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1 Introduction

The notion of I-convergence was itnroduced by Kostyrko, Salat and Wilczynski [8] as a
generalization of statical convergence. This notion has been studied by many mathemati-
cians in different fields of the mathematics. Fast [2] in 1951 introduced the concept of sta-
tistical convergence, at the same time Steinhaus [15] in 1951 by his own way defined the no-
tion of ordinary and asymptotic convergences. After that, Fridy [3,4] studied the statistical
convergence and he created a relation which linked this notion with the notion of summa-
bility theory. Some years after, Salat et al. [13] studied some properties of I-convergence,
and then this notion started to be studied in double and tripe sequences spaces. Addicionaly,
triple sequences on I-convergence was studied by Sahiner and Tripathy [14] in which they
showed some interesting results which were useful for Tripathy and Goswami [16,17] who
studied this notion by suing Orlicz function and multiple sequences in probabilistic normed
spaces, respectively. On the other hand, the idea of modulus was introduced by Nakano
[10]. Khan et al. [7] studied [-convergent sequences by using modulus function through
Zeweir I-convergent.

Ruckle [12] took the idea of modulus function for constructing the sequence spaces
X(f) ={z = (zn) : Ypeq f(Jzn|) < oo}. Otherwise, the notion of strong Cesdro conver-
gence was initially defined by [5], this notion was defined as: A sequence (x,,) on a normed
space (X, ||-||) is called strongly Ceséro convergence to L if lim,,_,o 1/k Zszl |xn — L|| =
0.In [10,11], the authors extended this notion in several fields. Recently, in 2020, Faisal [1]
defined the concept of strongly Ceséso ideal convergent and proved some properties.
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Throughout this paper, a triple sequence « is represented by (2y,;) i.. a triple infinite
array of real numbers where n,m,j € N, N denotes the set of natural number. In this
paper, we took the notion of triple sequence for studding new results over the sequence
spaces cg o> cé, léoo s m§ and m§ o’ they denote the I-null, I-convergent, /- bounded, bounded
I-convergence and bounded I-null, respectively. Besides, we introduce the notion of C§3
which denotes the space of all Ceséro triple I-convergent sequences and the notion of CSIS o
which denotes the space of Ceséro triple ideal null sequences. Furthermore, w denotes the
class of all sequences.

2 Preliminaries

In this section, we show the definitions and notions which are useful for the developing of
this paper.

Definition 2.1 An ideal I is a collection of subsets of X which satisfies the following con-
ditions:

1 IfA€land B C A, then B € 1.
2IfA,Bel, then AUB € 1.

Definition 2.2 A non-empty family of sets F(I) C 2% is said to be filter on X if and only
if¢ ¢ F(I), for A,B € F(I), we have that AN B € F(I) and for each A € F(I) and
A C B, implies that B C F(I).

Definition 2.3 An ideal I C 2% is called non-trivial if I # 2X. A non-trivial ideal I C 2%
is called admissible if {{z} :x € X} C I.

Definition 2.4 For each ideal I, there is a filter F'(I) corresponding to I such that F(I) =
{H CN: H¢eIl}, where H° =N — H.

Lemma 2.1 Let H € F(I)and J CN.If J ¢ I, then J NN ¢ I (see [6]) .
Lemma22 IfI C 2Nand J CN.If J ¢ I, then J NN ¢ I (see [6]).

Definition 2.5 I; = I denotes the class of all finite subsets of N. Then, Iy is a non-trivial
admissible ideal and Iy convergence coincides with the usual convergence with respect to
the metric in X.

Definition 2.6 [ = I5 and A C N with §(A) = 0. Is is a non-trivial admissible ideal.

Definition 2.7 A function f : [0,00) — [0, 00) is said to be modulus if

1 f(t) =0ifand only ift = 0.

2 f(t4u) < f(E) + flw)

3 f is non-decreasing.

4 f is continuous from the right at zero.

Definition 2.8 A modulus function f is said to be As-condition if for all values of u there
exits a constant K > 0 such that f(Lu) < KLf(u) for all values of L > 1.

