimates. Fix g € 02 and 0 < R < Ryp/10. Let u
be a weak solution to problem (1.1) and consider the problem

{div a(z,w) =0, in K r(zo), “.1)

w = u, on 0Kior(xo).
The problem (4.1) has a unique solution and up to the boundary holds comparison estimate.

Lemma 4.1 Let w be a weak solution to problem (4.1). Then there exists a constant C(n, Ay, 8)
such that the inequalities

% |Du — Dw|dx < CF(f, Kior(20))
Kior(wo)

and

¢ |Dulde<§ Dulds+ CF(f Kuon(ao)
Kior(zo) Kior(xo)

hold.
R

We now take p = R(1 — J) so that 0 < 25 < 7¢. From the definition of Reifenberg

flat domains there exists a coordinate system {z1, 29, ..., 2, } with the origin 0 € {2 such

that in this coordinate system zo = (0,...,0, — 1”_5 <) and

—2p6
B;_ - QQBP(O) C BP(O) N {Z = (ZlazQa'--azn) 1 Zp > 17_5}

Thus if § < % then we have
By € 20 B,(0) C By(0)N{z = (21,22,...,2n) : 20 > —40p},

where B (0) = B,(0) N {z = (21,22,..,2n) : 20 > 0}.
In the new coordinate system we define a function v as the unique weak solution to the
problem

{diV E_l_()p(o) (Dv) =0, in Kﬂ(o)v 4.2)

v =w, on 0K,(0).
For the solution of problem (4.2) we have the following.

Lemma 4.2 ([7]) Let v be a weak solution to problem (4.2). Then there exist C > 0 and o2
so that

1
f{ |D(w — v)|Pdz < C[al %, (% Dufpdz)”.
K(0) NK,

Because of the lack of smoothness condition on the boundary of (2, we cannot expect that
Lo norm of D is finite near the boundary. To overcome this difficulty consider its associ-
ated problem

{diV ag,0)(DV) =0, in £275(0), 4.3)

V=0, on £2,(0) N {z = (¢/,2n) : T, = 0}.
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Lemma 4.3 (/38]) Let V be a weak solution to (4.3). Then we have

1PV 2t ,0n = (j'{+

1
|1)vadx) "
2 (0)

We now consider a scaled version of (4.2)

div 591(0)(DU) =0, in K;(0), (4.4)
v=0, on 0K;(0) '
under the geometric setting
B{(0) C 1 C B1(0) N {zy, > —46}. 4.5)

We give two results from [11] in the following.

Lemma 4.4 ([11]) For any € > O there exists a small 6 > 0 such that if v is a weak solution
to (4.4) with

7{ |Dv|?dz < 1,
K1(0)

then there exists a weak solution V with p = 1,

jé |v — V|Pdx < eP.
27(0)

Lemma 4.5 ([11]) For any € > 0 there exists a small §(n, A,~y,e) > 0 such that if v is a
weak solution to (4.4) along with the geometric setting (4.5) and the bound

j{ |Dv|Pdx < 1,
K1(0)

then there exists a weak solution V to (4.3) with p = 1, whose zero extension to 21(0)
satisfies

IDV| L (21 000y < Cn, A1,7)

and
7{ |D(v—V)|Pdx < eP.
K /5(0)

Now we give following scaled version.

Lemma 4.6 ([38]) For any € > 0 there exists a small §(n, A1,7, ) such that if v is a weak
solution to

divag,o)(Dv) =0, in K,(0),
v =0, on 0K,(0)

along with the geometric setting

B (0) C 2, C By(0) N {x, > —4pé},
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then there exists a weak solution V' of (4.3), whose zero extension to §2,(0) satisfies

1DV ety ion S § Dol
K, (0)

and

f ID(v — V) Pda < gpf \DolPda.
K,y5(0) K0

Lemma 4.7 For any ¢ there exits a small 6(n, Ay,~y,e) > 0 such that the following holds.
If 2 is (6, Ro)-Reifenberg flat and u. € W (£2) is a weak solution to (1.1) with xy € 012

and 0 < R < @, then there is a function V such that
10

IDV Lo (6, j10(0)) S f;{ | Duldx + F(f, K1or(0))

10r(z0)

and

jl{ |ID(u—V)|dz < (e + [a];QRO)y{ | Du|dx
Kpr/10(z0) ' Kior(z0)
+ (e + [aly %k, ) F(f, Kror(20))-

Proof. Set p = R(1 —d) and let zp € 02,0 < R < If—g. We may assume that 0 € (2,
xo = (O,...,—l‘%)and

B, (0) C £2, C B,(0) N {z, > —44}.
Moreover, we observe that
Bp(()) C Qgp C BlOR(xo) and BR/lO C Bp/g(())

provided § < %. Next we choose w and v as in (4.1) and (4.2) corresponding to these R
and p. Then we have

7{ |Dv|Pdx < 7{ | Dw|Pdz. (4.6)
Kp(0) K,(0)

‘We observe that for V'

7{ \D(u— V)|dz :jf D — w)|dz
K, (0) 5,0

+ é(p(o) |D(w — v)|dz +y{ |D(v —V)|dx.

