# Inverse problem for a system of Dirac-type equations with discontinuous coefficients 

## Hidayat M. Huseynov ${ }^{\star}$

Received: 07.11.2023 / Revised: 28.04.2024 / Accepted: 04.05.2024


#### Abstract

The work considers the inverse problem of scattering on a semi-axis. The uniqueness of the solution to the inverse problem is proved and an algorithm is given for restoring the coefficient of the equation from given scattering functions.


Keywords. Jost solution • scattering function • inverse scattering problem
Mathematics Subject Classification (2010): 34L25, 34L40, 47A40

## 1 Introduction and problem statement

Consider the system of differential equations

$$
\left\{\begin{array}{c}
\frac{1}{\rho(x)}\left(\rho(x) y_{2}\right)^{\prime}+\rho(x) y_{1}+q(x) y_{2}=\lambda y_{1}  \tag{1.1}\\
-y_{1}^{\prime}+q(x) y_{1}-\rho(x) y_{2}=\lambda y_{2}, \quad 0<x<\infty
\end{array}\right.
$$

with boundary condition

$$
\begin{equation*}
y_{1}(0)=0 \tag{1.2}
\end{equation*}
$$

where $\rho(x)=\alpha$ for $x>c$ and $\rho(x)=1$ for $x<c, \alpha$ is a positive number, $c$ is a fixed point in $(0, \infty), \rho(x)$ and $q(x)$ are real-valued functions satisfying the condition

$$
\begin{equation*}
\int_{0}^{\infty}\{|p(x)|+|q(x)|\} d x<\infty \tag{1.3}
\end{equation*}
$$

In this work, we study the inverse problem for the boundary value problem (1.1)-(1.2). In case $\alpha=1$ (i.e.when $\rho(x) \equiv 1$ ) the inverse scattering problem has been solved in [2] (see also [3]). Similar problem for the Sturm-Liouville operator on the whole axis has been solved in [5] where the references to other works are available which have considered various kinds of inverse problems.

Note that the inverse problem of scattering theory has been first completely solved in [7] for the Sturm-Liouville operator on the half-axis. That works played an important role in

[^0]H.M. Huseynov

Institute of Mathematics and Mechanics
The Ministry of Science and Education, Baku, Azerbaijan
Baku State University, Baku, Azerbaijan,
Azerbaijan University, Baku, Azerbaijan
E-mail: hmhuseynov@gmail.com
the further development of the theory of direct and inverse scattering problems for different operators (see, e. g., [1-3]-[5-6]).

1. Let's introduce some special solutions of the equation (1.1). For this, let's first note that the equation (1.1) can be reduced to the system of Dirac equations

$$
\begin{equation*}
B y^{\prime}+\Omega(x) y=\lambda y \tag{1.4}
\end{equation*}
$$

with the following conditions at the point $x=c$ :

$$
\begin{equation*}
y_{1}(c-0)=y_{1}(c+0), \quad y_{2}(c-0)=\alpha y_{2}(c+0) \tag{1.5}
\end{equation*}
$$

where $B=\binom{01}{-10}, \quad \Omega(x)=\binom{\rho(x) q(x)}{q(x)-\rho(x)}, y=\binom{y_{1}}{y_{2}}$.
Denote by $e(x, \lambda)$ the Jost solution of the equation (1.1) (i.e. of the problem (1.4)-(1.5)) satisfying the condition

$$
\lim _{x \rightarrow+\infty} e(x, \lambda) \cdot e^{-i \lambda x}=\binom{1}{-i} .
$$

It is not difficult to show that the function

$$
e_{0}(x, \lambda)=\left\{\begin{array}{cl}
\binom{1}{-i} e^{i \lambda x}, & x>c \\
\frac{1+\alpha}{2}\binom{1}{-i} e^{i \lambda x}+\frac{1-\alpha}{2}\binom{1}{i} e^{i \lambda(2 c-x)}, & x<c
\end{array}\right.
$$

is a Jost solution of the equation (1.1) in case $p(x)=q(x)=0$.
Theorem 1.1 Let the conditions (1.3) hold. Then the equation (1.1) has a Jost solution for all $\lambda$ with Im $\lambda \geq 0$. This solution is unique and can be represented as

$$
\begin{equation*}
e(x, \lambda)=e_{0}(x, \lambda)+\int_{x}^{+\infty} K(x, t)\binom{1}{-i} e^{i \lambda t} d t \tag{1.6}
\end{equation*}
$$

where $K(x, t)$ is a matrix function of second order with the elements from $L_{1}(x,+\infty)$ which is related to the potentials $\Omega(x)$ as follows (see, e. g., [6]):

$$
\begin{align*}
& \lim _{t \rightarrow+\infty} \int_{c}^{+\infty}\|B K(x, x+1)-K(x, x+1) B-\Omega(x)\| d x=0  \tag{1.7}\\
& \lim _{t \rightarrow+\infty} \int_{0}^{c}\left\|B K(x, x+1)-K(x, x+1) B-\frac{1+\alpha}{2} \Omega(x)\right\| d x=0
\end{align*}
$$

where $\|\cdot\|$ is an operator norm in Euclidean space.