Definition 2.9 A triple sequence (xpy,j) is said to be I3-convergence to a number L if for
everye > 0, {(m,n,j) € NxN XN : |x,n; — L| > €} € I. In this case, we write
Ig-lim Tnmj = L

Definition 2.10 A triple sequence (xymj) is said to be I3-null if L = 0. In this case, we
write I3-lim Tpm; = 0
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Definition 2.11 A triple sequence (Tpm;j) is said to be I3-Cauchy to a number L if for
every € > 0 there exits, h = hg,l = lgp and b = by such that {(m,n,j) € N x N x N :
|xnmj - $lbh| > 6} €l

Definition 2.12 A triple sequence (2ym;) is said to be I3-bounded if there exits M > 0
such that {(m,n,j) € NX N x N : |zym;| > M} € 1.

Definition 2.13 A triple sequence space Q) is said to be solid if (YnmjTnm;) € Q whenever
(xnmj) € Q and for all sequences (Ynm;) of scalars with |ypmj| < 1, for all n,m,j €
N xNxN.

Definition 2.14 A triple sequence space Q) is said to be monotone if it contains the canoni-
cal pre-images of all its step spaces.

Lemma 2.3 Let M be a sequence space. If M is solid, then M is monotone (see [6]) .

Definition 2.15 A triple sequence space Q is said to be convergence free if (Ynm;) € Q,
whenever (Tpmj) € Q and Ty = 0 implies ypmj = 0.

Definition 2.16 A triple sequence space Q) is said to be sequence algebra if (Zym; - Ynm;) €
Q, whenever (zpm;) € Q and (Ynmj) € Q-

Definition 2.17 A map h defined on a domain D C X ie. h : D C X — R is said to
satisfy Lipschitz condition if |h(x) — h(y)| < K|z — y| where K is known as the Lipschitz
constant.

Remark 2.1 A convergence field of I-convergence is a set F/(I) = {x = (x,,) € l : there
exists /-limz € R}. The convergence field F'(I) is a closed linear sub-space of I, with
respect to the supremum norm F(I) = I, N ¢! (see [13]).

Otherwise, consider a function ¢ : F'(I) — N such that ¢(z) = I[-limz, for all z €
F(I), then the function ¢ : F'(I) — R is a Lipschitz function (see [9]).

3 I3-convergent by modulus function

We define and introduce the following classes of sequence spaces:

cg(f) = {(znm;) € w: I3 —lim f(|zpm;) = L, for some L} € 1, 3.1
Cho(f) = {(@amj) € w : Iz = lim f(|zpm;) = 0} € I, (3.2)
lgoo(f) = {(xnmj) Cw: sup f(|$nmj) < OO} el (3.3)

nmj

Besides, m(f) and m? , (f) are denoted as:
mi(f) = c5(f)Nif,
mi, () = b, (F) Nih_.
I

Theorem 3.1 For any modulus function f, the sequences ci, céo( f), ms(f) and méo (f)
are linear.
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Proof. We just prove the case cé (f), the others are proved similarly.

Let (Tnmy), (Ynm;j) € ci(f) and let 7, & be scalars. Then
Is-lim f(|xpm; — L1]) = 0, for some Ly € ¢;
Is-lim f(|ynm; — L1|) = 0, for some Ly € c.

This is for a given € > 0, thus we have that
. €
le{(n,m,])ENXNXNZf(’l’nmj—LlD>§}€I, 3.4

Wy = {(n,m,j) € Nx Nx N: f(|ghmj — La|) > g} el (3.5)

It is well know that f is a modulus function, for that reason we have that

S @nms + 0Ynm;) — (L1 + 0L2)|)

< f(l[enmg = Lal) + f(16]lynm; — Lel)

< fllznmi — Lal) + f(|ynms — La|)-
Now, taking into account (4) and (5), we have that
{(n,m,5) e Nx N xN: f(|(vZnmj + 0Ynm;j) — (YL1 + 0L2)|) > e C W1 U Wh.
Therefore, this shows that (YZrm; + 0Ynmj) € c(f), and hence ci(f) is a linear space.

