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Abstract. This paper is devoted to study of an initial-boundary value problem for the system of nonlinear
Kirchhoff-Carrier wave equations associated with the helical flows of Maxwell fluid. Based on using the
Faedo - Galerkin method together with constructing high order iterative schemes, the local existence and
uniqueness of a weak solution are proved. Moreover, the sequence associated with high order iterative
schemes here converges at a rate of high order to the unique weak solution. This result is an extension of
the recent research, in which nonlinear wave equations associated with the helical flows of Maxwell fluid
considered without the terms of Kirchhoff-Carrier type.
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1 Introduction

In this paper, we consider the following problem for the system of nonlinear Kirchhoff-
Carrier wave equations
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1 1
= an ()13 Bua 1) (s + S~
= f(z,t,u,v),z € 2= (1,R),0<t < T,

o=z ([0 e 1) (022 + T ) .y
o

=gz, t,u,v),x € 2,0<t < T,
ugp(1,t) — bru(l,t) = v, (1,t) = u(R,t) = v(R,t) =0,
(u(z,0),v(x,0)) = (o(x),v0(x)) , (ue(x,0),ve(x,0)) = (1(x),1(x)),

where b1 > 0, R > 1 are given constants and a1, as, Ug, 1, Ug, U1, f, g are given functions,
R R
a1 = [ s 00de, Jua0l = [ e,

1 1
Prob. (1.1) here is studied in literature for nonlinear Kirchhoff-Carrier wave equations,
it has its origin in the nonlinear vibration of an elastic string (Kirchhoff [11]), for which the
associated equation is

Eh [*
phug = <P0+2L/

here w is the lateral deflection, L is the length of the string, A is the cross-sectional area, F/
is Young’s modulus, p is the mass density, and P, is the initial tension. It is also related to
the Carrier equation. In [4], Carrier established the equation which models vibrations of an
elastic string when changes in tension are not small

EA [(F
puUtt — <1 + LTb/ 2d$> Ugy = 0, (1.3)

where u(x,t) is the x - derivative of the deformation, Tj is the tension in the rest position,
E is the Young modulus, A is the cross-section of a string, L is the length of a string and p
is the density of a material. Clearly, if properties of a material vary with = and ¢, then there
is a hyperbolic equation of the type (Larkin [13])

wy — B (x t, ||u(t)\|2) Ugy = 0. (1.4)

The Kirchhoff -Carrier equations received much attention for a long time. We refer the
reader to, e.g., Cavalcanti et al. [3], Larkin [13], Long [15], Medeiros [16], Miranda et
al. [17], [18], Ngoc et al. [19], [20], [23], Truong et al. [33], for many results and further
references.

On the other hand, Prob. (1.1) is also studied in literature for Maxwell fluid between two
infinite coaxial circular cylinders. This is an extension of the problem considered in [24],
[25], and [32], in which a; (+,-), a2 (-, -) are constants. It is well known that there is a great
interest of theoretical and applied scientists relating to the fluid flows in the neighborhood
of translating or oscillating bodies, in which, Maxwell fluid has received special attention;
see for [5], [7] - [10], [27], [29] - [32] and the references therein. In [9], M. Jamil and C.
Fetecau studied the following problem

ou

2
dy) U (1.2)

)\utt—kut:z/(um—klux—x%u),l <zx <R, t>0,
AV + Vi =v(Vag + 2V,), 1<z < R, t >0,
G

u(R, ) V(R ,t):0,t>0,
u(z,0) = u(z,0) =0,1 <z < R,
V(a: 0) =Vi(z,0)=0,1 <z <R,
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where A\, i, v, F, G are the given constants, this is a mathematical model describing the
helical flows of Maxwell fluid in the annular region between two infinite coaxial circular
cylinders of radii 1 and R > 1. The authors have obtained an exact solution for the problem
(1.5) by means of finite Hankel transforms and presented under series form in terms of
Bessel functions Jo(z), Yo(z), Ji(z), Yi(x), Jo(x) and Ya(z), satisfying all imposed initial
and boundary conditions. Extending the results of M. Jamil and C. Fetecau [9], in [32],
Truong et al. have established the global existence, uniqueness, regularity and decay of
solutions of Prob. (1.1), where

f:_Alut_fl(uvv)—i_Fl(xat)’ (16)
g = _AQUt - fQ(U,’U) + FQ(xat)

and f1(u,v), fa(u,v) have been assumed that (f1, fo) = (D1F, DoF) with F(u,v) <
4 (1+u2+v2),Vu,v€R,C’1 > 0.
To the best of our knowledge, the system of equations of Kirchhoff-Carrier type associ-
ated with the helical flows of Maxwell fluid (1.1) has not been extensively studied.
Motivated and inspired by the results of [24], [25] and [32], because of mathematical
context, we continue to extend the results of [9] to establish a sequence {(um, vpm)} such
that which converges at a rate of high order to a weak solution (u, v) of Prob. (1.1). In order

to do that, we shall associate with Prob. (1.1) a recurrent nonlinear sequence {(w,, v,)}
defined by

(w8, ) + a1 ([l ()5 e (8]

W), 6) + a2 (Ilom @I [oma @) ) v (t). €) (1.7
= (Gm(t),0), Y(w,¢) €V xV,
(um(O),u;n(O)) = (7107711) ) (Um(o)vv;na))) = (~071~)1) ,m=1,2 )
where -
a(u,0) = (g w2+ byu(Dw(1) + (. ~w), 08
b(v, @) = (vg, Pz, forall u, v, w, ¢ €'V,
1 o ) .
Fm(x>t) = Z ﬁDéDif[umfla'Umfl](xat)(um - umfl)z(vm - 'Umfl)],
i+j<N-1 Z-{-
Gm($,t) = ﬁDéDig[um—laUm—l](l'yt)(um - um—l)i(vm - Um—l)j
i+j<N—-1%J:
(1.9)
; 1 i I oHf 2
withV ={ve H :v(R) =0}, DDy f = FiBo7 (i,7) € Z7.

The above scheme is established based on a high-order method for solving the operator
equation F'(x) = 0, see [26], it also has been applied in some works, for example see [22] -
[25], [33] and the references therein. It is well known that Newton’s method and its variants
are used to solve nonlinear operator equations F'(z) = 0 or systems of nonlinear equations.
Newton’s method arises naturally when replace F'(x) by the linear term in the Taylor se-
ries, so that with x¢ as a first approximation, by constructing an approximating sequence
{x,,} and showing its convergence, a zero of F' will be obtained. The sequence {x,, } can be
very rapidly convergent to the zero z, if it is given a sufficiently close first approximation
zo to x and provided derivatives of the function F' behave nicely in a neighbourhood of
x. In this case, one speaks of convergence of order N if |upt1 —u| < C'luy — u]N for
some C' > 0 and all large N, see [6]. Our results can be regarded as an extension and
improvement of the corresponding results of [24], [25].
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2 Preliminaries

In this paper, we put 2 = (1, R), Q7 = 2 x(0,7), T > 0, and denote the norm in the
space L2 by ||-|| . The notations of the function spaces used here, such as L?, H! = H'(2)
are standard and can be found in H. Brezis [2] or J.L. Lions’s book [14]. On H!, we shall
use the following norm

1/2
lollen = (ol + o)) @1
Considering the set
V={veH":v(R)=0}, (2.2)

then, V is a closed subspace of H! and on V' two norms ||v|| ;1 and ||v,|| are equivalent
norms. We note that L2, H' are the Hilbert spaces with respect to the corresponding scalar
products

R
(u,v) :/1 zu(z)v(z)de, (u,v) + (Ug, Vg). (2.3)

The norms in L? and H ! induced by the corresponding scalar products (2.3) are denoted
by ||/l and ||-||; , respectively. We note more that H' is continuously and densely embedded
in L2. Identifying L? with (L?)’ (the dual of L?), we have H' < L? < (H')', therefore,
the notation (-, -) is also used for the pairing between H' and (H)'.

