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Abstract. In this paper we consider complementary Morrey spaces
{

L
p(·),λ

(Ω) with variable exponent p(x) . We
prove the compactness of commutators of singular integral operators in variable exponent complementary Morrey spaces
in case of unbounded sets Ω ⊂ Rn .
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1 Introduction and problem statement

The variable exponent analysis is a popular topic which continues to attract many researchers, both
in view of possible applications and also because of difficulties in investigation and existing challenging
problems. There is an evident increase of investigations, last two decades related to both the theory of
variable exponent function spaces and operator theory in these spaces. The study of variable exponent
function spaces has been stimulated by problems of elasticity, fluid dynamics, calculus of variations
and differential equations with non-standard growth conditions (see [9], [26]). Various results on non-
weighted and weighted boundedness in Lebesgue spaces with variable exponents p(x) have been proved
for maximal, singular and fractional type operators, we refer to surveying papers [11] and [28].

In 1938 C. Morrey [24] studied Morrey spaces for the first time in connection to its applications in
partial differential equations. Until recently, a rapid growth has been seen in the study of Morrey type
spaces because of its applications in major fields of engineering and sciences. Function spaces with
non-standard growth has seen a major focus in recent times because of its wide range of applications in
the area of image processing, the study of thermorheological fluids and modeling of electrorheological
fluids. It would be next to impossible to give a complete account of the literature which is available to
this subject.

Variable exponent Morrey spaces Lp(·),λ(·)(Rn) , were introduced and studied in [3] in the Euclidean
setting. In [3] the boundedness of the maximal operator was proved in variable exponent Morrey spaces
Lp(·),λ(·)(Rn) under the log-condition on p(·) , and for potential operators a Sobolev type Lp(·),λ(·) →
Lq(·),λ(·) theorem was proved under the same log-condition in the case of bounded sets. Hästö in [19]
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used his new local-to-global approach to extend the result of [3] on the maximal operator to the case of
the whole space Rn .

The generalized variable exponent Morrey spaces were introduced and studied in [15] in the case of
bounded sets. In [15] (in the case of unbounded sets [18]) the boundedness of the maximal operator,
potential operators and singular integral operators in variable exponent Morrey spaces under the certain
conditions were proved.

In [22] the boundedness of the maximal operator and the singular integral operator in variable expo-
nent Morrey spaces Lp(·),λ(·) in the general setting of metric measure spaces was proved. In the case
of constant p and λ , the results on the boundedness of potential operators and classical Calderón-
Zygmund singular operators go back to [1] and [25] respectively.

We denote by [14] the local complementary Morrey spaces
{L
p,λ

{x0}(R
n) with constant p , the space

of all functions f ∈ Lp,loc(Rn\{x0}) , r > 0 with finite norm

‖f‖ {L
p,λ

{x0}(R
n)

= sup
r>0

r
λ
p′ ‖f‖Lp(Rn\B(x0,r)), x0 ∈ Rn,

where p′ = p
p−1 , 1 ≤ p <∞ and 0 ≤ λ < n . Note that

{L
p,0

{x0}(R
n) = Lp(Rn) .

Hardy-Littlewood maximal operator

Mf(x) = sup
r>0
|B(x, r)|−1

∫
B̃(x,r)

|f(y)|dy,

where B̃(x, r) = B(x, r) ∩Ω .
Calderón-Zygmund singular operators

Tf(x) =

∫
Ω
K(x, y)f(y)dy,

where K(x, y) is a ”standard” singular kernel, that is, a function continuous on {(x, y) ∈ Ω×Ω : x 6=
y} and satisfying the estimates

|K(x, y)| ≤ C|x− y|−n for all x 6= y,

|K(x, y)−K(x, z)| ≤ C |y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C |x− ξ|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− ξ|.

This paper is organized as follows. In Section 2 we provide necessary preliminaries on variable expo-
nent Lebesgue and Morrey spaces. In Section 3 we prove compactness of commutators singular integral
operators in variable exponent complementary Morrey spaces.

We use the following notation: Rn is the n -dimensional Euclidean space, Ω ⊂ Rn is an open set,
χE(x) is the characteristic function of a set E ⊆ Rn , by c , C, c1, c2 etc, we denote various absolute
positive constants, which may have different values even in the same line.

