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Abstract. In the framework of rational Dunkl analysis on the real line, we introduce Dunkl-type Besov-
Fofana spaces which include Besov-Dunkl spaces and Dunkl-type Besov-Morrey spaces. As applications,
we establish the boundedness of Dunkl-type fractional integral and fractional maximal operators in these
spaces.
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1 Introduction and main results

Let Rd be the d-dimensional real Euclidean space and dx be the usual Lebesgue measure
on Rd. The classical Besov spaces were introduced in [4] and [5] by Besov. The under-
lying norm used to define these spaces was that of Lp(dx) spaces. We refer to [30] and
the references therein for a detailed exposition on Besov spaces. Later, the study of Besov
spaces associated with some generalization of Lebesgue spaces attracted the attention of
many authors. For instance, when the Lebesgue spaces are replaced by the Morrey spaces,
then we obtain the Besov-Morrey spaces first defined by Kozono and Yamazaki in [19].
Properties of Besov-Morrey spaces can be found in [19], [23], [31] and [33]. Besov-Morrey
spaces found important applications in the theory of non-linear partial differential equations
(see for example [8,19,22]). In [17], Ho identified the condition imposed on a semi-Köthe
function space so that the corresponding Besov type space is well definied. He showed that
this criterion can be expressed in term of the boundedness of the Hardy-Littlewood max-
imal operator. As a consequence, Ho obtained a wide class of Besov type spaces called
Besov-Köthe spaces. Thanks to Proposition 4.2 in [11], it is easy to see that Ho’s condition
is fulfilled by Fofana spaces, denoted by (Lq, Lp)α(Rd, dx) (1 < q ≤ α ≤ p ≤ ∞),
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introduced in [12] in connection with the study of the boundedness of the fractional max-
imal operator of Hardy-Littlewood and of the Fourier transformation. It is proved that for
1 ≤ q < α fixed and p going from α to ∞, the spaces (Lq, Lp)α(Rd, dx) form a chain
of distinct Banach spaces beginning with the Lebesgue space Lα(dx) and ending by the
classical Morrey space Lq, λ = (Lq, L∞)α(Rd, dx), where λ = d(1− q

α).
In recent years, generalizations of Besov spaces, Besov-Morrey spaces and Fofana spaces

in the framework of rational Dunkl analysis on the real line were carried out in many pa-
pers (see for instance [1,3,6,13,15,18,20,27,28]). Recall that on the real line, the Dunkl
operators are differential-difference operators associated with the reflection group Z2 on R.
The harmonic analysis of the one-dimensional Dunkl operator and Dunkl transform was
investigated in [2,9,13,15,32,34]. The fractional integral, the fractional maximal operator
and their commutators associated with the Dunkl operator on R and related topics attracted
great interest and have become fruitful research areas, see for instance [21,24–26] and the
references therein. In [15], Guliyev and Mammadov proved the boundedness of Dunkl-
type fractional integral and fractional maximal operators in Besov-Dunkl spaces. In [13],
Guliyev et al. established the boundedness of Dunkl-type fractional maximal operators in
Dunkl-type Besov-Morrey spaces.

In the present paper, we introduce Dunkl-type Besov-Fofana spaces on the real line. As
applications, we establish the boundedness of Dunkl-type fractional integral and fractional
maximal operators in these spaces. In order to state our mains results, we give some nota-
tions that will be used throughout this note. Let k > −1

2 be a fixed number and µ be the
weighted Lebesgue measure on R, given by

dµ(x) =
(
2k+1Γ (k + 1)

)−1
|x|2k+1 dx.

We denote by L0(µ) the complex vector space of equivalence classes (modulo equality µ-
almost everywhere) of complex-valued functions µ-measurable on R. The class of locally
integrable functions with respect to µ is denoted by L1

loc(µ). For 1 ≤ p ≤ ∞, Lp(µ) stands
for the Lebesgue space associated with the measure µ. We write ∥f∥p for the classical norm
of f ∈ Lp(µ). For any subset A of R, χA denotes the characteristic function of A. For
x ∈ R and for r > 0, we set

B(x, r) = {y ∈ R : max{0, |x| − r} < |y| < |x|+ r},

if x ̸= 0 and
Br = B(0, r) = (−r, r).