Corresponding to the above norms and spaces, we have the following lemmas, the proofs
of which can be found in the paper [32].

Lemma 2.1. The following inequalities are fulfilled

i ol < ljvlly < VRI|v|| forallv € L?, (2.4)
Gi) [[vllzn < [Jolly < VR0l forallv € H.

Lemma 2.2. The imbedding H* — C°(2) is compact and

vl oy < o vl g1 forallv e HY, (2.5)
where oy = \/2(;7_1)\/1 +/1+16(R —1)2.

Lemma 2.3. The imbedding V — C°(£2) is compact and

@ vlleom) £ VR =1vall £ VR = 1|vally forallveV,
i) ollg < /EE(R—1)|jvgllg forallveV, (2.6)
i) [ a|v(@)] de < B (VR =1)" ugll] forallv e V, ¥y > 0.

We set

1 1
a(u7w) = <u9€7w56> + blu(l)w(l) + <;u7 ;w% 2.7
b(v, ¢) = (vg, ¢y) forall u, v, w, ¢ €V,
and
9\ 1/2
2 2 1
o, = v/aov) = (Hvx\lo o) + [ 1o ) , 8)
0
[olly = Vb(v,v) = [vellg, v € Vr
with by > 0 is given constant. Then, a(-,-) and b(-,-) are the symmetric bilinear forms on
V' x V. Moreover, it is not difficult to show that the following properties are true.
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R2—1 1/2 R+1
Lemma 2.4. Witha} = [1 + <bl + 5 ) (R — 1)] ,a) = [1 + T+(R —1)2

the following inequalities are fulfilled

Uz, forallv €'V,

ol
vgllg . forallv e V. (2.9)

*

g
il
Remark 2.1. On L?, two norms v — ||v|| and v — ||v]|, are equivalent. We also

have the similar property for two norms v — |[[v|| ;1 and v — ||v||; on H', and five
norms v — ||| g1, v — [[v]ly, v — [Jve]|, v — [Jve]|y and v — ||v||, on V.

Lemma 2.5. There exists the Hilbert orthonormal base {w;} of L? consisting of the
eigenfunctions w; corresponding to the eigenvalue \; such that

0<A <A< <A< A <.+, lim \j = +oo,
: =00 (2.10)
a(wj, w) = A\j(wj,w) forallw e V,j=1,2,---.

Furthermore, the sequence {w;/\/);}; is the Hilbert orthonormal base of V with re-

spect to the scalar product a(-,-).
On the other hand, wj, j = 1,2, -- -, satisfy the following boundary value problem

1 1 .
{ Liwj = —(Wjae + _wja — —5wj) = Ajw, in (1, R), (2.11)
wjz(1) — brw;(1) = w;(R) = 0, w; € C*([1, R]).

The proof of Lemma 2.5 can be found in [[28], p.87, Theorem 7.7], with H = L?,
V ={v e H':v(R) =0} and a(-,-) is defined as in (2.7). Similarly, we also obtain the
following lemma.

Lemma 2.6. There exists the Hilbert orthonormal base {¢;} of L? consisting of the
eigenfunctions ¢; corresponding to the eigenvalue [i; such that

Jj—=+oo (2.12)

b(¢j,d) = fij{dj, o) forall g € V, 5 =1,2,--- .

Furthermore, the sequence {¢;/+/it;} is the Hilbert orthonormal base of V with respect
to the scalar product b(-, -).
On the other hand, ¢;, j = 1,2,-- -, satisfy the following boundary value problem

1
{ La¢j = —(djuea + ;(bjz) = [ijbj, in (1, R), (2.13)
$ja(1) = ¢;(R) =0, ¢; € C=([L, R]).

Remark 2.2. The weak formulation of the initial-boundary value problem (1.1) can be
given in the following manner.

Definition. The weak solution of Prob. (1.1) is the couple of functions (u,v) such that
(u, v) belongs to the set W1, where

Wr = {(u,v) €L®(0,T;(H>*NV) x (H*NV)) : (u/,v) € L*(0,T;V x V),

(u” 0"y e L™ (O,T; L? x L2) },
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furthermore (u, v) satisfies the following variational equation

(W (t), w) + ar[u](t)a(u(t), w) = (fu,v](t), w),
{ (V"(t), ) +a21[v]( H)b(v(t), ¢) = (glu, v](t), d) (2.14)

forall (w,¢) € V x V,ae., t € (0,T), together with the initial conditions

(u(0),4/(0)) = (@, @), (v(0),v'(0)) = (o, v1), (2.15)

where ai[u] (1) = ar ()15 llus (DI ) s azfo)(t) = as (@IS loa(1)1F)

flu,v)(@,t) = f(x, b, u(z, 1), v(x, 1)),
glu, vl(z,t) = g(x, t, u(x, 1), v(,1)).

=g
Remar k 2.3. We remark that the set W7 defined as above has the following property
(see [14])

Wr =
{(u, v) € L* (0, T;(H*NV) x (H*NV))NC([0,T};V x V)N CY[0,T); L* x L?):
(u/,v") € L (0, T;V x V)N C([0,T]; L* x L?),
(", v") € L® (0,T; L2 x L?) }

3 High order iterative schemes

In this section, Prob. (1.1) is considered with given constants b; > 0, R > 1, and the
following assumptions for given functions a1, as, @, %1, Vg, U1, f, g
(A1) (@0, @), (Bo,1) € (VN H?) x V, Gg(1) = bitig(1) = Tox(1) = 0;
(A2) a1,a2 € CY(R2), a;(y,2) > ai > 0,Vy,z >0,i=1,2;
(43) f,g€ C([1, R] x Ry x R?), such that
(i) DD} f, DiDg € C([1,R] x Ry x R?), 1 <i+j <N,
(i) D1Dy DY f, D5 DY f, DaDiD;f € C([1, Rl x Ry x R?), 0<i4j < N —1,
(i) Dy DiDig, DS Dilg, DyDiDIg € C([1,R] x Ry x R?), 0<i4j <N —1,
(iv) f(R,t,0,0) = g(R,t,0,0) =0, Vt > 0.
We note more that, the partial derivatives of order ¢, 1 < ¢ < N, of a function f =

0 0
f(x,t,u,v) with respect to the variables z, ¢, u, v are denoted by D; f = a—f Dyf = a—{,
. orf I f
% Jr
Dif = 6”D4f_8vj'

Consider T* > 0 fixed, let T' € (0, 7], we define
W = {(u,v) € L™ (0,T; (H2NV) x (H2NV)) :
(o, v') € L0, T;V x V), (" v") € L*(0,T; L? x L2)}, 3.1)
then W is the Banach space with norm

It )l =mex {0 0) oo 152wy (3.2)

H(ul’vl)HLC’O(O,T;VxV)’ (u”s v HL2(0,T;L2xL2)}'



L.T.P. Ngoc, N.V. Dzung, N.T. Long 7

For M > 0, we put

W(M,T) = {v eWr: vy, < M} , (3.3)
Wi (M, T) = {(u,v) € W(M,T) : (u,v") € L>®(0,T; L* x L*)}.