Theorem 3.2 Any sequence v = (Znm;) € mé( f) is Is-convergent if and only if for every
€ > 0 there exits N(€), M(€), J(e) € N x N x N such that

{(n7m>.j) eENXNxN: f(|xnm] - xN(E)M(E)J(E)‘) < 6} € mé
Proof. Consider L = I3-lim x, then
Ble) ={(n,m,j) e Nx NxN: |zpm; — L| < g} € mi(f). Forall e > 0.
Now, fix N(e), M (€), J(e) € B(e). Then, we have that

€ €
TN ()M ()T (e) — Trmgl < |TN(M()I(e) — LI+ |L — Tnmg| < 5 + 5 =€

Which holds for all n, m, j € 3(e). Hence,
{(n,m,j) € Nx NxN: f(|Znmj — TN M()(0)]) < €} € mE([).
Conversely, consider
{(n,m,j) € Nx NxN: f(|Znmj — TN M(e)(0)]) < €} € mE(f).
This is that
{(n,m,j) € NXN X N: (|Znmj — TN Mm(e)0)]) < €} € mE(f), forall e > 0.
Then, the set

Ws(e) = {(n,m,j) € NXNXN: Zpmj € [Tn(0)M(e)() — € TN(OM() () €} €5 (f),
for all e > 0.
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Now, let A(e) = [xN(E)M(e)J(e) — &, TN(e)M(e)J(e) T 6]. If we fix € > 0, then we have
W3(e) € mi(f), as well as, Ws(e/2) € mi(f). Hence, W3(e) N W3(e/2) € mi(f). This
implies that A(e) N A(e/2) # (. This is that

{(n,m,j) € Nx NXN: p; € A} € mi(f).

Thus, diam(A) < diam(A(e)), where the diam of A denotes the length of interval A.
In this way, by induction we obtain the sequence of closed intervals

1
With the property that diam(Ipm;) < idiam(In,l)(m,l)(j,l)) for n,m,j = 2,3,4, ...

and {(n,m,j) € NX N XN : Zy; € Lym;t € mi for nym,j = 2,3,4,.... Then,
there exits a o € () I, where n,m,j € N x N x N such that ¢ = I3-lim x. Therefore,
f(o) =1 — 3-lim f(x). Hence, L = I3-lim f(z).

Theorem 3.3 Let f and g be modulus functions that satisfy the Ao-conditions. If X is any
of the spaces ci, ct o’ mi and m} o Then, the following assertions hold:

1 X(g) CSX(f9g)
2 X(f)nX(g) € X(f +9)

Proof. 1 Let (Znm;) € 4 (g). Then,
I3 — }Llnr% 9(|Znm;j|) = 0. (3.6)

Now, let € > 0 and choose § with 0 < § < 1 such that f(r) < e for 0 < r < 1. Write
Ynmj = 9(|Tnm;|) and consider limy,; f(Ynm; = lim f(ynmj)ysjlj +1m f(Ymn;)
Then, we have that

>0 .
ynmj

b f (Ynm;) < f(2) i (gnm;)- (3.7
Ynmyj Ynmj

For ypm; > 0, we have yp;m; < <1+ . It is well known that f is non-

J

decreasing, this implies that

nmj 1 1 2 nmj
F@amg) < F(1+ 5 < 2 F(2) + 5 F(FH).

Now, it is well known that f satisfies As-condition, therefore

Flnmg) < 5200 @) 4 KU f(2) = KU (a),

In consequence,

lim f(ynmj) < max(l, K)é_lf@) hm(ynmj>' (3.8)
J nmgj

nm,

By (6), (7) and (8), we have that (2nm;) € c§ (f - g). Therefore, i (9) C ¢4 (f - 9).
The others cases are proved similarly.
2 Let (Znmj) € ¢4, (f) N e, (g). Then,

I3-limppm; f(|2nm;|) = 0 and I3-limy,m; g(|2nm;|) = 0,
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m (f + g)(|Tnmgl) = Um f(|Znms]) + g(|Tnmsl) = Hm f([2nmg]) + lIm g(|znm;|) = 0.
nmj nmj nmj nmj

Therefore, limpm;(f + g)(|Tnmj|) = 0, which implies that (z,,,;) € X (f + g), this is
that X (f) Nz(G) C z(f + g).
1
30

Theorem 3.4 The spaces c5_ (f) and mgo (f) are solid and monotone.

