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Abstract. We shall give necessary and sufficient conditions for the boundedness of the anisotropic frac-

tional maximal operator M in total anisotropic Morrey spaces Lg’ A uR™).
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1 Introduction

The aim of this paper is to study anisotropic fractional maximal operator M, g in total
anisotropic Morrey spaces Lg (R

Let R" be the n-dimension Euclidean space with the norm |z| for each € R"®, S»~!
denotes the unit sphere on R™. For x € R™ and r > 0, let £(x, ) denote the open ball

centered at z of radius 7 and CS(:U, r) denote the set R"\E(x, 7). Let d = (di,...,dy),
di>1,i=1,....n,|d =" d;and tr = (tdlxl, ... ,td"mn). By [3,5], the function
F(x,p) =1, x2p~2%, considered for any fixed z € R", is a decreasing one with respect
to p > 0 and the equation F'(z, p) = 1 is uniquely solvable. This unique solution will be
denoted by p(x). It is a simple matter to check that p(x — y) defines a distance between any
two points z, y € R". Thus R", endowed with the metric p, defines a homogeneous metric
space ([3-5]). The balls with respect to p, centered at = of radius r, are just the ellipsoids
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2 Boundedness of the anisotropic fractional maximal operator in ...

with the Lebesgue measure |E4(x,r)| = v,rl9, where v, is the volume of the unit ball in
R™ Letalso IIg(x,r) = {y € R" : maxj<j<y, |z; —yi|1/di < 1} denote the parallelopiped,
Cé’d(a:,r) = R" \ &4(x,r) be the complement of 4(0,7). If d = 1 = (1,...,1), then
clearly p(xz) = |z| and &1 (z,7) = E(x,r). Note that in the standard parabolic case d =
(1,...,1,2) we have

.’13/2+ x’4+x2
ﬂ(x):\/’ | 2‘ | = x= (2, @)

Let f € Llloc(]R”). The anisotropic fractional maximal operator M is given by

M () = sup € (e, 1)~ / F(y)ldy, 0<a<|d],
t>0 E(x,t)

where |E(x,t)| is the Lebesgue measure of the ellipsoid &(x,t). If a = 0, then M? =
Mél is the anisotropic Hardy-Littlewood maximal operator. If d = 1, then M, = M¢ is
the fractional maximal operator and M = M is the classical Hardy-Littlewood maximal
operator.

Morrey spaces, introduced by C. B. Morrey [11], play important roles in the regularity
theory of PDE, including heat equations and Navier-Stokes equations. In [9] Guliyev intro-
duce a variant of Morrey spaces called total Morrey spaces Ly, » ,(R"), 0 <p < 0o, A € R

and ¢ € R. In [1] the authors was consider the total anisotropic Morrey spaces Lﬁ N M(R”),

give basic properties of the spaces Lg A\ M(R”) and study some embeddings into the Morrey

space Li A (R™). In [10] was find necessary and sufficient conditions for the boundedness
of the fractional maximal operator M, in the total Morrey spaces Ly, » ,,(R").

The aim of this paper is to give necessary and sufficient conditions for the bounded-
ness of the anisotropic fractional maximal operator M, g on total anisotropic Morrey spaces
Ley (R,

The structure of the paper is as follows. In Section 2 we give a characterization for the
strong and weak type Spanne and Adams type boundedness of the anisotropic fractional
maximal operator M on LZ, A, (R™), respectively.

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A ~ B and say that A and B are
equivalent.

2 Anisotropic fractional maximal operator in total anisotropic Morrey spaces

In this section we find necessary and sufficient conditions for the boundedness of
the anisotropic fractional maximal operator M¢ in the total anisotropic Morrey spaces
d

Lp,Avu(Rn)‘
Definition 2.1 Let d = (dy,...,dy),d; > 1,1 =1,...,n. Letalso0) < p < oo, A € R,
w € R, [ty = min{l,t}, ¢ > 0. We denote by Lg)\(R”) the anisotropic Morrey space,

by zi \(R™) the modified anisotropic Morrey space [6,8], and by LZ’ /\’M(R") the total

anisotropic Morrey space [1,9] the set of all classes of locally integrable functions f with
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the finite norms

2
IAlpa, = xeus@%wt P | fllz, )
2
Hf”z;A = xeﬂzgpbo[th "Nz, e )

_A B
= tl, P [1/t]F
I17lg,, = 5o [ " /A7 Ifllzyean:

respectively.