Now, we construct the recurrent sequence { (u,, v, } defined by (ug, vo) = (0,0) , and
suppose that

(Um-1,Vm-1) € Wi(M,T), (3.4

and associate with Prob. (2.14), (2.15) the following problem:
Find (tp,, vm) € W1i(M,T) (m > 1) which satisfies the following linear variational
problem

(U (1), w) + a1 [u] (V) a(um(t), w) = (Fi(t), w),
{ (U (), @) + as[vm](B)b(vm(t), ¢) = (Gm(t), d), V(w,¢) €V x V, (3.5)
(um(())vulm(o)) = (ﬁo,ﬂl ) (vm(0)77};n( )) = (507{)1)7
where
arfun)(t) = a (Jlum (B - lma ()13
asfom)(£) = @ (lom(®) I3 lome (D)
Fo(z,t) = m[um,vm](x,t)
= Z ﬁDgDif[um—lv Um—1](,t) (tum — um—l)i(vm - Um—l)ja
i+j<N-1%J-
Gm(z,t) = G ltm, Um](:c,t)
= ' Z ﬁDéDig[umfl,Umfl](xyt)(um - Umfl)i(vm - fUmfl)j-
. iti<N—1 ]

(3.6)

Then, we have the following theorem.

Theorem 3.1. Let T* > 0 and (A1) — (As) hold. Then there exist positive constants
M, T > 0 such that, for (up, vo) = (0,0), there exists a recurrent sequence {(Up,, Vm)} C
W1 (M, T) defined by (3.5), (3.6).

Proof. The proof consists of three steps.

Step 1. The Faedo-Galerkin approximation (introduced by Lions [14]). Put

k

k
() =D ey, o) =" di ;. 37

where the coefficients cgjg (1), dg;) (t) satisfy the system of nonlinear differential equations

<u£§> (t), w;) + ag(t)a(u;m’” (t),w5) = <Fif> (£),w5),
(B9 (1), 67) + abes (b(vs) (£), 6;) = (G (), 6;), 1 < j < K, (3.8)
(uin (0), 5 (0)) = (iok, 1) , (v (0), 648 (0)) = (Fok, B1x)

where

k
(Uok, u1) = ijl(oz(k) Bj(k))wj — (tp, 1) strongly in (H2 NV)xV, 3.9

k ~
(o, o) = D~ (@5 515 = (0, 01) swongly in (H* V) x V.
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and

[ o200 =l = an ([0} o820
2 (k) 2
) o’H”m(t)Ho>’

DD fltm—1, V1) (0 — 1) (0 — vp1)7,

00 = aalof10) =z (ol
F) (2,1) = Foluly), o)) (2, 1)
N i+j;\7 1 ZTJ'
G (z,t) = G[ul v (2, 1)
1 . .
= > il DZD49[Um 1> Umn—1] (Um &) —Um—1)’(U§r]f) — Upp—1)7.

i+j<N—17
(3.10)
Let us suppose that (u,—1,vy,—1) satisfies (3.4). Then it is clear that the system (3.8)

has a solution (ugf), vﬁff)) on an interval 0 < ¢t < Téf ) < T. The following estimates allow

one to take constant T,(,f ) = T for all m and k.
Step 2. A priori estimates.
First, we put

”fHCO(AM) = - SuiA |f(z,t,u,0)],
T,tu,0)EA
wonn= 5 oo, 05 o],
+i+j§ZN_1 <HD§+1931f) oo+ HD4DZDif‘ Y AM))
( Ay = [1,R] x [0,T*] x [-VR — 1M, VR - 1M]?,
and
s =[], | o [ wol,) e

+H@m\(pH@gs;@)\\oﬂgg(t) (‘”ﬁf%<f>H§+Hw o
[ (lstel « o) o

Then, it follows from (3.8), (3.12) that
t
SW@) =SP0) +2 [ [(FPE).00(6) + (@), 006)] ds G

0

+2 / (B (s), 18 () + (G (5), 081 (5)) | ds
+ 2/0t af(s) (
+ 2/0t s (s) <

w [ (s + [swe]) s = s+ 2 1.
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We need to estimate the terms of (3.13). First, we need the following lemma.
Lemma 3.2. Put

1 1

Liv _(U:m + —Ug — 721])7 (3.14)
x X

1
Lov = —(vgg + —0z),
z

and |[v]| g2y = \ ||Ua:H(2) + vangv vEHNV.

Then, there exist two constants 1, 1, v2 > 0 such that
@ Lavllg < 3ol g2y >

G [Lyolly + ol > 1 [olrary

i) |Lavly < V2[[olgey

(V) [[Lavllg + llvallg = 72 vl 52y

forallve H>NV.
Proof. We have

(3.15)

1 1

Ugg + —Vgp — —50
T

L1l = >

0
1

X

0
< vzzllo + llvallo + llvllo

R+1
< ||U:c:c”0 + ”%:Ho + T(R - 1) ||v:c”0

R+1
« max {1, \/T(R . 1)} (loeslly + [0slo)
R+1 1/2
<Vmax {1, V- 1>} (o2 + 1012)

= vl z2qv

where 7, = ﬁmax{l, EH(R - 1)}

Similarly, we have

— U

< H’UmHo + ' 22

‘ 1

0

[L2vlly =

1
< ”UMHO + ;Uﬂ?