The letter C will be used as a generic positive constant not depending on the relevant vari-
ables. Its value may change from one occurrence to another. Let 1 ≤ q, p ≤ ∞ and r > 0.
For f ∈ L0(µ) we define

r ∥f∥q,p =


∥∥∥[∫R(τy |f |q)χBr(x)dµ(x)

] 1
q

∥∥∥
p

if q < ∞,∥∥∥∥∥fχB(y,r)

∥∥
∞

∥∥∥
p

if q = ∞,

with the Lp(µ)-norm taken with respect to the variable y. Here and in the sequel, τy(y ∈ R)
stands for the Dunkl translation operator (see Section 2 for more details).
Let 1 ≤ q ≤ α ≤ p ≤ ∞. The Dunkl-Fofana space (Lq, Lp)α (µ) is defined as the subspace
of L0(µ) such that ∥f∥q,p,α < ∞, where

∥f∥q,p,α = sup
r>0

(µ(Br))
1
α
− 1

q
− 1

p r ∥f∥q,p .
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with the usual convention 1
∞ = 0. It is proved in [27] that the map f 7→ ∥f∥q,p,α is a norm

on (Lq, Lp)α (µ) and ((Lq, Lp)α (µ), ∥·∥q,p,α) is a complex Banach space (see [28]).
For 1 ≤ θ ≤ ∞ and 0 < s < 1, we introduce the Dunkl-type Besov-Fofana space
Bs

θ(L
q, Lp)α(µ) defined as

Bs
θ(L

q, Lp)α(µ) =
{
f ∈ (Lq, Lp)α(µ) : ∥f∥Bs

θ(L
q ,Lp)α(µ) < ∞

}
,

where

∥f∥Bs
θ(L

q ,Lp)α(µ) = ∥f∥q,p,α +

∥∥∥∥∥∥τxf(·)− f(·)∥q,p,α
|x|

2k+2
θ

+s

∥∥∥∥∥
θ

.

Let 0 ≤ β < 2k+2 and f ∈ L0(µ). The Dunkl-type fractional integral operator Iβ (β ̸= 0)
and the Dunkl-type fractional maximal operator Mβ are defined as

Iβf(x) =

∫
R
τxf(z)|z|β−(2k+2)dµ(z)

and
Mβf(x) = sup

r>0
(µ(Br))

β
2k+2

−1
∫
Br

τx |f | (y)dµ(y).

For β = 0, the fractional maximal operator reduces to the Hardy-Littlewood maximal op-
erator associated with the Dunkl operator, denoted by M . We shall prove the following
result.

Theorem 1.1 Let 1 < q ≤ α ≤ p < ∞, 1 ≤ θ ≤ ∞, 0 < s < 1, 0 < β < 2k+2
α and

f ∈ Bs
θ(L

q, Lp)α(µ).
Put

1

α∗ =
1

α
− β

2k + 2
,

1

p̄
=

1

p

(
1− αβ

2k + 2

)
and

1

q̄
=

1

q

(
1− αβ

2k + 2

)
.

Then
∥Iβf∥Bs

θ(L
q̄ ,Lp̄)α

∗
(µ)

≤ C∥f∥Bs
θ(L

q ,Lp)α(µ).

As a consequence of Theorem 1.1, we obtain the below result.

Corollary 1.1 Let 1 < q ≤ α ≤ p < ∞, 1 ≤ θ ≤ ∞, 0 < s < 1, 0 < β < 2k+2
α and

f ∈ Bs
θ(L

q, Lp)α(µ).
Put

1

α∗ =
1

α
− β

2k + 2
,

1

p̄
=

1

p
(1− αβ

2k + 2
) and

1

q̄
=

1

q
(1− αβ

2k + 2
).