Proof. We just prove the case cg (f), the another is proved similarly.

Let (nmj) € c5(f), then I3-limpm; f(|Znm;|) = 0. Now, let (ynm;) be a sequence of
scalars with |yp,,;| < 1 forall n,m,j € N x N x N. Then, we have that

Ig—lim f(”ynmj-%'nmj’) < I3'hmnmj f(h’nm]”xnmjn
= [Ynmg [ I3-1impmj f(|Tnmg]) = 0

Thus, I3-limymj f(|YnmjTnmjl) = 0 forall n,m,j € N x N x N which implies that
YnmjTnmj € cgo( f). Therefore, the space céo( f)issolid and by the Lemma 2.3, c§0 is

monotone.

Remark 3.1 The spaces cg and m§ are neither solid nor monotone in general as can be seen
in the following example:

Let I = I5 and f(x) = a2 for all = € [0, 00). Consider the K-step space X (f) of X
defined by: Let (2y,m;) € X and let (ynm;) € Xk be such that

N ) (@pmg), if n,m, j is even
(Ynmi) = {0, otherwise (3.9)

Suppose that (x,,,;) is a sequence defined by (xy,,;) = 1 foralln,m,j € N x N x N.
Then, (2nmj) € ci(f), but its K-stepspace preimage does not belong to ck( f). Therefore,

ck(f) is not monotone and hence ¢} i not solid.

Theorem 3.5 The spaces cé( f) and céo (f) are sequence algebra.

Proof. We just prove the case cgo (f), the another is proved similarly.

Let (Znmj, (Ynmj) € cgo(f). Then, I3-lim f(|zpm;i|) = 0 and Iz-lim f(|ynm;|) = 0.

Then, we have that I3-lim f(|Zpmj - Ynm;j|) = 0. Therefore, (Zpm; - Ynm;j) € céo(f) is a
sequence algebra.

Remark 3.2 The spaces c§(f) and ¢} (f) are not convergence free in general as can be
seen in the following example:

Let I = Iy and f(z) = 2° for all z € [0, 00). Consider the sequences (Zy,;) and
(Ynmj) defined by zp,; = 1/(n+m+7) and ynpm; = n+m+jforalln,m, j € NxNxN.
Then, (zpmj) € c§0 and CI, but (ynmj) ¢ c§0 and (ynm;) ¢ ci. Therefore, c(f) and

céo (f) are not convergence free.

Theorem 3.6 Let f be a modulus function. Then, cs,(f) C cg C lgoo and the inclusions
are proper.

Proof. The inclusion ¢4 (f) C c§(f) is followed by (1) y (2).

Letx = pm; € cg. Then, there exits L € C such that I3-lim f(|2ym; — L|) = 0. Thus,
we have that f(|2nm;|) < 1/2f(|zpmj — L|) + f1/2(]L|). Taking the supremum over n, m
and j on both sides, we obtain x,,,; € léw.

Now, we will show that the inclusion is proper.
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1 C30(f) - Cg(f)
Letx = (Tpmj) € ck(f), then I3-lim f(|Zpm;|) = L for some L € C and L # 0, which
implies = ¢ ¢4 (f). Therefore, the inclusion is proper.

2 ¢4(f) C s (f)-

Let © = (@nmj;) € 1§ (f), then
Is-lim f(|znm;|) < oo,
I3-lim f(|zpm; — L + L]) < oo,
Is-lim f(|@nm; — L) + I3-lim f(|L]) < oo,
I3-lim f(|2pnm;) — L[) < oo,
Iy-lim f({m;) — L) # 0.
Therefore, x ¢ ci(f) and then the inclusion is proper.

Theorem 3.7 The function t : mi(f) — R is the Lipschitz function, wehre mi(f) =
cA(f) ML (f), and hence uniformly continuous.