1
Ve + — Vg
X

0
< HUMHO + ||U:r||0 < \/§||UHH20V'

0

1
For all € € (0, 5), n > 0, we have

, [ 1 1 \?
| L1v]|g :/ x <vm + —vg — 211) dx
1 X x

S T T

ol + | 0| +] 20

0 0

1 1 1 1
+ 2<Uggx, EUI> - 2(”11, ?/U> - 2(;,01’ ﬁv>
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By

2

)

1 9 1|1
2 - < =
(Ve :va> =€ ||U:c:c”0 + - Hxvx

0
1 1)1 |?
2@”%ﬂw§dwm%+euﬁvo’
11 2o |?
2<*Ux’ 72'U> <e||—vg + - ) s
i X X 0 g X 0

)

21

1
2 2
llol2 = (nvmno Fot() + 1o
1
2
(nvzno +e

2

)
0
we deduce that

2 2
[Lavll +n llvlly

12 1?2 11 |2
z||vm||3+Hvx +H s||vmu§'vx T
T o = lo € 0
11 | 1?2 11 2+ sl + 12
——||=v|| —€||-vz|| ——|l=5? v —v
e || x2 0 x C 0 x2 0 K zlio 2 0
2\ |1 |
=(1—2¢ 2 +1-2)|=
(=20 ol + (1= 2) | 50|
1 12 )
—(e+-—1)||=vz|| +7llvallg
g xr 0
2 2 2 1 2
>(1—=2¢) lvazllg+ (n+1—==)|5v| +[n—(e+=—=1)]|lvlp-
3 a 0 g

2 1 1
Choosing n > max{— — 1,6 + — — 1} and 1 = min{1l — 2¢,n — < +e— 1)}, we
5 € €

obtain
2 2 2 2 2
Vel + ol 2 mn (Nealld + oall3) =m0y

It follows that

2 2 Uit 2 2
”“”b+”wa2E@EIEW”W%VZVM”W%V'
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Foralle € (0,1),n > 0, we have

2 2
I L2vl|g + 7 [Jvallg
2 1
+ 2<Ux:ca ;UCE> +n ||U$”g

0

1
= Hvx:c||(2) + HZva

2

2
+77”UzH0
0

2
1

2
— & vaHo s

9 1 1
2 vano + ;Ux ;Uz

0

— -9 ol - (1) 3

1
2 2 2
> (0= &) fonalf + = (3 =1) | ol 2 e o

2
2
"‘ﬁ”voc”o
0

1 1
where > — — 1 and 12 = min{l — e, — < - 1) }. It follows that
€ €

2

——— [Vl = 22 0720 -
max{1,n}

2 2
[1L2vlg + vzl =

Lemma 3.2 is proved. [J
Now, we estimate the terms Sr(,lf)(t), Sr(,lf) (0), I, -+, I5 of (3.13) as follows.

Estimate of Sk (t).
By Lemma 3.2, we deduce from (3.12) that

S5 (1) = 1SN (t), (3.16)
where Vv = min{lv a1+71, a2*72} and

s = |||+ [ab o+ @l (3.17)

2 2

o]+ [l ., + o]

[ (sl o) o

In order to estimate the terms Iy, - - - , I5, we use the following lemma.
Lemma 3.3. The terms F\Y) (z,t), Gk (z,t), joly (1), G%;(t) are estimated as fol-
lows

H2NV

N—-1
@ |F¥ (x,t>)§co<M,f> 1+< Jf)(t)) :
i) |G <x,t>( < Co(M, g) |1+ (

(iii) \F,sfg@)Ho <Ou(M, f) |1+

N—1
(iv) ]G&’i%(t)\)(JsOl(M,g) 1+< n’f’(t>> :
(3.18)
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where Co(M, f), Co(M,g), C1(M, f) and C1(M, g) are defined as follows

N-1 [4R1 (1 + M)]r

CO(M7 f) :KN(M7 f) ZT:O rl ’ (319)
N-1[4R; (1 + M)]"
ColM g) =En(r,g) Y LA EADT
N -1
Cl(M7f) = ( 7\4 + &> CO(M7 f)7
" N -1
Cl(Ma g) - (dM + Fh) CO(Ma 9)7
. R? -1
Ry =vR-1, dy = 5 +2M.
Proof. We rewrite Jol (x,t) as follows
1 i .
Frs{c)(‘rvt) = Z Tj'D&DZLf[um—la Um_l](.’lf,t)Agf)(Z,j,l’,t), (320)

i+j<N—-1 "'

where

ARG G t) = (W) — wp ) (0 — v )

&
By using the inequalities
1 (@.0)) < -1 Doy < B [Vt ()] < Rad,
|vm—1 (z,t)] <R1 M,
ulf) ()] < |6l (1)

o) < ’ “53736“)”0

<R HUSS)(t)‘

v S Rl S’T(Illg)(t)v

H?N

‘v(k) (l‘,t)‘ <R Sﬁ)(t),

m

a<l+a?, (a+0bP <277 aP +bP), Ya,b>0, Vp > 1,

489G, 5,0 = (|| + bamr])” ([o2] + om])

i+
<R” (M /S (t))
<R™ (14 M) <1+\/M>i+j

i+j
1+ ( _n]f)(t)) ]
1+ ( 57(7’;;)@)> N_1]

SR’;—F] (1 + M)Z+] 2i+j—1

<[2Ry (1 + M)
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foralli,j € Z4,1 <i+j < N —1, it follows that
R (@,0)]

é |f[um,1,vm,1](:z:, t)| + Z L )DgDif[umfla'Umfl]’ ’Agi)(%]a :E7t)‘

& ilj!
1<i+j<N-1

N—-1
<Ky(M,f)+ Kn(M, f) > %[2R1(1+M)]i+j 1+< Sf?(t)) ]

1<i+j<N-1 "
T
It is known that ig::r i = hence
1 ~ N-1 1
SRR+ M) = 2Ry (1+ M)
1<itjn—1 "' =1 itjer
R [4R (1 + M)
— : ’
r=1 r
we deduce that
- N-1
’Fyﬁf)(w,t)‘ < Co(M, f) 1+< ﬁ’?(t)) ] 3.21)

where Co(M, f) is defined as in (3.19).
Similar to Fy(nk )

(x,t), we also have the estimate of G® (x,t) asin (3.18)(7).
We have

0
F?Sfx) (xa t) :%f[um—la Um—l]

+ Z |:6£B (DgDif[uml7Uml]):| A%)(Z,],l‘,t)

iljl
1<i+j<N-1

3.22)

1 S ..
+ Z ﬁDéDif[umflyUmfl]Argi;)r(la]ax7t)
1<i+j<N-1 v
0 * *
:%f[um_l,vm_l] +J1 +J2

0
We shall estimate the terms 2 flum=1,vm-1], J7, J3 on the right-hand side of (3.22)
z
as follows.

We have
2 ffumrsvm] (3.23)
O m—1, Um—1 o .
= ”le[um—la Um—l] + D3f[um—lavm—1]vum—1 + D4f[um—la Um—l]vvm—lHo
R? -1
<O 1) |\ IVl + 190l
R? -1 .
<Kn(M, [) 5 t2M| = Kn(M, f)dy.
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Similarly

Haax (DgDif[“m—laUm—l]) .

SO

. 1]lo .
i< Y 5 |5y (DEDIf lumr,vmo)) AD G5, 1) (3.24)
1<i+j<N-1 J: 0
11l . L (%) N1
< Z ZT]' 87 (DéDif[umq,Umfl]) [2R1 (1 —|—M)]Z+] 1+ ( m (t)) ]
1<i+j<N-1 0
1 o — N-1
<Kn(M, f)di, — 2Ry (1+ M)V 1+( SM(t)) ]
1<i+j<N-1 !
N_1 4R1 ( + M)]T — %) N—-1
=Kn(M, f) dMZ ? 1+ (VS (@) .

