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Abstract. The one-dimensional Schrödinger equation on the entire axis with an exponentially confining
potential is considered. The asymptotic behavior of the eigenvalues is found.
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1 Introduction and main results

Confining potentials are used as a model of coupled systems with strong localization.
Among other models, we note the linear potential and the harmonic oscillator potential,
which describe confinement with a quadratic and linear force, respectively(see [5,7,8,11]).
Recently, exponentially confining potentials have also grown in great interest (see [2]).

Consider a one-dimensional Schrödinger potentials equation of the form

−y′′ +
(
A1e

x +A2e
−x

)
y = λy, −∞ < x < +∞, (1.1)

where A1 and A2 are positive constants and λ is the spectral parameter. The left side of
equation (1.1) generates a self-adjoint operator L (A1, A2) = − d2

dx2 + A1e
x + A2e

−x in
the space L2 (−∞,+∞). Since A1e

x + A2e
−x → +∞ for x → ±∞, the spectrum of the

operator L consists [4] of simple real eigenvalues λn, n = 0, 1, 2, ..., condensing to +∞,
with λn ≥ inf

−∞<x<+∞
(A1e

x +A2e
−x) = 2

√
A1A2 > 0.

In this paper, we study the asymptotic behavior of the eigenvalues λn, n = 0, 1, 2, ... for
n→ ∞.

Let us formulate the main result of this work.
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2 Eigenvalue asymptotics of a one-dimensional Schrödinger operator with . . .

Theorem 1.1 For the eigenvalues λn, n = 0, 1, 2, ... of the operator L (A1, A2) the asymp-
totic formula

λn ∼ πn

2 lnn
, n→ ∞. (1.2)

2 Proof of the theorem

Consider the following boundary value problem

−y′′ + αexy = λy, −∞ < x < +∞, (2.1)

y (0) cosβ + y′ (0) sinβ = 0, (2.2)

where α > 0 and β-is a real number. Consider a self-adjoint operator L0 (α) generated in
the space L2 (0,+∞) by the left side of equation (2.1) and boundary condition (2.2). Since
ex → +∞ for x → +∞, the spectrum of the operator L0 (α) is discrete [4] and has a
unique limit point at infinity. Denote by µn = µn (α) , n = 0, 1, 2, ... the eigenvalues of the
operator L0 (α). Obviously µn ≥ inf

0<x<+∞
αex = α > 0. It is known [1,3] that equation

(2.1) has a solution ψ (x, λ), which can be represented as

ψ (x, λ) = K2i
√
λ

(
2
√
αe

x
2

)
,

where Kν (z) is a modified Bessel function of the second kind (see [1,3]), i.e. solution of
the equation

z2u′′ + zu′ −
(
z2 + ν2

)
u = 0.

It is also known [1,3] that for each z > 0 the function Kν (z) is an entire function of index
ν and the integral representation

Kiλ (z) =

∫ ∞

0
e−zcht cosλtdt, |arg z| < π

2
, λ ∈ C

is valid. Therefore, for every fixed x, 0 ≤ x < +∞ , the solution ψ (x, λ) serves as an
entire function with respect to λ. Further, the following asymptotic formula is true [1]

Kν (z) =

√
π

2z
e−z

(
1 +O

(
z−1

))
, z → ∞.

This implies that for every fixed λ the solutionψ (x, λ) belongs to the spaceL2 (0,+∞).Whence
it follows that the eigenvalues of the operator L0 (α) coincide with the zeros of the function
Ψ (λ) = ψ (0, λ) cosβ + ψ′ (0, λ) sinβ.

Let us now study the asymptotic behavior of the eigenvalues of the L0 (α). Since the
function q (x) = αexsatisfies all conditions of Theorem 7.3 from the monograph [9] (see
also [10]), we have ∫ lnα−1µn

0

√
µn − αexdx ∼ πn, n→ ∞. (2.3)

Further, note that ∫ lnα−1µn

0

√
µn − αexdx =

∫ µn

a
t−1√µn − tdt

= µn

∫ µn

a

µn
t

√
1− t

µn
d
t

µn
= µn

∫ 1

αµ−1
n

u
√
1− udu. (2.4)
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Since the function G (u) = 2
√
1− u − ln

(
1 +

√
1− u

)
+ ln

(
1−

√
1− u

)
serves as an

antiderivative function g (u) = u−1
√
1− u, then from formula (2.4) we have∫ lnα−1µn

0

√
µn − αexdx = µn lnµn

(
1 +O

(
1

lnµ

))
, n→ ∞.

Comparing this relation with (2.3), we obtain

µn lnµn = πn [1 + o (1)] , n→ ∞.

If now we are looking for µn in the form µn = πn
lnπn (1 + εn), then from the last equality it

is easy to derive the relation εn = o (1) , n → ∞. Therefore, for the zeros of the function
ψ (0, λ) = K2i

√
λ (2

√
α), i.e. for the eigenvalues of the operatorL0 (α) is true the following

asymptotic equality

µn ∼ πn

lnn
, n→ ∞. (2.5)

We now introduce a self-adjoint operator L0 (A1, A2), generated in space L2 (0,+∞)
by the differential expression l (y) = −y′′ + (A1e

x +A2e
−x) y and boundary condition

(2.2). Further, setting α = α1 = min {A1, A2} and α = α2 = max {A1, A2}, we find that

L0 (α1) ≤ L0 (A1, A2) ≤ L0 (α1) .

Then, by virtue of the minimax principle (see [6]), we find that the eigenvalues λ0n of the
operator L0 (A1, A2) satisfy the inequality

µn (α1) ≤ λ0n ≤ µn (α2) .

From the last inequality and (2.5) it follows that

λ0n ∼ πn

lnn
, n→ ∞. (2.6)

Consider now in the space L2 (0,+∞) the self-adjoint operators LDy = −y′′+
+A (ex + e−x) y, y (0) = 0 and LNy = −y′′ + A (ex + e−x) y, y′ (0) = 0, which are
special cases of the operator L0 (A1, A2). Let λn (D) and λn (N), n = 0, 1, 2, .. denote the
eigenvalues of the operators LD and LN , respectively. Due to (2.6) we have

λn (D) ∼ πn
lnn , n→ ∞,

λn (N) ∼ πn
lnn , n→ ∞.

(2.7)

Since the function ex + e−x is even, the spectrum of the operator L (A,A) coincides with
the eigenvalues of the operators LD and LN . Setting λ̂2n = λn (D) , λ̂2n+1 = λn (N) ,
n = 0, 1, 2, ..., from (2.7) we obtain

λ̂n ∼ πn

2 lnn
, n→ ∞.

Then from the inequality

L (α1, α1) ≤ L (A1, A2) ≤ L (α2, α2)

and the minimax principle follows (1.2). Thus the theorem is proved.
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