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Abstract. We shall give necessary and sufficient conditions for the boundedness of the anisotropic max-
imal commutators Mgi and the commutators of the anisotropic maximal operator [b, M d] in total Morrey
spaces Lg) A, M(R") when b belongs to anisotropic Lipschitz spaces A&d(R"), whereby some new charac-
terizations for certain subclasses of anisotropic Lipschitz spaces A57d(R") are obtained.
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1 Introduction

The aim of this paper is to study anisotropic maximal commutators M bd and commutators

of the anisotropic maximal operator [b, M %] in total anisotropic Morrey spaces Lg Au(R™)

when b belongs to anisotropic Lipschitz spaces /i/gd(R”).
Let R™ be the n-dimension Euclidean space with the norm || for each z € R", S™~1
denotes the unit sphere on R”. For z € R™ and r > 0, let £(z, ) denote the open ball

centered at z of radius r and CS(:U, r) denote the set R™"\E(z, 7). Let d = (dy,...,dy),
d;>1,i=1,...,n,|d =37 diand tle = (t42,...,t%x,). By [5,7], the function
F(x,p) =1 x2p~2%, considered for any fixed z € R", is a decreasing one with respect

to p > 0 and the equation F'(z, p) = 1 is uniquely solvable. This unique solution will be
denoted by p(x). It is a simple matter to check that p(x — y) defines a distance between any
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2 Characterizations of anisotropic Lipschitz functions via the commutators of ...

two points z, y € R™. Thus R", endowed with the metric p, defines a homogeneous metric
space ([5—-7]). The balls with respect to p, centered at x of radius r, are just the ellipsoids

2 2
yl_xl y —x
5d(x,7“)={yeR”:(T%)+...+m<1}7

with the Lebesgue measure |Ey(z,7)| = v,r!¥, where v, is the volume of the unit ball in
R™. Letalso ITy(z,7) = {y € R™ : max;<j<y, |z; —yi|'/% < r} denote the parallelopiped,
ng(a:,r) = R™\ &;(x,r) be the complement of £;(0,7). If d = 1 = (1,...,1), then
clearly p(x) = |z| and &1 (z,7) = E(x,r). Note that in the standard parabolic case d =
(1,...,1,2) we have

/2 /)4 2
p(x):\/|x| VR

Let f € LY°(R™). The anisotropic fractional maximal operator M is given by
14
Mif@) =swpleGe ) [ pwlay, 0<a <
t>0 E(x,t)

where |E(z,t)| is the Lebesgue measure of the ellipsoid £(x,t). If « = 0, then M? =
M¢ is the anisotropic Hardy-Littlewood maximal operator. If d = 1, then M, = MZ is
the fractional maximal operator and M = M is the classical Hardy-Littlewood maximal
operator.

The anisotropic maximal commutator of M@ with a locally integrable function b is de-
fined by

MES) = sup e 0 [ )~ b1y

ﬂt)

Ifd = 1, then M, = M, lfl is the maximal commutator. The operators M¢ and Mgl play an
important role in real and harmonic analysis (see, for example [28,29]).

On the other hand, we can define the (nonlinear) commutator of the anisotropic maximal
operator M ¢ with a locally integrable function b by

[6, M) f(2)f = b(a) M f(z) — MU (bf)(2).

Obviously, operators M, Z;i and [b, M ] essentially differ from each other since M, gl is positive
and sublinear and [b, M ] is neither positive nor sublinear.

The operators M, [b, M| and M, play an important role in real and harmonic analysis
and applications (see, for instance [1-4,13,14,16-18,21,22,24,25,30]).

In 1978, Janson [20] gave some characterizations of the Lipschitz space Agvd(R”) via

commutator [b, 7] and the author proved that b € Ag 4(R™) if and only if [b, T is bounded
from LP(R™) to L9(R™), where 1 < p < n/f,1/p —1/q = [/n and T is the classical
singular integral operator (see also [26]).

Morrey spaces, introduced by C. B. Morrey [23], play important roles in the regularity
theory of PDE, including heat equations and Navier-Stokes equations. In [13] Guliyev intro-

duce a variant of Morrey spaces called total Morrey spaces L, ) ,(R"),0 <p < oo, A € R
and ;1 € R. In [1] the authors was consider the total anisotropic Morrey spaces Lg, Al M(R”),
Z’ A, (R™) and study some embeddings into the Morrey

space Lg N H(R”). Was also given necessary and sufficient conditions for the boundedness

give basic properties of the spaces L
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of the anisotropic maximal commutator operator M, lfl and commutator of anisotropic max-
imal operator [b, M%) on Lg A,u(R™). Was obtained some new characterizations for certain

subclasses of BMO(R™).
The aim of this paper is to give necessary and sufficient conditions for the bounded-
ness of the anisotropic maximal commutator operator M, bd and commutator of anisotropic

maximal operator [b, M%) on Lz N “(Rn) when b belongs to anisotropic Lipschitz spaces

Ag 4(R™). New characterizations of some subclasses of anisotropic Lipschitz spaces 4 4(R™)
are obtained.