2 Preliminaries on variable exponent Lebesgue and Morrey spaces

In this section we refer to the book [9] for variable exponent Lebesgue spaces and give some basic
definitions and facts. Let p(·) be a measurable function on Ω with values in [1,∞) . An open set Ω
is assumed to be unbounded throughout the whole paper. We mainly suppose that

1 < p− ≤ p(x) ≤ p+ <∞, (2.1)



J.Kh. Aliyev, J.J. Hasanov 3

where p− := ess inf
x∈Ω

p(x), p+ := ess sup
x∈Ω

p(x). By Lp(·)(Ω) we denote the space of all measurable

functions f(x) on Ω such that

Ip(·)(f) =

∫
Ω
|f(x)|p(x)dx <∞.

Equipped with the norm

‖f‖p(·) = inf

{
η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,

this is a Banach function space. By p′(·) = p(x)
p(x)−1 , x ∈ Ω, we denote the conjugate exponent.

For the basics on variable exponent Lebesgue spaces we refer to [23], see also [2,4]. P(Ω) is the
set of bounded measurable functions p : Ω → [1,∞) ; P log(Ω) is the set of exponents p ∈ P(Ω)
satisfying the local log-condition

|p(x)− p(y)| ≤ A

− ln |x− y|
, |x− y| ≤ 1

2
x, y ∈ Ω, (2.2)

where A = A(p) > 0 does not depend on x, y ; Alog(Ω) is the set of bounded exponents p : Ω → R
satisfying the condition (2.2); Plog(Ω) is the set of exponents p ∈ P log(Ω) with 1 < p− ≤ p(x) ≤
p+ < ∞ ; for Ω which may be unbounded, by P∞(Ω) , P log∞ (Ω) , Plog∞ (Ω) , Alog∞ (Ω) we denote
the subsets of the above sets of exponents satisfying the decay condition (when Ω is unbounded)

|p(x)− p(∞)| ≤ A∞
ln(2 + |x|)

, x ∈ Rn, (2.3)

where p(∞) = lim
x→∞

p(x) > 1 .
Singular operators within the framework of the spaces with variable exponents were studied in [10].

Theorem 2.1 ([10]) Let Ω ⊂ Rn be an unbounded open set and p ∈ Plog∞ (Ω) . Then the singular
integral operator T is bounded in Lp(·)(Ω) .

We will also make use of the estimate provided by the following lemma ( see [27], Corollary to
Lemma 3.22).

Lemma 2.1 ([27]) Let Ω be a bounded domain and p ∈ P log(Ω) satisfy the assumption 1 ≤ p− ≤
p(x) ≤ p+ <∞ . Let also supx∈Ω ν(x) <∞ and supx∈Ω[n+ ν(x)p(x)] < 0 . Then

‖|x− ·|ν(x)χ
Ω\B̃(x,r)

(·)‖p(·) ≤ Cr
ν(x)+ n

p(x) , x ∈ Ω, 0 < r < ` = diamΩ, (2.4)

where C does not depend on x and r .

We will also make use of the estimate provided by the following lemma ( see [9], Corollary 4.5.9).

‖χ
B̃(x,r)

(·)‖p(·) ≤ Crθp(x,r), x ∈ Ω, p ∈ Plog∞ (Ω), (2.5)

where θp(x, r) =

{ n
p(x) , r ≤ 1,
n

p(∞) , r ≥ 1
.

Lemma 2.2 ([18]) Let Ω be an unbounded open set, let p ∈ Plog∞ (Ω) satisfy the assumption 1 ≤
p− ≤ p(x) ≤ p+ <∞ and the function ν(x) satisfy the conditions supx∈Ω ν(x) <∞ , infx∈Ω[n+
ν(x)p(x)] > 0 and additionally infx∈Ω[n+ ν(x)p(∞)] > 0 . Then

‖|x− ·|ν(x)χ
B̃(x,r)

(·)‖p(·) ≤ Crν(x)+θp(x,r), x ∈ Ω, r > 0,

where C does not depend on x and r .
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Using ideas of [18] we get the following lemma.

Lemma 2.3 Let Ω be an unbounded open set, let p ∈ Plog∞ (Ω) satisfy the assumption 1 ≤ p− ≤
p(x) ≤ p+ < ∞ and the function ν(x) satisfy the assumptions of Lemma 2.1 and additionally
supx∈Ω[n+ ν(x)p(∞)] < 0 . Then

‖|x− ·|ν(x)χ
Ω\B̃(x,r)

(·)‖p(·) ≤ Crν(x)+θp(x,r), x ∈ Ω, r > 0, (2.6)

where C does not depend on x and r .

Let λ(x) be a measurable function on Ω with values in [0, n] . The variable Morrey space Lp(·),λ(·)(Ω)
is defined as the set of integrable functions f on Ω with the finite norm

‖f‖Lp(·),λ(·)(Ω) = sup
x∈Ω, t>0

t
−λ(x)
p(x) ‖fχ

B̃(x,t)
‖Lp(·)(Ω).