Then
∥Mβf∥Bs

θ(L
q̄ ,Lp̄)α

∗
(µ)

≤ C∥f∥Bs
θ(L

q ,Lp)α(µ).

We shall also establish the following boundedness result for the Hardy-Littlewood maximal
operator associated with the Dunkl operator.

Theorem 1.2 Let 1 < q ≤ α ≤ p ≤ ∞, 1 ≤ θ ≤ ∞, 0 < s < 1 and f ∈ Bs
θ(L

q, Lp)α(µ).
Then

∥Mf∥Bs
θ(L

q ,Lp)α(µ) ≤ C∥f∥Bs
θ(L

q ,Lp)α(µ).
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The remark below follows from the fact that for certain particular choices of exponents,
Dunkl-type Besov-Fofana spaces reduce to Besov-Dunkl spaces or Dunkl-type Besov-Morrey
spaces (see Section 3).

Remark 1.1 Note that

(1) By taking α = q or α = p in Theorem 1.1 and Corollary 1.1 we obtain Theorem 3 and
Corollary 4 both established in [15].

(2) Theorem 3.2 established in [13] can be viewed as the analogue of Corollary 1.1 in the
limiting case p = ∞ with 1 < q < α < ∞.

(3) Theorem 1.2 in the case α = q or α = p was proved in [20].
(4) Theorem 1.2 in the case 1 < q < α < p = ∞ was proved in [13].

The paper is organised as follows. In Section 2, for the sake of completeness, we give a
brief review on rational Dunkl analysis on the real line. In Section 3 we recall some norm
inequalities in the spaces (Lq, Lp)α(µ) and we point out some properties of the Dunkl-
type Besov-Fofana spaces. Section 4 contains the proofs of Theorem 1.1, Corollary 1.1 and
Theorem 1.2.

2 Some basic facts about rational Dunkl analysis on the real line

The Dunkl operator associated with the reflection group Z2 on R is defined by

Λkf(x) =
df

dx
(x) +

2k + 1

x

(
f(x)− f(−x)

2

)
.

For λ ∈ C, the Dunkl kernel denoted by Ek(λ) (see [9]), is the only solution of the initial
value problem

Λkf(x) = λf(x), f(0) = 1, x ∈ R.
It is given by the formula

Ek(λx) = jk(iλx) +
λx

2(k + 1)
jk+1(iλx), x ∈ R,

where

jk(z) = 2kΓ (k + 1)
Jk(z)

zk
= Γ (k + 1)

∞∑
n=0

(−1)nz2n

n!22nΓ (n+ k + 1)
, z ∈ C

is the normalized Bessel function of the first kind and of order k. Notice that Λ− 1
2
= d

dx

and E− 1
2
(λx) = eλx. It is also proved (see [29]) that |Ek(ix)| ≤ 1 for every x ∈ R.

The Dunkl kernel Ek gives rise to an integral transform on R denoted Fk and called
Dunkl transform (see [7]). For f ∈ L1(µ),

Fkf(λ) =

∫
R
Ek(−iλx)f(x)dµ(x), λ ∈ R.

We have the following properties of the Dunkl transform.

Proposition 2.1 (See [7] or [10].)

(1) Let f ∈ L1(µ). If Fk(f) is in L1(µ), then we have the following inversion formula:

f(x) = C

∫
R
Ek(ixy)Fk(f)(y)dµ(y).
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(2) The Dunkl transform has a unique extension to an isometric isomorphism on L2(µ).

Let x, y, z ∈ R. We put

Wk(x, y, z) = [1− σx,y,z + σz,x,y + σz,y,x]∆k(|x|, |y|, |z|)

where,

σx,y,z =

{
x2+y2−z2

2xy if x, y ∈ R \ {0},
0 otherwise

and ∆k is the Bessel kernel given by

∆k(|x|, |y|, |z|) =

{
bk

[((|x|+|y|)2−z2)(z2−(|x|−|y|)2)]k−
1
2

|xyz|2k if |z| ∈ Ax,y,

0 otherwise,

with bk = 21−k (Γ (k+1))2√
πΓ (k+ 1

2
)

and Ax,y = [||x| − |y||, |x|+ |y|].