Definition 2.2 Let d = (dy,...,dy),d; > 1,1 =1,...,n. Letalso0 < p < oo, A € R
and | € R. We define the weak anisotropic Morrey space WLg’ A(R™), the weak modified

anisotropic Morrey space WEZ A(R™) [6,8] and the weak total anisotropic Morrey space

WL; A M(R”) [1,9] as the set of all locally integrable functions f with finite norms
151 o |11
= Ssu P :
WL | xeRngw W Lp (& (x,t))
2
fllywga = sup [t]y " [[f ;
g, = s (017 1wy
A 2
— P I1/t]P
IFllvwra xeﬂzgg>0[t]1 (/87 W fllwe, )
respectively.
Lemma 2.1 [9, Lemma 2]If0 <p <o0,0< A< |d|and0 < p < |d|, then
Lg,)\,p(Rn) = Lg,min{)\,p} (Rn) N Lg,max{)\,y} (Rn)

and

1Flzs ey = max {Ifllge e b= Dl
Lemma 2.2 [9, Lemma 3]If0 <p <00, 0 <A< |d|and0 < p < |d|, then

WL, (R =WL

p,min{A,u} (Rn) N WLd,max{/\,u} (Rn)

p

and

W hwig ey = mex {Iflwzs W hwzs -
Remark 2.1 Let 0 < p < co. If min{\, u} < 0 or max{\, u} > |d|, then
Ly (R = WLG, ,(R") = O(R),
where © = O(R") is the set of all functions equivalent to 0 on R".

The following local estimate is valid (see also [7]).
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Lemma 2.3 [7, Lemma 4.1] Let0 < o < |d, 1 < p < 4!, ana } —

p > 1 the inequality

ld]

1dl _lal
IMEfI L@ ST tS;JQPt TN fll 2 (e ()

holds for all £(x,r) and for all f € LY°(R™).
Moreover if p = 1, then the inequality

1dl _ldl
IME fllwry @ S0 supt @ | fllLy )
t>2r

holds for all £(z,r) and for all f € L'*¢(R™).

q — Jd

L — & Then, for

2.1

2.2)

The following is Spanne’s type result for the anisotropic fractional maximal operators

in total anisotropic Morrey spaces (see, for example, [7]).

Ipr>1 felLd

W
(R”) then MAf € Ld

q,

(R™) and

DAL Aq pg
p’p

)

HM fHLd < Cp)\,u,

p=i)
TP

Il

J
2 P

where Cp, ) 1.4 depends only on p,\, j1 and n.

2. przl,fELf/\ (R™), then M f € W L? R™) and

q,Aq, uq(
d
1M flwre < Ciaallfllg

where C ) ;.4 s independent of f.

Proof. Let 1 < p < oco. From the inequality (2.1) (see Lemma 2.3) we get

2 u
I ML f| Lo = sup [r]y " [L/0)7 IMESIlL, oo

¢, 29 B9
5% z€R™, r>0

_2 |d|
< swp [y /e sup ¢ TN llyeean
z€R™, r>0
5 p ot a-ldh g aTh
S ey suplrly (/T e sup e [ (174,
s
[d] =X o ldl=u o ldl=2 —ay L=

= flle, o, suplrl 7 [/ T swpldy P [/
r>0 t>r

= 1fllzp a0

which implies that the operator M f is bounded from Lg Au(R™) o L,

P

2 g (R™).
"p’p

(2.3)

(2.4)
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Let p = 1. From the inequality (2.2) (see Lemma 2.3) we get

IMEF WLy gy = SUP [T L/ IMES lwr (e

z€R™, r>0
14|
< osup [P MA/rir Supt q||f||L1 1))

z€R™ r>0
11,0, S0plrIT 1/ 7= s 2= 101
—a+|d|—A a—(|d d )\ —a d
= 1£llLsr,. Sup[ 1] +ld|— [1/7] (Id|—p) igg[t] —(ldl—- [1/t] +(|d|—p)

= [z
which implies that the operator M f is bounded from Ly ) ,(R™) to WL xg uq(R™).

From Theorem 2.1 in the case o = 0 we get the following corollaries.
Corollary 2.1 [9, Theorem 1] Let1 <p <00, 0 < A< |d|and 0 < p < |d].
LIfp>1, feLpy,(R"), then M f € Ly ,(R") and
d
IMEf Ly, < Corpd 1 F 11z, 50
where C,, Au,d depends only on p, A, p, d and n.
2. If f € Lix,(R™), then Mf € WLy ,(R") and
HMdeWLl)\,M S Cl7>‘uu'7d HfHLl,A,H7

where C1 ) .4 depends only on p, A, i, d and n.

From Theorem 2.1 in the case A = p or u = 0 we get the following corollaries.