Let M ] be the sharp maximal function defined by

M ]f(x) = sup
r>0
|B(x, r)|−1

∫
B̃(x,r)

|f(y)− f
B̃(x,r)

|dy,

where f
B̃(x,t)

= |B̃(x, t)|−1
∫
B̃(x,t)

f(z)dz .
We define BMO space, as the set of locally integrable functions f with finite norm

‖f‖BMO = sup
x∈Ω

M ]f(x) = sup
t>0, x∈Ω

|B(x, t)|−1
∫
B̃(x,t)

|f(y)− f
B̃(x,t)

|dy.

Definition 2.1 We define the BMOp(·)(Ω) space as the set of all locally integrable functions f with
finite norm

‖f‖BMOp(·) = sup
x∈Ω, r>0

‖(f(·)− f
B̃(x,r)

)χ
B̃(x,r)

‖Lp(·)(Ω)

‖χ
B̃(x,r)

‖Lp(·)(Ω)

.

Theorem 2.2 ([20]) Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω) , then the norms ‖·‖BMOp(·)

and ‖ · ‖BMO are mutually equivalent.

We find it convenient to introduce the variable exponent version of the local complementary space as
follows.

Definition 2.2 Let 1 ≤ p− ≤ p(x) ≤ p+ <∞ , λ(x) be a measurable function on Ω with values in

[0, n] . The complementary variable exponent Morrey space
{L
p(·),λ(·)

(Ω) is defined by the norm

‖f‖ {L
p(·),λ(·)

(Ω)
= sup

x∈Ω, t>0
t
λ(x)

p′(x) ‖fχ
Ω\B̃(x,t)

‖Lp(·)(Ω).

3 Compactness of commutators of singular integral operators

In [5] the following theorem was proved.

Theorem 3.1 Let p ∈ Plog∞ (Ω) satisfy assumption (2.1) and a measurable function λ satisfy the con-
ditions

0 ≤ λ(x), sup
x∈Ω

λ(x) < n. (3.1)

Then the singular integral operators T is bounded on
{Lp(·),λ(·)(Ω) .
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The commutator generated by T and a suitable function b is formally defined by

[b, T ]f = bT (f)− T (bf).

Theorem 3.2 ([21]) Let p ∈ Plog∞ (Rn) and b ∈ BMO(Rn) , then the operator [b, T ] is bounded on
Lp(·)(Rn) .

The following theorem was proved in [5].

Theorem 3.3 Let p ∈ Plog∞ (Ω) satisfy assumption (2.1) and a measurable function λ satisfy the con-
dition (3.1), b ∈ BMO(Ω) . Then the operator [b, T ] is bounded on

{Lp(·),λ(·)(Ω) .

In the proof of Theorem 3.5, we need the following characterization that a subset in
{Lp(·),λ(·)(Ω)

is a strongly pre-compact set, which is in itself interesting.

Theorem 3.4 Let p ∈ Plog∞ (Ω) satisfy assumption (2.1) and a measurable function λ satisfy the con-
dition (3.1). Suppose W is a subset in

{Lp(·),λ(·)(Ω) satisfying the following conditions:
i) Norm boundedness uniformly is

sup
f∈W
‖f‖ {Lp(·),λ(·)(Ω)

<∞. (3.2)

ii) Translation continuity uniformly is

lim
y−→0

‖f(·+ y)− f(·)‖ {Lp(·),λ(·)(Ω)
= 0 forany f ∈ W. (3.3)

iii) Uniformly convergence at infinity is

lim
γ−→∞

∥∥∥fχ {B(0,γ)

∥∥∥ {Lp(·),λ(·)(Ω)
= 0 for any f ∈ W . (3.4)

Then W is a strongly pre-compact set in
{Lp(·),λ(·)(Ω).

Now we obtain sufficient conditions for the commutator [b, T ] to be a compact operator on
{Lp(·),λ(·)(Ω) .

Theorem 3.5 Let p ∈ Plog∞ (Ω) satisfy assumption (2.1), b ∈ VMO(Ω) and a measurable function λ

satisfy the condition (3.1). Then the operator [b, T ] is a compact operator on
{Lp(·),λ(·)(Ω) .

Proof. We will use the method in [8]. Let F be the unit ball in
{Lp(·),λ(·)(Ω) . By density, we only need

to prove that when b ∈ C∞c (Rn) , the set G = {[b, T ] f : f ∈ F} is a precompact in
{Lp(·),λ(·)(Ω) .