Proof. Let z,y € mi(f), where 2 # y. Then, the sets
Wy ={(n,m,j) e NX NXN:|zpm; —t(x)] > ||z —y|} €,
Wy ={(n,m,j) € NXNXN: |ynm; —t(y)| = [z —yl} € L.
Then, the sets
Py ={(n,m,j) € Nx NxN: |znm; — t(z)| < |z —yll} € M(f),
Py = {(n,m,j) € Nx Nx N |yum; —t(y)] < |l —yll} € M{(f),
Therefore, we also have that P,NP, € mi(f), thus B # (). Now, by taking n,m, j € B,
t(z) = t(y)| < [6(@) = Zumg| + [Tnmj = Ynmi| + [Ynmj — t(y)| < 3]z = yl|
Consequently, ¢ is a Lipschitz function.

Remark 3.3 The above result is satisfied for m§ , and it is proved similarly.

4 Is-convergent by strong Cesaro sequence spaces

We define and introduce the following classes of sequence spaces:

op

1
Definition 4.1 Cl; = {z = (zpm;) € w: {(n,m,j) € NxNxN: [3- lim — Z |Tnmj — L|| = 0}

S

10p—00 0P nmj—=1
Jorsome L € C} € 1.
1 0D
Definition 4.2 Cl; = {2 = (#nm;) € w: {(n,m,j) € NxNxN: Ig-iOELnOO io])m;ﬂ [nm;ll = 0}} €

I

Theorem 4.1 The sequences spaces Cly and CLy  are linear.
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Proof. Let © = (nm;) and y = (Ynmj), Where z,y € 0813. Then , we have that

op

1

I3- io}oigloo op mgj:l |znm; — L|| = 0 for some L € C.
1 iop
I3- lim — Z |Ynmj — Lol|| = 0 for some Lo € C.
10p—00 10D nmj=1
Now, let
1 iop
Vi = {(n,m, j) ENXNXN:@ > lwnms — LI, 4.1
nmj=1
1 iop
Vo= {(nm,j) ENXNxN: o > Nynms — Loll}- (4.2)
nmj=1

Now, let v and ¢ be two any scalars. Taking into account the properties of norm, we
have that
1 iop
lim — > | (YZnmj + SYnmi) — (L + ¢Lo) |

top—00 10
P pnmj:l

. 1 . 1
< lim —|y[[|znm; — L+ Lm —[@|||ynm; — Lol|-
10p—00 L0P 10p—00 10D

Thus, from (10) and (11), we have that for every € > 0

op

1

{(nm,j) e NXNxN: lim = 3 ([ (Yewms + @ynms) = (1L + ¢Lo)| 2 €} €
nmj=1
Vi U Vs,

Therefore, (7$nmj + ¢ynmj) € Cslg for all scalars v, ¢ and (xnmj), (ynmj) S C§3. In
consequence, this implies that 0813 is a linear space.

The proof of C, , 1s a linear space is proved in the same manner of the CL,.

Proposition 4.1 Let x = (xnm;) € w be any triple sequence, then C§30 c CL,.
Proof. The proof is followed by the Definitions 4.1 and 4.2.
Theorem 4.2 The space C§3O is solid.

Proof. Let (zym;) € C’SI30 be any element. Then, we have that
1 10D
{(n,m,j) ENxNxN:I3- lim — Y |zpm;l = 0}.

10p—00 10
P pnmj:l

Now, let (7nm;) be a triple sequence of scalars such that |vy,,;| < 1, for all nmj € N x
N x N. So, we gets that
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op

1
— Z |’Ynmj| <1

top nmj=1
Then , from the above inequality, we have that

iop iop

1 1
— Z H’Ynmjxnij:»i Z ”Ynmj’”l’nmju
iop iop =
1 iop 1 10p 1 top
:g Z h’nmj’g Z Hxnmj”<; Z ”xnm]H
pnmj:l pnmj 1 p”mjzl

for all (n,m,j) € N x N x N. Therefore, the space C. 53, 18 solid.