Foralli,j € Zy,1 <i+4+j < N —1, we have

HA”” N Ho < Hz(uﬁffb) — um_l)"*l(ugﬁi — Vum_l)(v,(jj) — vm_l)jHO (3.25)

[l = ) (0 = v ) = o),
() (5 o) (2
o o ) 2

<iRiH! <M+\/7>Zﬂ 1H]
w3r (e 500) i
<Grpre (e 500)

<+ DR ) (1450 <t>>z+j

1+ (/8 "
( ())”]

1+ ﬁ(t))N_l].

)

0

)

0

+ |vamfl|H
0

S(Z _i_j)R’i'i‘j—l (1 + M)H‘j 9itj—1

<X (N 1) 2R, (14 M)
Ry




L.T.P. Ngoc, N.V. Dzung, N.T. Long 15

Hence, we deduce from (3.25) that

5l > o || PADI Tt o] ARG, (3.26)
1<i+j<N-1 -
KN Y ]aesn],
1<i+j<N-1
1 1 o — N-1
S(N-1)5-Ex(M,f) Y 2R 1+ M) 1+ (/50 (1)
Ry £ ilj!
1<i+j<N-1
N-1 r N-1
1 AR (1+ M -
:(N—l)RlKN(M,f)Z[ 1(74 ) [1+( é’?(t)) ]
r=1 ’

Combining (3.22), (3.23), (3.24) and (3.26), we obtain

HF () (¢ HO < H;xf[um_l,vm_ﬂ

<KN(M, f)dy,

+ 151l + 131l (3.27)
0

1+< #(t))N_l]
N-1

N-1
. )RlKNMfZM[H< 0) ]

W)

where C1 (M, f) is defined as in (3.19).
Similar to HF},{? (1)
3.3 is proved completely. []
Estimate of I,. By the Cauchy inequality, we deduce from (3.18) (i), (ii) that

N-1[4Ry (1 + M)]"
r!

+ Kn(M, f) dMZ

<Ci(M, f) |1+

, we also have the estimate of HG%’% (t) Ho asin (3.18)(iv). Lemma

n=2 [ [0 6 + (G816 i806)) ds (.29

< [ ([0, )], + o], £ o], &

2 t — N-1 —
<2 R2 l(Co(M,f)JrCo(M,g))/O 1+< &S’f)(s)> ] ) (5)ds

< @ +cuone [+ (sw0)" ] as
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Estimate of I. Similar to I, we have

b= [ [alE(6),0) + (G2, 5] ds (329)
.
<2 [ [l |, + o], fse)],] o

s)Ho—i- HG%;(S) ‘0] 777123)(8)613

t -
—9 / at |7
0 L

<2(aiC0 ) + Ci(00,9)) [ i+ ( m’<s>>N1

<4(aiC(M, f) + C1(M. ) /0 iy (sﬁ%)“ﬂ ds.

Estimate of I3. Note that, with a € C(R%;R), if we set

sup a(y,2)[, >0,

D (r) = 0<y+z<r
() { 1a(0,0)] r=0,

then @, € C (R4;R.) and this function is nondecreasing such that
la(y, 2)| < ¢[a](y + z), forall z > 0.

This property was proved in [21].
Based on the above property of the function @(,), we can estimate the terms aﬁ‘;i (1),
- (k)

ay, (t) as follows

Lemma 3.4. The terms ag’;l(t), ag’fg (t) are estimated as follows

(| 0| < sard (Sm) SW @,
a(k

i) [abin )| < saids (S50(0) S (e),
. . (3.30)
where @1 (S) and P2 (S) are defined as follows
Py (S) = B(pyay] (@125) + D(pyay) (175) (3.31)
Dy (S) = Pp,ay) (a1°5) + P(pyay) (@125) , VS > 0.
Proof. From the above inequality, we obtain
Dt 0] = Daer ([l 0 Juso} )|
(k) 2
U T
@[Dmﬂ <‘U£T]§)(t) ’1> < @Dlal < m;r H )

Bl <7*25(k )
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Similarly
Daar [uff](1)] < Pipyay (a25H(1))
By using the formula
at? (1) = Drar[ul®1(6) (WP (1), a®) (1)) + Daar [W®](0) () (1), 4k (1)),

we obtain the inequality

] < [Pran10] [ 0] i)
+‘D2a1[u£{f)](t)‘ k(1) ‘ ‘ Uy (1) ‘0

|
) 0 H H”’“ \

) o

o],

(t
+ @[Dglll] < T(n

< |Pprer (@28H (1)) + Py (al s<’f>< >)}
(o, ol +H ol Jiol,)
o4 )l

<é1 (SB()) a3’ ) m;@) ,

1 s (2 -
<jaidr (S <t>) s,a’f) (®).

Similar to ’ag’;;i(t) ’ we also have a estimate ‘a;’;{(t)) as in (3.30)(i4), (3.31)a.

Lemma 3.4 is proved completely. [J
Now, we continue to estimate Iy as follows
By the estimate

[ @+ |z @] <o 2], + 72| )]

< (a2 +71) SH (1),

H2NV
we deduce from (3.30)(¢), that
¢ 2 2
Iy :2/0 ) (s) <Hu§n (), + g@(s)HO) ds (3.32)

<ai? (ai? +77) / 8 (59) (5W(s)) as.
0

Estimate of 1. Similar to I3, from (3.30)(7i) we also have the estimate of I, as follows

=2 [
<3a12 / "4, <S,(,If)(s)> (5,2’;)(5)) ds.
0

U(k)(s

‘ n HLQU H >ds (3.33)
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Estimate of I5. Eq. (3.8); is rewritten as follows

G0 (t),wy) + a8 (L1l (1), w5) = (F® (), w5), 1 < j < k.

m

Then, it follows after replacing w; with g (t), that

[ @], = - ez, a o)+ EP @@ 63

< [0 |t i),

< [ag’:g@) ’Lluﬁ,’?(t)HO + HFy(Tf)(t)
<2 (al)0)" L) +2 | F0 )|
<aty (Jo o) o]+ 2o
(s0®) sP)

r2(r 1) GBOLD L+ (300) .