By Theorem 3.4, it is sufficient to show that (3.2)-(3.4) hold uniformly in G . Notice that b ∈ C∞c (Rn) .
Applying Theorem 3.3, we have

sup
f∈F
‖[b, T ] f‖ {Lp(·),λ(·)(Ω)

≤ C ‖b‖BMO sup
f∈F
‖f‖ {Lp(·),λ(·)(Ω)

≤ C ‖b‖BMO <∞. (3.5)

This shows that (3.2) holds. Next we show that (3.4) holds. To do so, we suppose that β > 1 taken so
large that supp b ⊂ {y : |y| ≤ β} . For any 0 < ε < 1 , we take γ > β . Below we show that for every
x ∈ Rn and r > 0

lim
γ→∞

∥∥∥([b, T ] f)χ {B(0,γ)

∥∥∥ {Lp(·),λ(·)(Ω)
= 0. (3.6)
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In fact, for any z ∈ {
B(0, γ) = {z ∈ Rn : |z| > γ} and every f ∈ F , by Hölder inequality and

Lemma 2.3, we have

t
λ(x)

p′(x)
∥∥∥([b, T ] f)χ {B(0,γ)

∥∥∥
Lp(·)( {B̃(x,t))

≤ C
∥∥∥∥χ {B(0,γ)

∫
Rn

|b(·)− b(y)| |f(y)|
|· − y|n

dy

∥∥∥∥
Lp(·)( {B̃(x,t))

≤ C ‖b‖∞

∥∥∥∥∥χ {B(0,γ)

∫
|y|≤β

|f(y)|
|· − y|n

dy

∥∥∥∥∥
Lp(·)( {B̃(x,t))

≤ C ‖b‖∞ ‖f‖ {Lp(·),λ(·)(Ω)

∥∥∥∥ 1

| · |n

∥∥∥∥
Lp(·)( {B(0,γ−β)

≤ C ‖b‖∞ (γ − β)−θp′ (x,γ−β) ‖f‖Lp(·)(B(0,β)) ≤ Cε. (3.7)

Thus, we get (3.6), which shows that (3.4) holds for [b, T ] in G uniformly.
Finally, we show that the translation continuity condition (3.3) holds for the commutator [b, T ] in G

uniformly. We need to prove that, for any 0 < ε < 1/2 , if |z| is sufficiently small depending only on
ε , then for every f ∈ F

‖[b, T ] f (.)− [b, T ] f (.+ z)‖ {Lp(·),λ(·)(Ω)
≤ Cε.

Now for z ∈ Rn, we write

[b, T ] f (x+ z)− [b, T ] f(x) =

∫
{B
(
x,
|z|
ε

) [b (x+ z)− b(x)]K(x, y)f(y)dy

+

∫
{B
(
x,
|z|
ε

) (K(x, y)−K(x+ z, y)) [b (y)− b(x+ z)] f (y) dy

+

∫
B
(
x,
|z|
ε

) [b (y)− b(x)]K(x, y)f(y)dy

−
∫
B
(
x,
|z|
ε

) [b (y)− b(x+ z)]K(x, y)f(y)dy = J1 + J2 + J3 − J4.

Since b ∈ C∞c (Rn), we have |b(x)− b(x+ z)| ≤ C ‖∇b‖∞ |z| . Then

‖J1‖ {Lp(·),λ(·)(Ω)
≤ C|z| ‖Tf‖ {Lp(·),λ(·)(Ω)

≤ C|z| ‖f‖ {Lp(·),λ(·)(Ω)
< |z|. (3.8)

As for J2, for every t ∈ Rn and r > 0, we get

|J2| ≤ 2 ‖b‖∞
∫

{B
(
x,
|z|
ε

) |K(x, y)−K(x+ z, y)| |f(y)|dy ≤ C|z|T |f |(x).

Using Theorem 3.1, we have

‖J2‖ {Lp(·),λ(·)(Ω)
≤ Cε ‖Tf‖ {Lp(·),λ(·)(Ω)

≤ Cε ‖f‖ {Lp(·),λ(·)(Ω)
.

Thus, we have
‖J2‖ {Lp(·),λ(·)(Ω)

≤ Cε. (3.9)

Regarding J3, we have |b (x)− b (y)| ≤ C ‖∇b‖∞ |x− y| by b ∈ C∞c (Rn). Thus,

|J3| ≤ C
|z|
ε

∫
|x−y|≤C |z|

ε

|K(x, y)||f(y)|dy ≤ C |z|
ε
T |f |(x).
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By the Theorem 3.1, we have

‖J3‖ {Lp(·),λ(·)(Ω)
≤ C |z|

ε
‖T |f |‖ {Lp(·),λ(·)(Ω)

≤ C |z|
ε
‖f‖ {Lp(·),λ(·)(Ω)

.

