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1 Introduction and main results

Confining potentials are used as a model of coupled systems with strong localization.
Among other models, we note the linear potential and the harmonic oscillator potential,
which describe confinement with a quadratic and linear force, respectively(see [5,7,8,11]).
Recently, exponentially confining potentials have also grown in great interest (see [2]).

Consider a one-dimensional Schrodinger potentials equation of the form

—y" + (A1e” + Age™®) y = Ay, —00 < z < +00, (1.1)

where A; and A, are positive constants and A is the spectral parameter. The left side of
equation (1.1) generates a self-adjoint operator L (A;, As) = —% + A1e” + Aze " in
the space Lo (—00, +00). Since Aje® + Age™™ — 400 for & — +00, the spectrum of the

operator L consists [4] of simple real eigenvalues \,, n = 0,1, 2, ..., condensing to +oco,
with \,, > inf (Aleac + AQG_JC) = 2¢y/A1A5 > 0.

—oo<r<+00
In this paper, we study the asymptotic behavior of the eigenvalues A\,,, n = 0,1, 2, ... for
n — oo.
Let us formulate the main result of this work.
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2 Eigenvalue asymptotics of a one-dimensional Schrodinger operator with . ..

Theorem 1.1 For the eigenvalues \,,, n = 0,1,2, ... of the operator L (A1, As) the asymp-

totic formula
™

2 Proof of the theorem

Consider the following boundary value problem
—y 4+ ae®y = Ny, —00 < x < 400, 2.1

y (0)cos B+ 3 (0)sin 3 = 0, (2.2)

where o > 0 and f3-is a real number. Consider a self-adjoint operator L («) generated in
the space Lo (0, +00) by the left side of equation (2.1) and boundary condition (2.2). Since
e’ — +oo for z — +oo, the spectrum of the operator Lg («) is discrete [4] and has a
unique limit point at infinity. Denote by u, = , (), n = 0,1, 2, ... the eigenvalues of the

operator Lo («). Obviously p,, > inf «ae® = a > 0. It is known [1,3] that equation
0<z<+o00

(2.1) has a solution 1 (x, \), which can be represented as

U (@) = Ky (2\/&3) :

where K, (z) is a modified Bessel function of the second kind (see [1,3]), i.e. solution of
the equation

20" + 2 (22 + 1/2) u = 0.
It is also known [1,3] that for each z > 0 the function K, (z) is an entire function of index
v and the integral representation

[e.@]
Kix(2) :/ e Mt cos \tdt, |arg z| < g, reC
0

is valid. Therefore, for every fixed z, 0 < x < 400 , the solution ¢ (z, \) serves as an
entire function with respect to A. Further, the following asymptotic formula is true [1]

K, (z) = \/?Ze_z (1+0 (1), 2 — oo

This implies that for every fixed A the solution 1) (x, A) belongs to the space Ls (0, +00).Whence
it follows that the eigenvalues of the operator Lg («) coincide with the zeros of the function
7 (N) =1 (0,X)cos B+ (0,\)sinf.

Let us now study the asymptotic behavior of the eigenvalues of the L («). Since the
function ¢ (x) = ae”satisfies all conditions of Theorem 7.3 from the monograph [9] (see

also [10]), we have
Ina=tu,

V iy — ae®dz ~ T, n — oo. 2.3)

0
Further, note that

lncu_l,un

HUn
Viy — aetdr = / 7 oy, — tdt

/M" Hn 1 M—d— / uv/I = udu. 2.4)
n aun
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Since the function G (u) = 2¢/1 —u —1In (1 + /1 —wu) 4+ In (1 — /1 — u) serves as an

antiderivative function g (u) = u~'y/T — u, then from formula (2.4) we have

1na71/”‘7b 1
/ Vi, — ae®dr = pg In py, <1+O<>>,n—>oo.
0

In p
Comparing this relation with (2.3), we obtain

ppInpy, =7mn [14+0(1)], n — oo.
If now we are looking for f,, in the form j1,, = - (1 + €,), then from the last equality it
is easy to derive the relation €, = 0 (1), n — oo. Therefore, for the zeros of the function
¥ (0,A) = K,, /5 (24/a), i.e. for the eigenvalues of the operator Lo () is true the following
asymptotic equality

L, ~ on’ n — 00. (2.5

We now introduce a self-adjoint operator Lo (A;, As), generated in space L3 (0, +00)
by the differential expression I (y) = —y” + (Ai1e” + Aze™") y and boundary condition
(2.2). Further, setting & = oy = min {A;, A2} and @ = ap = max { A1, A2}, we find that

Lo (a1) < Lo (A1, A2) < Lo (a1).

Then, by virtue of the minimax principle (see [6]), we find that the eigenvalues A2 of the
operator Lo (A1, Ag) satisfy the inequality

fin (1) S A) < i (a) -

From the last inequality and (2.5) it follows that

A~ T (2.6)
Inn
Consider now in the space Ls (0,+00) the self-adjoint operators Lpy = —y’+

+A(e*+e )y, y(0) = 0and Lyy = —y" + A(e* +e ")y, ¥ (0) = 0, which are
special cases of the operator Lg (A1, A2). Let A\, (D) and A\, (N),n = 0,1, 2, .. denote the
eigenvalues of the operators Lp and Ly, respectively. Due to (2.6) we have

2.7

Since the function e® + e~ " is even, the spectrum of the operator L (A, A) coincides with

the eigenvalues of the operators Lp and Ly. Setting Aoy, = A, (D), Aopy1 = A\ (N),
n=20,1,2,..., from (2.7) we obtain

o ™

n "~

21nn’ n — Q.

Then from the inequality
L(ai,a1) < L (A1, A2) < Loz, az)

and the minimax principle follows (1.2). Thus the theorem is proved.
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