2

0

where &3 (5)) = P2 (a*5) -
Similarly, we get

2

[0 == b LD @, 5B @) + (R8P @) 335
<4, (5P 1) S

r2 (12 1) GRMg) |1+ (300) "

where @4 (5)) = Pz, (a32s) .
Hence

= [ (Jasol+ o) o 33
<2(32+2) [ [0 (S96) + 4 (S069)] 5061
+2(R 1) (CBOML.1) + C3OMLg) [ t [1 - (‘ﬁ,’f%s))N”] ds.
On the other hand, we have

SU(0) = lliaell3 + 12 + [oaell? + 911l (337)
o+ ar (Waonl3 ke 2) (110w 2 + 1 Easios!3)

+ az (150w onally) (I5okelly + 1 E2B0rll3) -
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By means of the convergences in (3.9), we deduce the existence of a constant M > 0
independent of k£ and m such that

S (0) < %MQ, for all k and m € N. (3.38)
Combining (3.13), (3.16), (3.17), (3.28), (3.29), (3.32), (3.33), (3.36) and (3.38), it leads
to
t
S () < %M2 - / U (SE)(s))ds, (3.39)
0
where
Wy (S) =D1(M) (1 +SV71) + Da(1 + 1 (S) + P2 (5))S? (3.40)

+ D3 (®3(S) + D4 (95)) S,

_ 4 R?—1 *
DI(M) = ( (CO(M7 f) + CO(Mag)) =+ (alcl(M7 f) + Cl(Mag)>>

Y 2
2
+ o (B2 = 1) (G, ) + G (M. 9))
_ 1 _ 2
Dy= - 3+ (0} +77)] a}%, Dy = - (72 +2).

Then, by solving a nonlinear Volterra integral equation (based on the methods in [12]),
we get the following lemma.
Lemma 3.5. There exists a constant T' > 0 depending on T, (independent of m) such
that
Sk (1) < M?, ¥m e N, Vt € [0,T], (3.41)

where Cr is a constant depending only on T
1 _
Proof. By setting y(t) = §M2 + fg Uy ( gf)(s))ds, and W) is a continuous and strictly

increasing function, we get that

0 <80 < yl1), y(0) = 4.
y/() =0ar (SB(1)) < (y(1).

From the above inequality, we obtain

M? v 4 Eoy/(s)ds
W) - RO = [, g = [ <
w2 T (2) o Tar (4(s))
where H(y) = ng 7 Z( ) is a continuous and strictly increasing function on R .
M (2
We shall prove that H(oco) = [i° L P convergent itegral.

W (2)
Indeed, by the definitions of ¥, (2) as in (3.40), we have

Wpr(z) =Dy (M) (14 2N 71) + Dy (1 + by (2) + b (z)) 22
+ D5 (D3 (2) + P4 (2)) 2
>Dy(M) + D2z* > Dypin (1 + 2%)
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where Dyyin = min{D; (M), Da}.
Hence

On the other hand, because [~

1 < 1 1 Vs> 0
, V2> 0.
Ynr (Z) - Dmin1+22
s convergent, we conclude that H(c0) = [ dz
— isconv w u
1+ 22 g O W (2)

is also convergent. By this, H : Ry — [0,H(o0)) is a continuous bijectlon therefore,

HL
H(M?)

and

where

EQ(Ma fvgvahaQ) =

[0, H (oo
Sl

E2(Maf) :KN(M7f)

)) — Ry is also continuous and strictly increasing. Due to the fact that
2

) > 0, we can choose T' € (0, T}] such that

M2

0<T <H(M?) —H( 5

),

1

k‘T:M,uF<1,

pr =4\ TEV(M, f.9) exp [ TEx(M, f.9.a1,a2)] (3.42)

E3(M, f) + E3(M, g)

E\(M, f,9) = :

1+ Ei(M, f) + E1(M, g)

Q%

+ i [(1 + f"ylc‘ﬁ) Kpr(ar) + (1 +2a7) Kpg(as) |

Ey(M., f) = KNMf /R —122M317

R2—1(2R)N
2 NI

Ky(ar) =M? [@(p,a,) (2M?) + (p,ay) (2M?)],
Ky(ag) =M? [@(p,ay] (2M?) + P (p,ay) (2M?)],

ax, =min{l, aj, ag}.

It leads to, for all ¢ € [0, 7],

Dueto H1:

2 2

0< Hyl) <t+ H(M7) <T+ H(M7) < H(M?) < H(c0).

[0,H(00)) — R is strictly increasing, we get

SE(1) < ylt) = HH (Hy(1) < H™' (H(M2)) = M.

Lemma 3.5 is proved. [J

Lemma 3.5 allows one to take constant quc ) — T for all £k and m € N.
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Step 3. Limiting process. From (3.41), we deduce the existence of a subsequence of
{(ugﬁ), vﬁr’f))}, denoted by the same symbol such that

(Ugf)wgf)) = (Um,v) in L%°(0,T5 (H2 N V) X (H2 N V)) weak,
w%g,@%g) = (U, vpy) in L0, T3V x V) weak*, (3.43)
(tign s B’ ) — (ult, v in L2(0,T; L? x L?) weak,

(Urmvm) € W( 7T)'

By the compactness lemma of Aubin-Lions [1], we can deduce from (3.43)1 23 the

existence of a subsequence still denoted by {(ugi), v,(jnf))}, such that

(uﬁ,’f),vgf)) — (Um,vm) stronglyin  C([0,T];V x V), (3.44)
(uﬁ,’i),@ﬁ,’f)) — (ul,,v!) stronglyin C([0,T]; L? x L?). '
On the other hand
|F (@,6) = Fn(a,1)| (3.45)
< Z 2'7]' ‘DgDif[umfly Umfl]‘ ‘an,)@j(ma t)‘
i+j<N-1
1 k
—Kn(M.f) > = | )
i+j<N—-1 -
where
(k)
Wm,i,j ($7 t) (346)

:(u%) - um—l)i<vrrlz€) - Um—l)j - (um - um—l)i(vm - 'Um—l)j

= | = 1) = (=)' | () = v )
+ (um — Um—l)i [(Uq(v]i) - Um—l)j — (v — Um—l)j} :
By using the inequalities

[t —1| VR — 1M = RiM, |tm — tm_1| < 2RI M,
| <k [l < /300 < R,
) = | <Ry (a0 + 191 (1)) < 2R00,
2% — y*| <aMP |z —y|, Yo,y € [-My, My], YM; > 0, Va € N,
we obtain
‘(Uq(ﬁ) — 1)’ — (Ui — “mfl)i‘

m

Sz’Mli_l ’u(k) um’ < iMli_lRl Hu;’;; — Uz
0

W)y

1 .
<M
oM !

mHC([O,T];V) ’
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21
iy B H .
o = ot C(OT} %)

H(um — 1)’ = (U — U 1)H

_2MM1V _1H 3 c([o,T);v

Similarly, it is clear to see that

where M; = 2R M, hence

H(ugi) o um—l)i = (um — um—l)

This implies that

C([0,T];L?)

H(”(k) ~ Um=1)’ = (Um _Um‘l)chao,T];L?)