Thus,

‖J3‖ {Lp(·),λ(·)(Ω)
≤ C |z|

ε
. (3.10)

Finally, by |b(x+ z)− b(y)| ≤ C ‖∇b‖∞ |x+ z − y| , we have

|J4| ≤ C
(
|z|
ε

+ |z|
)∫
|x−y|≤ |z|

ε

|K(x, y)||f(y)|dy ≤ C
(
|z|
ε

+ |z|
)
T |f |(x). (3.11)

Using the same argument for J4 and by the Theorem 3.1, it is easy to check that

‖J4‖ {Lp(·),λ(·)(Ω)
≤ C

(
|z|
ε

+ |z|
)
. (3.12)

From (3.8), (3.9), (3.10) and (3.12) and taking |z| to be sufficiently small, we can get

‖[b, T ] f (.)− [b, T ] f (.+ z)‖ {Lp(·),λ(·)(Ω)

≤ ‖J1‖ {Lp(·),λ(·)(Ω)
+ ‖J2‖ {Lp(·),λ(·)(Ω)

+ ‖J3‖ {Lp(·),λ(·)(Ω)
+ ‖J4‖ {Lp(·),λ(·)(Ω)

≤ Cε.

Therefore, we show that the translation continuity (3.3) holds for the commuator [b, T ] in G uniformly
and this completes the proof of Theorem 3.5.

References

1. Adams, D.R.: A note on Riesz potentials, Duke Math. J. 42, 765-778 (1975).
2. Aliyeva, D.R., Bandaliyev, R.A.: On sharp constant in generalized Minkowski inequality on variable

Lebesgue spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 42(4), Mathematics, 22-28
(2022).

3. Almeida, A., Hasanov, J.J., Samko, S.G.: Maximal and potential operators in variable exponent Mor-
rey spaces, Georgian Math. J. 15 (2), 1-15 (2008).

4. Ayazoglu, R., Akkoyunlu, E.: Extinction properties of solutions for a parabolic equation with a para-
metric variable exponent nonlinearity, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 42(1),
Mathematics, 26-41 (2022).

5. Aykol, C., Badalov, X.A., Hasanov, J.J.: Maximal and singular operators in the local ”complemen-
tary” generalized variable exponent Morrey spaces on unbounded sets, Quaest. Math. 1-26 (2019).
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10. Diening, L., Rüźićka, M.: Calderón-Zygmund operators on generalized Lebesgue spaces Lp(·) and
problems related to fluid dynamics, J. Reine Angew. Math. 563, 197-220 (2003).

11. Diening, L., Hasto, P., Nekvinda, A.: Open problems in variable exponent Lebesgue and Sobolev
spaces, ”Function Spaces, Differential Operators and Nonlinear Analysis”, Proceedings of the Con-
ference held in Milovy, Bohemian-Moravian Uplands, May 28 - June 2, 2004, Math. Inst. Acad. Sci.
Czech Republick, Praha, 38-58 (2005).



8 Compactness of commutators singular integral operators in . . .

12. Di Fazio, G., Ragusa, M.A.: Commutators and Morrey spaces, Bollettino U.M.I. 7 5-A, 323-332
(1991).

13. Guliyev, V.S.: Integral operators on function spaces on the homogeneous groups and on domains in
Rn , Doctor’s degree dissertation, Moscow, Mat. Inst. Steklov, 1-329, (1994) (Russian).

14. Guliyev, V.S.: Function spaces, integral operators and two weighted inequalities on homogeneous
groups. Some applications, Baku, 1-332 (1999)(Russian).

15. Guliyev, V.S., Hasanov, J.J., Samko, S.G.: Boundedness of the maximal, potential and singular op-
erators in the generalized variable exponent Morrey spaces, Math. Scand. 107, 285-304 (2010).

16. Guliyev, V.S., Hasanov, J.J., Samko, S.G.: Boundedness of the maximal, potential and singular
integral operators in the generalized variable exponent Morrey type spaces, J. Math. Sci. 170 (4),
423-443 (2010).

17. Guliyev, V.S., Hasanov, J.J., Samko, S.G.: Maximal, potential and singular operators in the local
”complementary” variable exponent Morrey type spaces, J. Math. Sci. 193 (2), 228-248 (2013).

18. Guliyev, V.S., Samko, S.G.: Maximal, potential and singular operators in the generalized variable
exponent Morrey spaces on unbounded sets, J. Math. Anal. Appl. 401 (1), 72-84 (2013).
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