## 2 The direct and inverse problem of scattering

Denote by $\varphi(x, \lambda)$ the solution of the equation (1.1) satisfying the initial conditions

$$
\varphi(0, \lambda)=\binom{0}{1}
$$

2.1. The problem (1.1)-(1.2) generates the self-adjoint operator in the space $L_{2, \rho}\left(0,+\infty ; C_{2}\right)$ of vector functions with scalar product

$$
(y, z)=\int_{0}^{+\infty} \rho(x)\left\{y_{1}(x) \overline{z_{1}(x)}+y_{2}(x) \overline{z_{2}(x)}\right\} d x
$$

The spectrum of this operator is purely continuous and fills the entire real axis. The eigenfunction of the continuous spectrum has the following form:

$$
U(x, \lambda)=\frac{2 i \varphi(x, \lambda)}{e_{1}(0, \lambda)}=\overline{e(x, \lambda)}-S(\lambda) e(x, \lambda), \quad \lambda \in(-\infty,+\infty)
$$

where $S(\lambda)=\frac{\overline{e_{1}(x, \lambda)}}{e_{1}(x, \lambda)}$ is a scattering function of the problem (1.1)-(1.2).
Lemma 2.1 Scattering function is continuous on the entire axis and has the following proporties

$$
1 S^{-1}(\lambda)=\overline{S(\lambda)}=S(\lambda), \quad \lambda \in(-\infty,+\infty) ;
$$

2 the elements of the matrix function

$$
F_{s}(x)=\operatorname{Re} \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[S(\lambda)-S_{0}(\lambda)\right]\left(\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right) e^{i \lambda x} d \lambda
$$

belong to the space $L_{1}(0, \infty)$, where

$$
S_{0}(\lambda)=\frac{1+\frac{1-\alpha}{1+\alpha} e^{-2 i \lambda c}}{1+\frac{1-\alpha}{1+\alpha} e^{2 i \lambda c}}
$$

is a scattering function of the problem (1.1)-(1.2) in case $p(x)=q(x)=0$.
2.2. Inverse scattering problem for (1.1)-(1.2) is: provided scattering function $S(\lambda)$, find thecoefficients $p(x)$ and $q(x)$ (I, e. the potential $\Omega(x)$ ) of the equation (1.1). The relations (1.7) show that to solve the inverse problem it suffices to find the relationship between the kernel $K(x, t)$ defined by (1.6) and the scattering function $S(\lambda)$. To do so, we derive the Marchenko equation, the main equation of the inverse problem:

$$
\begin{gather*}
F(x, y)+K(x, y)+\frac{\alpha-1}{\alpha+1}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) K(x, 2 c-y) \\
\quad+\int_{x}^{+\infty} K(x, t) F_{s}(t+y) d t=0, y>x \tag{2.1}
\end{gather*}
$$

where

$$
F(x, y)=\left\{\begin{array}{c}
F_{s}(x+y), \quad x>c, \\
\frac{1+\alpha}{2} F_{s}(x+y)+\frac{1-\alpha}{2} F_{s}(2 e-x+y), \quad 0<x<c,
\end{array}\right.
$$

and $F_{s}(x)$ is defined in Lemma.
Theorem 2.1 For every $x>0$, the main equation (2.1) has a unique solution $K(x, \cdot)$ with the elements from $L_{1}(x, \infty)$.

The relations (1.7), the main equation (2.1) and Theorem 2.1 provide the algorithm for finding the potential function $\Omega(x)$, i.e. for finding the coefficients $p(x)$ and $q(x)$ of the equation (1.1) for the given scattering function $S(\lambda)$.

## References

1. Chadan, K., Sabatier, P.C.: Inverse problems in quantum scattering theory. SpringerVerlag, Berlin, Heidelberg, New York, (1977).
2. Gasymov, M.G., Levitan, B.M.: Determination of the Dirac system from scattering phase, Dokl. Akad. Nauk SSSR, (Russian) 167(6), 1219-1222 (1966).
3. Gasymov, M.G.: An inverse problem of scattering theory for a system of Dirac equation of order $R$, Trudy Matem. Obsh. 19, 41-112 (1968).
4. Huseynov, H.M., Latifova, A.R.: On the transformation operator for the system of Dirac equations with summable potential, Izv. Saratov. Univ., Ser. Math. Mech. I inform. 11(1), 19-43 (2011).
5. Huseynov, H.M., Osmanli, J.A.: Inverse scattering problem for one-dimensional Schodinger equation with discontinuity conditions, J. Math. Phys., Anal. Geom. 9(3), 332-357 (2013).
6. Marchenko, V.A.: Sturm-Liouville operators and their applications, Naukova Dumka, Kiev, (1977) (Russian) (Eng. Transl.: Sturm-Liouville operators and applications, Basel and Boston, Birkhauser OT 22, (1986).
7. Marchenko, V.A.: Reconstruction of the potential energy from the phases of the scattering waves, Dokl. Akad. Nauk SSSR, (Russian) 104(5), 695-698 (1955).

[^0]:    * Corresponding author