Corollary 2.2 [12, Theorem 54] Let1 < p < 00,0 < A < |d,0 < a < M‘T_A and
11 _
P a = I
LIfp> 1, f € Ly Ax(R™), then MAf € L, Aq (R™) and
T p
IMEFIL, 5y < Conallfllz, 0 2.5)

where C,, \ q depends only on p, \, d and n.
2.Ifp=1 f € Li\(R"), then M f € W Ly x\(R") and

IMEfllwe, ., < Cindlfllzy s (2.6)
where Cy ) q is independent of f.

Corollary 2.3 Let 1 < p < 00, 0 < \ < |d|, 0<a< ldl= 2 ana L -1 = &
LIlfp>1,f¢€ Ld \(R™), then M2f € o3 (R”) and
IMEfllza < Corallfllza 2.7)
Aq DA

@
where C,, \ q depends only on p, \ and n.
2.Ifp=1, f € L"(R"), then M2f € W L4 (R™) and

IMEFNwzare < Cind 1 f 7o (2.8)
where C1 ) q is independent of f.
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The following is Adam’s type result for the anisotropic fractional maximal operators in
total anisotropic Morrey spaces (see, for example, [6]).

>

Theorem 2.2 (Adams type result) Let 1 < p < 0o, 0 < min{\, u} < max{\,u} < |d
0 < o < ld=max{iu}
= P
|d|—max{A,u} e
])Ifl < P < —a thencondltlonm S 5—5 S m

is necessary and sufficient for the boundedness of the operator M2 from L%, (R™) to

p DA
Lq7A7M(R").
_ |d|—max{Apu} o e _1 o
2)Ifp=1< o , then condition A —min D] <1 7 < [d—max (o]

is necessary and sufficient for the boundedness of the operator M from Lf A\ N(]R”) to

1 1 e

WLZ’/\ L(R7).
3) I]‘W <p< W then the operator M is bounded from Lg)\’#(R")
10 Loo(R™).
, |d|—max{\,un} 1 1
Proof. Sufficiency. Let1 < p < o , |d|_m§‘1{/\7u} <5-5 < m and
f € Lp7>‘7}L(Rn)'
M f(x) ~supr® | Fll Ly e @)
r>0
. _ld
< Sng mln{ro‘ Mdf($)7 reT HfHLp(g(ac,r))}
r>
. d Q,M 2 -
< supmin{r® Mf(x),r" v [r]{ [L/7]y " || fllpa }
r>0 PAH
‘ . q_ld=2 o ldln
< sulgmm{r“M f@)irly 7 Wl 7 st
>
ld]—A
< max { sup min{r® M?f(x),7*" 7 || fllL,,.,.}
0<r<1 Pt
. a d o ldl=n
Sup mln{r M f(x)7r P Hf”Lp,)\,H}}'
r>1
Minimizing with respect to r, at
d d
= (”fHLP,/\,u)dmipn{)\,u} r= (”fHLp,me’W
Mdf(z) Maf(x)
we have
o ___ap
M f (@) < max { (M f (@)~ Fmmn0s || f 1m0
1— 0P T mar T
(M () O | | e (2.9)

where we have used that the supremum is achieved when the minimum parts are balanced.
From Corollary 2.1 and inequality (2.9), we get

d 1-2 d 2
IMafllza, S WAl NMEf)allpa
4\ AL A u

1-2 P
q dr|lq <
AUz, 3 M A S g o
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if 1l <p<qg<ooand
d 1-3 d
Mg, S 100" M e S 1

1>\u

ifp=1<qg<o0.

. |d|—max{\,u} 1 1
Necessity. Let 1 < p < p “’|d| mﬁg{)\u}ﬁg_ggm’fe
Lg A M(R”) and assume that M is bounded from Lg A\ M(R”) to Lgl A “(R”)

Define f,a(z) =: f(t%2), [t]1,+ = max{1,t}. Then

_2A I
HfthLz’/\’u = xei}}p 0[7"]1 P/ falln, )
_ldl -2
=t r sup [r];”

J=2
(/717 |yt
zER™, >0

=% s ()" e () st 0760 st
la] 2

a2 —u
=t v [y [t P

and
M fra(z) = ¢ Mg f(t'z),
d -5 bl ged
|pra|, =e swp LT UM ey
951 zeR™, r
-l [tr]q A/q [1/r]1 \#/4 -2 u J
=t ! ilip< [7“]1) T>0 ([ 1/(tr)] ) melzgﬁw[”h [1/(@r)]{ HMaf”Lq(s(tdx,tr))