The structure of the paper is as follows. In Section 2 we give some theorems about
the boundedness of anisotropic fractional maximal operator M? on the total anisotropic

Morrey spaces Lg N ﬂ(R”). In Section 3 we find necessary and sufficient conditions for the
d

boundedness of the anisotropic maximal commutator Mg on L 5 “(R”) spaces. In Section
4 we find necessary and sufficient conditions for the boundedness of the commutator of

anisotropic maximal operator [b, M¢] on L;i A (R™) spaces.

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A ~ B and say that A and B are
equivalent.

2 Preliminaries

Definition 2.1 Let d = (dy,...,dy),d; > 1,1 =1,...,n. Letalso0 < p < 0o, A € R,
w € R, [ty = min{l,t}, ¢ > 0. We denote by Lg)\(R”) the anisotropic Morrey space,
by Zz \(R™) the modified anisotropic Morrey space [10,12], and by Lg A M(R") the total

anisotropic Morrey space [1, 13] the set of all classes of locally integrable functions f with
the finite norms

A
1fllge, = sup 7 [|fllL, @),

z€R™ t>0
2
fllga = sup [t]y " ||f ;
| HLZ,A xeR",t>0H1 £l 2y ))
_A I3
[fllge. = sup [ty " [1/87 1fll, e

PAm z€R™,t>0
respectively.

Definition 2.2 Let d = (dy,...,dy),d; > 1, i =1,...,n. Letalso0 < p < oo, A € R
and | € R. We define the weak anisotropic Morrey space WL;I A(R™), the weak modified

anisotropic Morrey space Wzi A(R™) [10, 12] and the weak total anisotropic Morrey space
WL, (R™) [1,13] as the set of all locally integrable functions f with finite norms

DA
e
= P
£ llwra o | f 1w L, (& (xt))5
2
flyyga = sup [t], " |If E(@))s
| HWL;A xeR",t>0H1 I Fllw L, (e (2,0
_A B
[fllwra = sup [t], " [L/H7 [fllwe, @),
Py x€R7L7t>O

respectively.
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Lemma2.1 If0<p<oo, 0< u <A<, then
Li/\#(Rn) = LII;,,\(RR) N Lfiu(R")
and

1z, gy = max {Iflze S, }-

Proof. Let f € LY (R™)and 0 < p < A < +. Then

DAL
1, = 1 Fllzean

_A _pp=A
:maX{ sup  t 7 ||flliee@e)), sup tort v Hf”LP(S(x,t))}
2€R" 0<t<1 2ER" 451

< fllee, @
and
Ifllze, = [1fllzrwn
A-p A K
:max{ sup  tr t 7| flliee@e), sup t P Hf”LP(S(:Jc,t))}

zeR™ 0<t<1 zER™ t>1
<fllee, ,@ny-

Therefore, f € L, (R") 0 LL,(R™) and max { |/l 1f g, } < 1S lce, o
Now let f € Lg/\(R”) N LiH(R"). Then

A 23
— P P
1712z, = s 17 0/ Il

A .y
= maX{ sup ¢t 7 || fllzee@ey), sup t P HfHLP(E(agt))}
2E€RP 0<t<1 2ER™ $>1

ax {1 fllpr I, }-

Therefore, f € L, ,(R") and || ., Rn)<max{\|f||Lp Al }

The following lemma is a weak version of Lemma 2.1 and is proved similarly.

Lemma 2.2 If0 <p <00, 0< pu<\< 7, then
WLY, J(R") =WLI\ (R") N WL}, (R")

and

I lhwer,  =max{Iflwer I lweg, |-
Remark 2.1 Let 0 < p < oo. If A <0 or p > v, then
LpA L(RY) = WLP,\ L(R™) = OR").

The following local estimate is valid (see also [11]).
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Lemma 2.3 [11, Lemma 4.1] Let0 < o < |d, 1 <p < % and L — 1 = & Then, for
p > 1 the inequality

1l lal
IMEfIlL, ery) ST tS;l;)t <\ fllzp ) (2.1)

holds for all £(x,r) and for all f € L;,OC(R”).
Moreover if p = 1, then the inequality

IME fllw i, (@) S re Supt 0 HfHLl 2,8) (2.2)

holds for all £(x,r) and for all f € L°¢(R™).