Remark 2.1 (See [29].)

Wk(x, y, z) = Wk(y, x, z) = Wk(−x, z, y)

Wk(x, y, z) = Wk(−z, y,−x) = Wk(−x,−y,−z)

and ∫
R
|Wk(x, y, z)|dµk(z) ≤ 4.

In the sequel, we consider the signed measure νx,y on R given by

dνx,y(z) =

{
Wk(x, y, z)dµk(z) if x, y ∈ R \ {0},
dδx(z) if y = 0,
dδy(z) if x = 0,

with supp(νx,y) = (−Ax,y) ∪ Ax,y for all (x, y) ∈ R \ {0} × R \ {0}.

Definition 2.1 For x, y ∈ R and f a continuous function on R, we put

τxf(y) =

∫
R
f(z)dνx,y(z).

The operators τx, x ∈ R, are called Dunkl translation operators on R.

For x ∈ R and r > 0, the map y 7→ τxχBr(y) is supported in B(x, r) and

0 ≤ τxχBr(y) ≤ min

{
1,

2Cκ

2κ+ 1

(
r

|x|

)2κ+1
}
, y ∈ B(x, r),

as proved in [16].
Let f and g be two continuous functions on R with compact support. We define the gener-
alized convolution ∗k of f and g by

f ∗k g(x) =
∫
R
τxf(−y)g(y)dµ(y).

The generalized convolution ∗k is associative and commutative (see [29]). We also have the
below result.
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Proposition 2.2 (See Soltani [32].)

(1) For all x ∈ R, the operator τx extends to Lp(µ), p ≥ 1, and

∥τxf∥p ≤ 4 ∥f∥p

for all f ∈ Lp(µ).
(2) Assume that p, q, r ∈ [1,∞] and satisfy 1

p+
1
q = 1+ 1

r . Then the generalized convolution
defined on Cc × Cc, extends to a continuous map from Lp(µ)× Lq(µ) to Lr(µ), and we
have

∥f ∗k g∥r ≤ 4 ∥f∥p ∥g∥q .

It is also proved in [14] that if f ∈ L1(µ) and g ∈ Lp(µ), 1 ≤ p < ∞, then

τx(f ∗k g) = τxf ∗k g = f ∗k τxg, x ∈ R.

For any f ∈ L1
loc(µ), the following analogue of the Lebesgue differentiation theorem holds

(see [32]):

lim
r→0

1

µ(Br)

∫
Br

|τxf(y)− f(x)|dµ(y) = 0 for a.e. x ∈ R

and
lim
r→0

1

µ(Br)

∫
Br

τxf(y)dµ(y) = f(x) for a.e. x ∈ R.

We end this section by the following well-known equality:

µ(Br) = dkr
2k+2, r > 0,

where dk =
(
2k+1(k + 1)Γ (k + 1)

)−1.

3 Dunkl-Fofana spaces and Dunkl-type Besov-Fofana spaces

We recall below some properties of the Dunkl-Fofana spaces.

Proposition 3.1 (See [27].) Let 1 ≤ q ≤ α ≤ p ≤ ∞.

(1) We have
∥f∥q,p,α ≤ 4

1
q ∥f∥α, f ∈ Lα(µ)

and consequently Lα(µ) ⊂ (Lq1 , Lp)α(µ).
(2) If q ≤ q1 ≤ α ≤ p then

∥f∥q,p,α ≤ ∥f∥q1,p,α, f ∈ (Lq1 , Lp)α

and consequently (Lq1 , Lp)α(µ) ⊂ (Lq, Lp)α(µ).
(3) If q ≤ α ≤ p1 ≤ p then there exists a constant C > 0 such that

∥f∥q,p,α ≤ C∥f∥q,p1,α, f ∈ (Lq, Lp1)α(µ)

and consequently (Lq, Lp1)α(µ) ⊂ (Lq, Lp)α(µ).
(4) If α ∈ {p, q} then (Lq, Lp)α (µ) = Lα(µ).