0
A
q
1?

=t " [t [1/75]

un

By the boundedness of M from Ld w(R™) 10 e

g u(R™) we have

a+d _% % d
=t [ty p [/t HMafthLZ,A,u

)

A0
ot ldl _2 ©
ST g A
aldl_ldl A_A _By B
A GV AR T PR
_ldl= M_\d\ A ldl—p _ |dl=p
e L V7 P V1 7

Since Lg7)\7u(R") Lg ua(R™), we can assume that A < 1, and then min{A, u} = A,
max{\, u} = u.
1 1 : d —
If > < g7t m, then by letting ¢ — 0 we have HMafHLq,A,H = 0 for all
fe Ld’A#(R").
As well as if% > % + m, then at £ — oo we obtain HMngL?,A,u = 0 for all

fe LPM(R").
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a1l 1l a
Therefore iy < 5 — ¢ < [Wemaxon)

Letp—]_<w fELp)\u
Lg{ AR to WLg apu(R™). Then

<

(R™) and assume that M¢ is bounded from

Maallpg =700 /8 g,

and
d -5 B agd ped
M =t"% sup |[r]y " [1/r]{ [|MSSf(E- o
[pesill =t s T T DM o)
—aq-ld [t ]1 Mg [1/7"]1 ©/q -2 3 d
=t 4 su sup | ——— su trl; * [1/(tr)]? || M,
TJS([rh) r>18([1/<m~>]1) s e 1/ Ml eatniny

A

=t 1/

d
WLq,A,u

By the boundedness of M¢ from L4 AR to WLq Au(R™) we have

»nh:

_2A
[pais], = WA M

Q=

1}r {1/t]1 + HfthLd
ld|

_ ot g —ld H —hty

[1/t]1+ ! ||f||Ld
ldl—p

Syt 1Flleg

B —ld]+2+

\d|—
=t [tl; ¢ !

1 : d _
If1 < i m, then by letting ¢ — 0 we have HMOéfHWLg’)W = ( for all
f € LIAM(RR)'
. 1 : d _
Aswell asif 1 > o + m, then at £ — oo we obtain HMafHWLiML = 0 for
all f € L{ AR

Therefore m S 1-—

3) Let us show that, if W <p< W, then the operator M is
bounded from Ld 4 (R™) t0 Loo (R™).

< [@—maxthnl

Letw<p<wandf6[z Ap(RY)
DA )
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. d
Since Lp’/\’#

min{\, u} = p.

®") = L

o) (R"), we can assume that A > i, and then max{\, u} = A,

- o ldl
MEf (@)~ supr® N £l py ey < supT TP (1 F Nl @)
r>0 r>0

EIES g ldl=p

[l " Ml

_lap 2 —u
<supr® v [r]f [1/r]y " | fllz, . < suplr]
r>0 r>0

a—
1

ld]—x o ldl=n
P ||f||Lp,A,wSI>1113 T | VRN S [V
I

Smax{ sup r
0<r<1

P S N U I SO "
p p « (6
<::>|d|——rnax{A,u} f;p S;’d|_’HHH{AaH}’
« (6%

which implies that the operator M/ ¢ is bounded from L;l apu(R") to Lo (R™).

From Theorem 2.2 in the case A = p or pt = 0 we get the following corollaries.

Corollary 2.4 [2, Theorem 3.1] (Adams result) Let 1 <p < 00,0 < A< |d, 0 < a <
ld]=A
o

NIl <p< M‘T_A, then condition % - % = \dﬁ—,\ is necessary and sufficient for the

boundedness of the operator M¢ from Lg L(R™) to Li L(R™).

2)Ifp=1< MT_A, then condition 1 — % = |dﬁ—)\ is necessary and sufficient for the
boundedness of the operator M¢ from L‘i L(R™) 0 WLg’ L(R™).

3)Ifp = =2 then the operator M¢ is bounded from Lg/\(R”) 10 Loo(R™).

o

Corollary 2.5 [6, Corollary 1]Let1 <p<o0,0<A<n, 0<a< 422

=

NIf1<p< MT_A, then condition 5 < % -3 < |dﬁ—)\ is necessary and sufficient for

the boundedness of the operator M from zi L(R™) 0 zi L(R™).

(6]

2)Ifp=1< MT_A, then condition il <1- % < Wl%)\ is necessary and sufficient for
the boundedness of the operator M from Li L(R™) 10 WL; L(R™).
3)If MT_A <p< %', then the operator M is bounded from Li A(R™) to Lo (R™).

Remark 2.2 Note that in the case of d = 1 = (1,...,1) from Theorem 2.1 we get [10,
Theorem 2.1] and Theorem 2.2 we get [10, Theorem 2.2].
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