The following is Spanne’s type result for fractional anisotropic maximal operators in
total anisotropic Morrey spaces (see, for example, [11]).

0<04<|d| )‘andl -

|d|*
1. pr>1 feLp/\u( "), thenMdeLdJL(R”)and
O p
d
M4 f“LdJ g < Cp,q)\,u HfHLZA,u’ (2.3)
PP
where C, 4 x,, depends only on p,q, A, i and n.
2Ilfp=1, fe€e L1 /\H(Rn) then M f € WLq /\quq(R”) and
d
1M flwrs < ConllFls, | 24

where C » ,, is independent of f.

The following is Adam’s type result for fractional anisotropic maximal operators in total
anisotropic Morrey spaces (see, for example, [10]).

Theorem 2.2 (Adams type result) [18, Theorem 2.2]Let1 <p < 00,0 < pu < X\ < |d|,
0 < a < W';)‘

NIfl1<p< 1 ‘ A then condition ‘d‘ < % — l ‘d‘ 5 Is necessary and sufficient

for the boundedness 0f the operator M from Lp A M(]R") to Lg AR

2)Ifp=1< ‘d| A then condition |d|— <1l1-= |d| 5 Is necessary and sufficient

for the boundedness ofthe operator M2 from LL/\, (]R”) to WL;[ apu(R?).

3) HM% <p< W'%, then the operator M is bounded from Lg)\’u(Rn) 0 Loo(R™).

3 Anisotropic maximal commutator in total anisotropic Morrey spaces

In this section, as an application of the theorems of the previous section we consider
the boundedness of the anisotropic maximal commutator M;' on total anisotropic Morrey
spaces when b belongs to an anisotropic Lipschitz space, by which some new characteri-
zations of the anisotropic Lipschitz spaces are given. Such a characterization was given in
[31] for the boundedness of M} on Lebesgue and Morrey spaces.
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Definition 3.1 Let 0 < 8 < 1, we say a function b belongs to the anisotropic Lipschitz
space Ag q(R™) if there exists a constant C such that for all z,y € R",

[b(x) = b(y)| < Cp(x —y)°.
The smallest such constant C'is called the Ag 4(R™) norm of b and is denoted by ||b|| A a(R7):

To prove the theorems, we need auxiliary results. The first one is the following charac-
terizations of Lipschitz space, which is due to DeVore and Sharply [8].

Lemma 3.1 Let 0 < 8 < 1, we have

1
1915, ooy ~ 500 i [ 11(0) = el

where fs = |5\ Je f(y)dy.

Ifb € Agq(R™) and A > 0, then the function bya is defined by bya(x) = b(A\%x) is also
in Ag ¢(R™) and

sl i, sy = 1614y G3.1)
See, for example, [9, Proposition 7.1.2 (6)].

Lemma 3.2 Let0 < 8 < Landb € Ag 4(R™), then the following pointwise estimate holds:
M) < bl ) MEF ().

Proof. If b € Ag 4(R™), then
M{(f)(w) % sup e / 1b(z) — b(»)||£()ldy

< |Ib]| 4 asup €] +d|/ d
R ey AT

~ b4, ey MEF ():

The following is Spanne’s type result for the anisotropic maximal commutator operators
in total anisotropic Morrey spaces.

Theorem 3.1 (Spanne type result) Let0 < B < landb € /'lﬁ,d(R"). Let also 0 < p <

‘d‘ﬁ A and o — = %
Iff € LY, ,(R"), then Mdf € Ldi . (R™) and
’p )?
1M f | o o S Canp 0l ey 1 f N, (32

7‘17
’p’p

where C), ; 3, u depends only on p, q, A, p, d and n.
Proof. Let 1 < p < co. From Theorem 2.1 and Lemma 3.2 we get

1M f | o S 10114, ey HM,BfHLd

J}ﬂ Ag
&7 0 p 47p

5

Slb HAB a(R™) ||f||Ld W

which implies that the operator M is bounded from L DA (]R”) to Ld A pg (R™).
7 p k) P
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The following is an Adams type result for the anisotropic maximal commutator operators
in total anisotropic Morrey spaces.

Theorem 3.2 (Adams type result) Let 0 < 8 < 1and b € Aﬁjd(R”). Letalso0 < p < A<
|d| — Band1 < p < |d| A

Then condition I d|ﬁ_ m < ; - % < % is necessary and sufficient for the boundedness

of the operator My from L, (R") 10 LY, (R™).