The following results which deal with norm inequalities for the Hardy-Littlewood maximal
operator associated with the Dunkl operator and Dunkl-type fractional integral operators
will be useful in the proofs of our mains results.
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Proposition 3.2 ([27]) Let 1 < q ≤ α ≤ p ≤ ∞. There exists a constant C > 0 such that

∥Mf∥q,p,α ≤ C ∥f∥q,p,α , f ∈ L1
loc(µ).

Proposition 3.3 ([28]) Let 1 < q ≤ α ≤ p < ∞ and 0 < β < 2k+2
α . Put

1

α∗ =
1

α
− β

2k + 2
,
1

p̄
=

1

p

(
1− αβ

2k + 2

)
and

1

q̄
=

1

q

(
1− αβ

2k + 2

)
.

Then

∥Iβf∥q̄,p̄,α∗ ≤ C∥f∥
1− αβ

2k+2
q,p,α ∥f∥

αβ
2k+2
q,∞,α, f ∈ (Lq, Lp)α(µ)

and

∥Iβf∥q̄,p̄,α∗ ≤ C∥f∥q,p,α, f ∈ (Lq, Lp)α(µ).

Let 1 ≤ q ≤ α ≤ p ≤ ∞, 1 ≤ θ ≤ ∞ and 0 < s < 1. Notice that Bs
θ(L

q, L∞)α(µ) is
the Dunkl-type Besov-Morrey space Bs

qθ,λ,k, with λ = (2k + 2)(1 − q
α), defined in [13].

Dunkl-type Besov-Fofana spaces are also closely related to Besov-Dunkl spaces denoted
by Bs

pθ(R), which consist of all functions f in Lp(µ) satisfying

∥f∥Bs
pθ(R)

= ∥f∥p +

∥∥∥∥∥∥τxf(·)− f(·)∥θLp(µ)

|x|
2k+2

θ
+s

∥∥∥∥∥
θ

< ∞.

More precisely, we have the following result.

Proposition 3.4 Let 1 ≤ q ≤ α ≤ p ≤ ∞, 1 ≤ θ ≤ ∞ and 0 < s < 1. Then the following
assertions hold.

(1) The space Bs
θ(L

q, Lp)α(µ) is a complex vector subspace of (Lq, Lp)α(µ).
(2) the map f 7→ ∥f∥Bs

θ(L
q ,Lp)α(µ) defines a norm on Bs

θ(L
q, Lp)α(µ).

(3) For all f ∈ Bs
αθ(R), ∥f∥Bs

θ(L
q ,Lp)α(µ) ≤ 4

1
q ∥f∥Bs

αθ(R)
.

(4) If α ∈ {q, p} then Bs
θ (L

q, Lp)α (µ) = Bs
αθ(R).

(5) The family of spaces Bs
θ (L

q, Lp)α (µ) is increasing with respect to the exponent p and
decreasing with respect to the exponent q.

Proof. It is an immediate consequence of Proposition 3.1 and the definitions of the spaces
Bs

θ(L
q, Lp)α(µ) and Bs

αθ(R).

4 Proofs of the main results

Proof of Theorem 1.1. Let 1 < q ≤ α ≤ p ≤ ∞, 1 ≤ θ ≤ ∞, 0 < s < 1, 0 < β < 2k+2
α

and f ∈ Bs
θ(L

q, Lp)α(µ). Let x ∈ R and y ∈ R. From the definition of the Dunkl-type
Besov-Fofana spaces it suffices to show that there exists a constant C > 0 such that

∥τx(Iβf)− Iβf∥q̄,p̄,α∗ ≤ C∥τxf − f∥q,p,α.
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Since it is known that Dunkl translation commutes with Dunkl-type fractional integral op-
erator, we have

|τx(Iβf)(y)− Iβf(y)|
= |Iβ(τxf)(y)− Iβf(y)|

=

∣∣∣∣∫
R
τxf(z)τ−y|z|β−2k−2dµ(z)−

∫
R
f(z)τ−y|z|β−2k−2dµ(z)

∣∣∣∣
≤

∫
R
|τxf(z)− f(z)| τ−y|z|β−2k−2dµ(z)

≤
∫
R
τy |τxf − f | (z)|z|β−2k−2dµ(z) = Iβ(|τxf − f |)(y).