J 4 H (k) _
——Mj \/
_2M c(o,11;v)

, 4 j .
By the inequalities |tp, — tn_1|' < M2, [0 — Um_l’ < M it follows that

‘ ‘ miz?-]

C([0,T);L?)
< et T ) - o5 = on
M — — Um, - Um 07
= oM 2 |l%m cqomvy I T oo | T

hence
F*) — F, strongly in C ([0, T]; L?). (3.47)

Similarly, by (3.44), we deduce from (3.6)2 and (3.10)5 that
G,(fi) — G,y strongly in C([0, T7]; L?). (3.48)

We also have
0l () = arfunl 1)
o ([ [u2e0)];) - o (13 humste13)

< D ® (|I” — H1?
< sup  |Diax (y,2)| |||’ (t) l|um ()15
0<y,2<M? 0

90|, - leme0)12

+ sup [Daai (y,2)

0<y,2<M?
<2M_ sup Bip,q) (y+ 2) ’ (’“)(t)—um(t)H
0<y,z<M? 0
F2M S Bpyay (y+ 2) || allh() = s 8)
0<y,2<M? 0
<2M [B(p,a) (2M7) + P(p,ay) (2M7)] H“gf) - “mHC([o,T];v)’
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SO

52 [an(6) = arfun] (1)

<2M [P1p,0,] (2M?) + P(p,a,) (2M7)] H“’(ﬁ) B umHC([O,T];V)

Hence

aglz)t — ay[uy,] strongly in C([0, 7). (3.49)
Similarly,
ag;r)L — ag[vy,] strongly in C'([0, 7). (3.50)

Passing to limit in (3.8), we have (u,,, v,,) satisfying (3.5), (3.6) in L2(0, T").

Moreover, it follows from (3.5)-(3.8) and (3.43)4 that u!!, = —ay[up](t) Lium + F,, €
L>(0,T;L?) and v, = —as[vm](t)Lavy, + G € L¥(0,T; L?), hence (tm,vm) €
W1 (M, T), so the proof of Theorem 3.1 is completed. ]

Next, we state and prove the main result in this section (Theorem 3.6 below), in which

Wi (T) = C([0,T);V x V)nCY([0,T]; L? x L?), (3.51)

it is well known that W7 (7T') is a Banach space with respect to the norm (see Lions [14]):
[ (s )l (ry = 1w, V)l o, mpv vy + H(ul7v,)}|C([07T];L2xL2) : (3.52)

Theorem 3.6. Let T* > 0 and (A1) — (Ag) hold. Then, there exist positive constants
M, T > 0 such that

(1) Prob. (1.1) has a unique weak solution (u,v) € Wi (M, T).

(13) The recurrent sequence {(um,vm)} defined by (3.5)-(3.6) converges to the weak
solution (u,v) of Prob. (1.1) strongly in the space W1(T).

Furthermore, we have the estimate

(s ) = (w0l oy < C ()™, Ym € N, (3.53)

where kp € (0,1) and C are chosen such that kp, C depend only on T, f, g, a1, ag, o,
Ui, vo, U1-

Proof. (a) Existence of the solution.

We shall prove that {(tu,, vi,) } is a Cauchy sequence in W1 (T"). Let @y, = U1 — U,
Um, = Um+1 — U Then (U, Up,) satisfies the variational problem

(@ (£), w) + 1 [t s1] ()i (1), )
= — [0 [t ) (1) — a1 [ugn] (D] (Lt (1), )
(P2 (1) — Fon(t), 0),

(U (), &) + a2[Vim 1] (8) (Ve (1), Pz) (3.54)
= — [as[vm+1](t) — az[vm](t)] (Lavm(t), ¢)
HGmr1(t) = Gu(t), ), Y(w,¢) €V x V,
(Um(0),0m(0)) = (,(0), 7;,(0)) = (0,0).
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Taking (w, ¢) = (u},(t),v,,(t)) in (3.54), after integrating in ¢, we get
t) §2/ (Frn41(8) = Fin(s), 1, (s)) ds (3.55)
0

2 / (G 1(5) = Gm(s), Tn(s)) ds

/ @1t 1)(5) = @rlan) (5)] (L1t (), (5)) s
/ a2l 1](5) = @ltnn) (5)] (Lavna(5), T (5)) s
/ arftmsn]) (5) o (3)]2 ds

2 /O (azfvm1])' (5) [ ma(s)]2 ds

6
=> T
=1
where a, = min{1, aj,, as.} and
Zun() = @ @®)lo + 2@ g + IEm(O)2 + [Tma(IIF (3.56)

We shall estimate the terms on the right-hand side of (3.55) as follows.
First integral J;. We have

Frt1(t) = F(t) =f[um, vm](x,t) — flum—1,Vm-1](x, 1) (3.57)
b DDl o) () (5
1<i+j<N-1 "
- Y DD vl @) () (Bt
1<i+j<N-1 " :

By using Taylor’s expansion of the function f[tn,, V] = ftm—1+Um—1, Vm—1+0m—1]
around the point [ty,—1, Um—1] = (2, ¢, Um—1,Vm—1) up to order N, we obtain

f[uma 'Um] - f[umflavmfl] (3.58)
= % DDl one] () (B + Bl
1<it+j<N-1 ™7

1 .
Rm[f] = Z il ] D3Dif[um 1+ Hum 1,Um—1+ evm 1] (Um 1) (Um 1)] s (359)
i+j=N """

with 0 < 6 < 1.
Then, F,+1(t) — F,(t) is rewritten as follows

Fri1(z,t) — Fp(z,t) (3.60)

= > Z.;.!D?%,Dif[um,vm](:mf)(t‘m(ﬂcﬂf))i(17n~0(»”6,7f))j+l%[f](96,t)-
1<i+j<N—1
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Thus
| Fy1(x,t) — Fpp(x, )] 3.61)
SENOLE) Y. o (@) (@) | + Rl /(1)
1<i+j<N-1 A

Estimate of = N, 6) (o, t))j‘ . Note that

1<ij<N—1 ]!

|G (@, )" (O, 0)7| BT it (Ol [9me (O] a8 (3.62)
SRUTMTIMY [l (8)llg < B MU Z (1),

Therefore, by (3.62), we obtain

Y | ey < Y SR Z,0) 66

5!
1<i+j<N-1 1<i+j<N—-1
N-1 2MR1 -
MZ Zm(t).

Estimate of Ry,[f](z,t). We have

Rulfl(e. 0l SKNOLS) 3 o [@se) G| God

i+j=N

1 ... B . B )
<SKN(M, f) D B [Vama () [ Vom-1 ()6
=N !
1 B L
<Kn(M, f) > Z.,7,R§” (@1, O )l oy
Loy 1

=Kn(M, f) (QRI)

GRS
It follows from (3.61), (3.63) and (3.64) that
[ Eoia(5) = F (8l (3.65)
<E(M, P\ Zun(t) + Bo(M, £) (-1, Bat) 3 1

where E1 (M, f), Eo(M, f) are defined as in (3.42)4 5.
Now, we can estimate the intergal J; as follows

J = /<Fm+l Fon(s), iy (s)) ds (3.66)

<2 [ (L 1)y Zuls) + B D) et 0 ) s ) ) (5

<TE(M, £) | (@t B )3 oy + (1 + 2E1 (M, ) /0 Zon(s)ds.
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Second integral Jo. Similarly
t
Jo =2 / (Grng1(8) = Gi(s), U, (s)) ds (3.67)
0

t
<TE}(M,g) II(Um—l,Um—l)H%Y(T)+(1+2E1(M79))/0 Zm(s)ds,

where

_Kn(M,f) |R*-1 ZN—l (2MRy)"
M 2
R2 —1(2R)Y

2 N!

r=1 r!