(0
By Lemma 4.1
§ ID-wlds<§ D w)lds S F(f. Kion(zo))
K,(0) Kior(w0)
By Lemma 4.2 we find

]{ D(w — v)|de < [a];;g?}[ |\ Duwlda.
Ky(0) 0 J K00
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Also by Lemma 4.6 for any ¢ > 0 there exists a small positive §(n, A,7,¢) < 1 such that
there is a function V' such that

IDVlsetiuon S . IDoPds S $ [Dupds
K, (0) K,(0)

and

7{ |D(v —V)|Pdz < 5”% |Dv|Pdx < y{ |Dw|Pdzx.
K,/5(0) K,(0) Kp(0)

Note that by Lemma 4.1 we have

(1,

Thus the proof of the lemma is completed.

1/
‘Dw’pdfl,‘) ? S j{ \Du|da:+F(f,KloR(a:0)).
(0) Kior(zo)

P

5 Calder6n-Zygmund type estimates

In this section we give Calderén-Zygmund type estimates for weak solutions to a class of
nonlinear elliptic equations and prove our main result Theorem 1.1.

Proposition 5.1 Suppose that a satisfies the conditions (1.2) and (1.3). Then there is a
constant A(n, A1,v) > 0 so that for any € > 0 if there exists a small §(¢) > 0 such that for

the weak solution u to problem (1.1), where (2 is (J, Ro)—Reifenberg flat, a satisfies small
(6, Ro) — BMO condition and

2(y) N {z € K, : M(IDul)(z) < 1} {z € K, - (Mif)i i (@) <8} # 2 (5.1
for some $2,(y) with p < Rg and p sufficiently small, then we have
{z € K, : M(|Dul)(z) > A} N 2,(y)| < |82,(y)]- (5.2)

Proof. By (5.1) there exists 29 = (o, tg) € £2,(y) such that for any 7 > 0,

74 |Du|dz <1 and fj{ dlf| <é. (5.3)
27(o)

2x(z0)

Here we recall that both v and f are extended by zero outside Q. Then for z € 2,(y) we
have

M(|Dul)(z) < max{M (x{22(y)|Dul)(2),3"}. (5.4)
Indeed for 7 < p, £27(2) C §29,(y) and

7{ |Dul|dz = ?{ X 2o, () [ Duld. (5.5)
2:(2) 2:(2)

For 7 > p, £2:(z) C {237(x0) and

]{ |\ Dulda < 3"7{ |\Duldz < 3.
Q,:(Z) QBf(xO)
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We consider separately the cases By, (y) C 2 and By, (y)N0OS2 # 0. Let By, (y)NOS2 #
0 and yo € Ba,(y) N 02 # 0. Then

Bay(y) C Bap(y) C Br(yo) C Brep(zo), (5.6)

where R is big enough than 4p. Since p < R for any n € (0, 1) there is a small §(n) > 0
such that if §2 is (0, Ro)-Reinfenberg flat, then one can find a function V' with

1DV ity S §,  1Dulde + F(F, 2uluo))
2 (yo)

and

74 D(u—V)ldz S (7 + )%, 7{ |Dulde
Q4p(y0) QT(yO)
0+ 1+ [ ) F U 20 30)).

Thus we have

I DV Lo (20, () S j{ \Duldz + F(f, 24 p(20)) < Co 5.7)
QR+p(ff0)
and
722 (v) [Du—DVldz S (0 + [afp%,) +0(n + 1+ [al 7, ). (5.8)
P

From (5.4) and (5.7) the following inequality holds
e € K, : M(IDul)(x) > A} N 2,(y)|
A
< [{z € K : M(xa,, ) IDVD@) > 5} 0 2,)

A
+ ‘{x c K, : M(XQQP(y)\Du — DV|)(z) > 5} N Qp(y)).
Thus by weak-type (1.1) bound for the Hardy-Littlewood maximal function and inequality
(5.8) we have (5.2) in the case Ba,(y) N 012 # () for any given ¢ > 0, provided 7, ¢ are
appropriately chosen. The case By,(y) € 2 can be done in a similar way.
We can also give the contrapositive of Proposition 5.1.

Proposition 5.2 Suppose that a satisfies the condition (1.2)-(1.3). Then there is a constant
A(n, A,y) > 0, so that for any € > 0 if there exists a small 6(¢) > 0 such that for the
weak solution u to problem (1.1), where §2 is (6, Ro)- Reifenberg flat, a satisfies small
(6, Ro) — BMO condition and

{z € Ky : M([Dul)(z) > A} 062,(y)| = €|92,(y)]

for some $2,(y) with p < R, then we have

K, N 02,(y) € {z € K, : M(|Dul)(z) > 1} n{z € K, : (Myf)77 () > 6}
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For any weak solution « to problem (1.1) and for fixed K, = £2,(yo, 70) N Q we set
E={z €K, : M(|Du|)(z) > A} (5.9)
and
F={z€eK,: M(|Dul)(z) >1}n{z € K, : (le)p%l(a:) >4} (5.10)

with A and ¢ are as in Proposition 5.2. Now set

10 \n
o= ()
By an iteration argument we can derive the following decay of the size the level sets of
maximal operator for the spatial gradient of weak solution.