Hence,

|τx(Iβf)(y)− Iβf(y)| ≤ Iβ(|τxf − f |)(y). (4.1)

Taking the norm ∥ · ∥q̄,p̄,α∗ of both sides of (4.1) and applying Proposition 3.3 we get

∥τx(Iβf)− Iβf∥q̄,p̄,α∗ ≤ ∥Iβ(|τxf − f |)∥q̄,p̄,α∗ ≤ C∥τxf − f∥q,p,α.

Thus the desired result follows.

Proof of Corollary 1.1. Let 1 < q ≤ α ≤ p ≤ ∞, 1 ≤ θ ≤ ∞, 0 < s < 1, 0 < β < 2k+2
α

and f ∈ Bs
θ(L

q, Lp)α(µ). Let x ∈ R. Since

Mβf(x) ≤ d
β

2k+2
−1

k Iβ|f |(x) (4.2)

(see [28]), we end the proof by taking the norm ∥ · ∥
Bs

θ(L
q̄ ,Lp̄)α

∗
(µ)

of both sides of (4.2) and
by applying Theorem 1.1.

Proof of Theorem 1.1. Let 1 < q ≤ α ≤ p ≤ ∞, 1 ≤ θ ≤ ∞, 0 < s < 1 and
f ∈ Bs

θ(L
q, Lp)α(µ). Let x, y ∈ R and r > 0. From the definition of the Dunkl-type

Besov-Fofana spaces it suffices to show that there exists a constant C > 0 such that

∥τx(Mf)−Mf∥q,p,α ≤ C∥τxf − f∥q,p,α.

It is known that Dunkl translation commutes with Hardy-Littlewood maximal operator as-
sociated with the Dunkl operator, that is,

|τx(Mf)(y)−Mf(y)| = |M(τxf)(y)−Mf(y)|.

Moreover, ∣∣∣∣∫
Br

τy(|τxf(z)|)dµ(z)−
∫
Br

τy |f(z)| dµ(z)
∣∣∣∣

≤
∫
R
||τxf(z)| − |f(z)|| τ−yχBr(z)dµ(z)

≤
∫
R
|τxf(z)− f(z)| τ−yχBr(z)dµ(z)

≤
∫
Br

τy |τxf − f | (z)dµ(y) ≤ M(|τxf − f |)(y).
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Put
A =

∫
Br

τy(|τxf(z)|)dµ(z) and B =

∫
Br

τy |f(z)| dµ(z).

On the one hand, we have

A−B ≤ M(|τxf − f |)(y) =⇒ A ≤ M(|τxf − f |)(y) +B.

Therefore,
M(τxf)(y) ≤ M(|τxf − f |)(y) +M(f)(y).

Hence,

M(τxf)(y)−M(f)(y) ≤ M(|τxf − f |)(y). (4.3)

On the other hand,

−M(|τxf − f |)(y) ≤ A−B =⇒ B ≤ A+M(|τxf − f |)(y).

Therefore,
M(f)(y) ≤ M(τxf)(y) +M(|τxf − f |)(y).

Hence,

−M(|τxf − f |)(y) ≤ M(τxf)(y)−M(f)(y). (4.4)

It follows from (4.3) and (4.4) that

|M(τxf)(y)−M(f)(y)| ≤ M(|τxf − f |)(y). (4.5)

Taking the norm ∥ · ∥q,p,α of both sides of (4.5) and applying Proposition 3.2 we get

∥τx(Mf)−Mf∥q,p,α ≤ ∥M(|τxf − f |)∥q,p,α ≤ C∥τxf − f∥q,p,α.

Thus the desired result follows.

Acknowledgements. The authors would like to express their thanks to the referee for his/her
valuable comments and suggestions on the manuscript of this paper.
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