EQ(Ma g) :KN(Ma f)
Thirth integral J3. Note that, from the following inequalities

|a1[um11](s) — a1[um](s)|

= a1 (lemr )31V ) = a1 (Jram(IE Ve ()15 )|

<2M sup [Diar (¥, 2)| [[um+1(s) — um(s)lly
0<y,z<M?

+2M  sup [ Daar (y, )| [Vt (s) = Vi (s)g
0<y,z<M?

:2\/§an [¢[D1a1] (2M2) + P(Dyay] (2M2)] [[@ma(s)lg s

and
(Lt (), 0, (5)) | < A1 [wm ()] 2y [ @ (5) ][ € 1M |25, ()]

0 )
we get

Jg = — 2/0 [a1[tm1](s) — a1[um](s)] (L1um(s), @, (s))ds (3.69)

t
§4\f2’715ﬁM2 [¢[D1a1] (2M2) +¢[D2aﬂ (QMQ)] /0 Hamx(S)HO Ha;ﬂ(s)HOdS
t

<IN [0 (M) + Py (221%)] [ Zi(5)ds

t
—9v/3,a; Ky (a) / Zon(3)ds,
0

where Kyr(a1) = M? [®p,a,) (2M?) + P(pa, (2M2)] .
Fourth integral J4. Similarly, we deduce from

|a2[vm11](s) — azlvm](s)]
= a2 (Jloms1 ) IE 170ms1 () = az (Jom () Vv (5)]3 )]
SQ\/icT{M [@[Dlaz] (2M2) + PDyay) (2M2)] [0ma () g »

and
| (Lavm(s), 0}, (5))| < V2M [[8],(5)]], -
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that
Jy=— 2/0 [az[vm+1](8) — az[vm](s)] (Lavm(s), vl (s))ds (3.70)
<45 K py(as) /0 "2 (s)ds,

where KM(CLQ) = M? [(P[Dum] (2M2) + Q[Dgag} (2M2)] .
Fifth integral J5. By

| (a1 [um+1])’ (5)]

<[ Dran [um1)(8) (W1 (8), U1 (8)) | + [ D2ai [um1](8)(Vttn41(5), Vi, 11 (s))]|
<M? ( sup [Diax (y,2)|+ sup |Daas (v, Z)|>
0<y,z2<M? 0<y,2<M?
<M [®(p,a,) (2M?) + Ppya,) (2M?)] = Kar(an),
we obtain

Js =2 /0 (@1 [tm1])’ (5) [[m (3)][2 ds (G.71)

ngcM(al)/O Hum(s)szsSQf(M(al)/o Zm(s)ds.

Sixth integral Jg. Similarly

Jo =2 /O (asfvmest])’ (5) [Bma(s)|2 ds < 2 s (a2) /0 7 (5)ds. 3.72)

Combining (3.55), (3.66), (3.67), (3.69)-(3.72), it leads to
Zin(t) <TEN(M, £, 9) || (@1, 0m—1) 30, () (3.73)

t
+2E2(M7 f,g,al,QQ)/ Zm(S)dS,
0

where EI(M, f,9), EQ(M, f,9,a1,a2) are defined as in (3.42)3 3.
By Gronwall’s lemma, we deduce from (3.71), that

[ @ ) by () < b ([ (Um—1, ﬁm—l)Hg/l(T) , (3.74)

1

where pr is defined as in (3.42), with kr = M ur_]pv ~! < 1, which implies that

_ =1 m
[ty vm) = (Umtps Vmap) by, () < (1 = k) Ypr) ™1 (k)" Ym,p € N. (3.75)

It follows that {(tw,, v, )} is a Cauchy sequence in W5 (7"). Then there exists (u,v) €
W1 (T') such that

(U, V) — (u,v) strongly in W1 (7). (3.76)
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Note that (um,vn) € Wi(M,T), then there exists a subsequence {(um,,vm;)} of
{(tm, vm)} such that

(U, ,vm]) (w,v) in L*®(0,T;(H*NV) x (H*NV)) weak*,
(um 7 m ) = (u,0") in L0, T;V x V) weak, 377
(umj, my) = (W’ 0") in o L2(0,T5 L* x L?) weak, .

(u,v) € W(M,T).

By the compactness lemma of Aubin-Lions [1], we can deduce from (3.77)1 23 the
existence of a subsequence still denoted by {(t;,vm;)}, such that

(U, > Vm;) — (u,v) strongly in C([0, T]; V' x V), 378
(U s Vi) = (u',v") strongly in C([0,T); L? x L?). (3.78)
We also note that
[ Fm — flu, U]HC([O,T};L‘Z) (3.79)
R?—1
<K (M, P\ =5 | Bull -t 0m-1) = (9l )
2R1 r
+ Z [ (s Vi) — (um—hvm—l)HWl(T)
Hence, from (3.76) and (3.79), it implies that
Fpu(t) — flu,v] strongly in C([0, T); L?). (3.80)
Similarly
G — glu, v] strongly in C([0, T]; L?). (3.81)
On the other hand
2V2a; -
sup Jax[um](t) = a1 [u](1)] < == Knr(ar) lum = ull ooz = 0,
0<t<T
SO
a1 [um] — a1[u] strongly in C'([0,T7). (3.82)
Similarly
as|vm](t) — az[v](t) strongly in C([0,T7). (3.83)

Finally, passing to limit in (3.5), (3.6) as m = m; — oo, it implies from (3.76),
(3.77)1,2,3, (3.80) - (3.83) that there exists (u, v) € W (M, T) satisfying the equations

(W (t),w) + ar[u](t)a(u(t),w) = (flu,v](t), w),
{ (W"(t),8) + agl[v](t)b(v(t), ) = (glu,v](t), o), (3.84)

for all (w,¢) € V x V,ae., t € (0,T), and the initial conditions
(u(0), u'(0)) = (o, %), (v(0),v'(0)) = (o, 1) - (3.85)

On the other hand, from the assumption (As), we obtain from (3.77)4, (3.80), (3.81)
and (3.84), that v/ = —aq[u](t)L1u + flu,v] € L°°(0,T; L?) and v" = —az[v](t)Lav +
g[u,v] € L>(0,T;L?). Thus, we have the solution (u,v) € Wi (M,T). The existence
proof is completed.
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(b) Uniqueness. By applying a similar argument as in the proof of Theorem 3.1, we can
prove that the solution (u,v) € Wi (M, T) is unique.

(¢) The estimate (3.53). Passing to the limit in (3.75) as p — 400 for fixed m, we get
(3.53).

Theorem 3.6 is proved. [J

Remark 3.1. In order to construct a /N —order iterative scheme, we need the condition
(A3) . Then, we obtain a convergent sequence at a rate of order N to a local weak solution
of the problem. We note that, this condition of f can be relaxed if we only consider the
existence of solution (for more detail, we refer to [24]).

Acknowledgment. The authors are very grateful to the editors and the referees for their
valuable comments and suggestions to improve the paper.
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