Theorem 5.1 Assume that u € Wpl(Q) is a weak solution to problem (1.1), p € (1,00), a
satisfies the small (0, Ry) — BMO condition and (2 is (6, Ry)-Reifenberg flat, where k be
a positive integer. For each y € K., if the inequality

[EN21(y)| <elf(y)l (5.1D)
holds with F as in (5.9), then for each k = 1,2, ... the following inequality holds

k
[{ € K, : M(IDul)(z) > A} < S eb[{z € K, : (M )77 () > 6457} |
=1
+ef|{z € K, : M(|Dul)(z) > 1}|. (5.12)

If the point yy € (2 is arbitrary choice, then estimate (5.12) holds locally for any K, =
2:(y) N2 withy € (2.

We can now give the proof of our main result, Theorem 1.1.

Proof of Theorem 1.1. Under a normalization in Lemma 2.4 giving the scaling invari-
ance property of problem (1.1) we assume the norm of M; f is small enough. In fact, nor-
malizing u to

1
Uy = and f,\ = § for A= gHleHMq,soz(Q)’

>

we have ||M1f,\||MqM2(Q) =4.
Because of the properties of the maximal function (see Corollary 2.1), it is enough to
get

1M (| Dul) |y, (2) < C.
Let E be the set defined in (5.9) and corresponding to the solution u). Foreachy € FE

[EN 82 (y)]
[£21(y)|

From L, estimate [, |Du|%dz < C||f||L,(x), forany ¢ € [1,1 + 11, where constant C
depends only on n, 7, q, {2 (see [3]) we get

< C|E|=C|{x € K, : M(|Duyl)(x) > A}| < C’/Q | Duy(z)|dx.

/Q|Du>\(x)]dﬂ:§C'/QM1f,\(x)dx§C/Q|f>\(x)]dx.
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Hence it follows that

[ 1Dus@ide <€ [ Mif@de < CIM Al 0 < €8

Taking ¢ small enough, we have

|E N $2(y)l
1£21(y)]

which ensures (5.11). On the other hand from Lemma 2.3 we get

XAz € K, 1 (M )7 (2) > 644
2 o2, ()

1
< Co (MNP NG, L o) < C (5.14)

<Ci<e (5.13)

where C' > 0 depends on ¢, n, Ay, v
In view of (5.13), we employ Theorem 5.1 to Du) and f), to have

i/lqk\{x € K, : M(|Duy|)(w) > A™}|

02(82-(y))2rm
= e e Ky (MUf)7T () > 5481
: C;A P2 (42, (y))7r"

{z € Ky : M(|Duy|)(z) > 1}|
pa($2-(y))arm

. Joon [ € Ko s My )77 () > 5AFY|
(e [ZA 2(92-(y))2rm

ooy o € Ko M(Dus (@) > 1)
fA) 22 (4))i 7 ]

+ef

M8

s
Il
_

M8

_l’_

e
Il

‘ [e.e] o0

| Ky
SC(1+W)2Aq81 <C ZAq61 ,

k=1 k=1

where C' = C(q,n, ¢, A,v) > 0. By using (5.3) and due to the monotonicity condition
(2.4) we get
K|
sup —————+—— =C < .
yeNr>0 802(91” (y))q rr

We select ¢ > 0 in €1, and take 6(q,n, A1, Ag,7y) > 0 sufficiently small enough to
satisfy

3
q — n Aq
Aegq (10) A (1 — 5)” < 1.

Consequently for some constant C'(q, n, A1,v) > 0, we get

— A%|{z € K, : M(|Duy|)(x) > 4*}]
; P2(£2-(y))a 1"

<C.
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Taking the supremum over y € {2 and r > 0 in the above estimate and use Lemmas 2.1 and
2.3 we get that

DU)\ (S ]\4(17902 (Q)

with the estimate
[ Duxla, 0, (2) < C.
Returning from uy back to u, we finally obtain
Du € My, (£2)

with the estimate

1
1Dullas, ., (2) < ClIMLE) P 01, 4, (02)- (5.15)

Now if we use estimate (2.3) in Corollary 2.1 about the boundedness of the fractional
maximal operator in generalized Morrey spaces, then we get

_1
(ML) P gy ) = IM1fllag o ()
p—1°%2
_1
S ||f||Mq711_¢(Q) = [[l£17= a1y, o (22)- (5.16)
221,
Then from 5.15 and 5.16 we have

1
”D/U’HM’LLPQ(Q) S Ll HMIHW(“Q)'

Thus the proof of Theorem 1.1 is completed.
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