Theorem 4.3 A triple sequence © = (Zpmj) € CL .3 I8 I3-convergent if and only if for every
€ > 0, there exits t = t(e) € N x N x N such that

i0p

{(n,m,j) ENxNxN: - annmj x| < €} € F(I).

nmj
Proof. We begin proof =:
1 4
Consider z = (2pmj) € CL. Then, I3-lim;pp—o0 iop Zif:;j |Zrmj — L|| = 0. Thus,
for all € > O the set
iop
Cig = {(n,m,j) ENx NxN: - ZHxnm] L|| < }eF( ).
nm]
Fix a t(e) € C¢,, then we obtain
10p 10J i0p € €
; Z [@nm; — | < — Z [@nm; — Ll + — Z Jze — L|| < 5 + 5=
P nmj nm] nmj

Which holds for all (n,m, j) € CSs. Therefore,
op
{(n,m,j) e Nx NxN: 72 |Znmj — il < €} € F(I).

nmg

Now, we proof «:

Consider that for all € > 0, the set
iop

{(n,m,j) e Nx NxN: 72\@%] x| < €} € F(I).

nmj
Then, for every € > 0, we have that
0p
Mg, ={(n,m,j) e Nx NxN: Zuan
nmJ
iop iop

ZII«'L’tH—6 7Z|thH+6}€F( )-

nmj nm]

zop
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i0p i0p
We will denote Wy - = zo Z |zl — €, — Z |zt || + €].
nmj nm]
For fixed € > 0, we have that My . € F(I), as well as, M:ﬁ] € F(I). Therefore,
M, N M:/nf] € F(I). This implies that My, . N :L/TS] # (). Thus,
1 io0p
{(n,m,j)ENXNXN ZHxnmJHEanJ}EF( )-
nmj

For this, we have diam(Wym;) < diam(Wy,, ), where the diam(W,,;) denotes the

nmj
length of the interval of W,,,;. In this way, by induction, we have the sequence of closed
intervals WS, . = UJ, 2 Uy 2 .. 2 Up,. 2D ... With the property that U,,. <
1/2diam(U,,..), fori = 1,2,3, ... and

iop

{(n,m,j) e NXNxN: ZHfEnmyH € Uy} € F(D),
nmj
Fori =1,2,3,.... Then, there exists a L € ﬂU}lmJ such that L = I3-lim;op 00 1/i0p an] |1 nms |-

This proves that © = (xnmj) € C’ém] is I3-convergent.

Theorem 4.4 Let © = (Tpm;) and y = (Ynm;) be any two double sequences such that
T(z-y) = T(x)T(y). Then, the space Cly and Cs are sequence algebra.

Proof. Let = (2ym;) and y = (Ynm;) be any two elements of CL; with T'(z - y) =
T'(x)T(y). Now, for every € > 0 choose A > 0 such that € < A. Then, we have that

10p
€
{(n,m,j) e Nx Nx N: ZHT Tamj) = Lol < 53} € F(I)

nm]

and
op

€
T (Ynm) — L. — F(I).
{(nm.j) €N X NxN: 3|17y I < g} € FU)

nm]

Taking into account the above and the properties of norm, we have that

10p
1

@ Z ||T ﬂ57177@]?/71771]) LqLZH

nmj
1 iop
= Z | T (Znmi)T (Ynmj) — LgL-||

10
P nmj

iop
= Z T (@nms )T (Ynmj) — LaT (Ynmj) + LgT (Ynmj) — LgL:|

wp oy
1 iop i0p 1 iop
< — D T (Ymy)| Z 1T (nmg) = Lall + Lol > T Yrmg) — Lol
p"m] nm] /4 nmj
2
Ll
< 2a M 2\L |
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Hence, the set

1 iop
) ENXNxXxN:— T(TnmiYnmi) — LeL:|| > 1.
{(n,m,j) € Nx N x iop Z T (@rm Ynm; ) gL:|| > €} €

nmj

In consequence, (Tpmj)(Ynm;) € Cly. Therefore, CL is a sequence algebra.

The proof of C; is a sequence algebra is proved in the same manner of the C’;.
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