Proof. Sufficiency follows from Theorem 2.2 and Lemma 3.2.
Now we will prove the necessity.

Letl<p<d22 o <1

SRS S d\ 5 b€ Aga(R™), f € L1, (R") and assume
that My 4 is bounded from L¢

DA, u( ) ,M(Rn)'
Note that
M fa(@) = Mf', f(tz),

td

_A B
sup [r], P [1/r]7 [|MZE. f(e?- .
= s [ ] I ey

Sug (ﬂ)”q T>0 ([1[;(/7"]1] )ﬂ/q sup [tr];% [1/(757")]1% Hlel%d f”Lq(S(tdx,tr))

zeR™,r>0

un

By the boundedness of M g from Lg Au(R™) o Lg A, (R™) and from the equality (3.1)
we get

A I3
Hszlf‘ d =t [t]l,j- [1/1] 1q,+ HMb L ftHLd
N,
1d| _2 23
SO ALl
1d _n A_A
=ta v [ty " [1/th+ : IFza
_ldl=A [d]=A l[dl—p _ |d]—p
— t p q 1 t P q
s [1/4],.7 ufnLg,A,M
Since LZ au(R™) = Lgu L(R™), we can assume that A\ < p, and then 1 = A\, A = p.
If% < E + WIL—/\’ then by letting ¢ — 0 we have HMd . = 0 for all f €
A
Le, (R
As well as if % > % + WL—M’ then at ¢ — oo we obtain HMf’af ‘ = 0 for all
g, 1

f € Lp A N(Rn)
Therefore |

< <

(07
d—x-

%\»—‘
Q[

d\ w
<B<landbe LYRM). Letalso0 < p <A< |d,1<p< |d| A
< i

Theorem 3.3 Let 0
1

1
””d\dmf; 7
(i) be Agq(R™).

(i4) The operator Mg is bounded from Ld uR™) 10 Lg’ A

. Then, the following statements are equivalent:

(R™).
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Proof. (i) = (ii). Suppose that b € Ag 4(R™). Combining Lemma 3.2 and Theorems 2.2,
we get

1M F g S 000 sy I S B0y 1z
(i7) = (i). Assume that M is bounded from Lg)\’u(Rn) to Lg,/\yu(R"). LetE = E(x,T)
be a fixed ball. We consider f = x,. Itis easy to compute that

1
Iellsg,, = swo (00 [ xe2)dz)”
A E(y:t)

y€ER™ >0

—  sup <|g(y7t)ﬂ(€| [t]l—A p/ﬂ‘f);

yeR™ >0
e\ ) ]
= swp (I€@OI AP AE)" =r7 (L7 0/ 33)
E(y,t)CE
On the other hand, since
M (xe)(x ‘€| /|b —bg|dz forall z € B,

we have
1

IOy, , = s (70 [ b))

E(yvt)QS
> ra {rh [1/7]¢ |g|/]b — bpldz
_A I
P ) [ WWM /|b — beldz. (3.4)

Since LZ L(R™) = L;l ua(R™), we can assume that A < 1, and then p1 = A, A = .

On the other hand, by assumption
[hoss xellpe, < lixellpe,
g, Py

by (3.3) and (3.4), we get that

1 A ldl A K
W/g!b(z)—bddzﬁr P 1M (xe )l o

_5_M % 1
S i ), e ||X5||LdA
PyA
_ﬂ_ﬂ A 1d| _A ©
<r [r]f [1/7"] T [r]y P (1/r)]
Id\ A ldl=A ldl—p | |d|—n
G S
<1

From Theorem 3.3 in the case A = p or = 0 we get the following corollaries.

Corollary 3.1 [31] LetO <B<landbe LY(R"). Letalso0 < A < |d|— 3,1 <p<

MT_/\ and % l = [d=x d| 5 Then, the following statements are equivalent:

(Z) be A@d(Rn)
(i4) The operator Mg is bounded from Li/\(R”) to LZ’A(R").
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Corollary 3.2 Let 0 < 8 < land b € LI°*(R™). Letalso0 < A < |d| — 5,1 <p < M'T_)‘
and % < % — % < Wl% Then, the following statements are equivalent:

(i) be Agqa(R™). N B

(ii) The operator Mg is bounded from Li/\(Rn) to Li/\(Rn).

Remark 3.1 Note that Corollary 3.2 is new.

4 Commutator of anisotropic maximal
operator in total anisotropic Morrey spaces

In this section we find necessary and sufficient conditions for the boundedness of the
commutator of anisotropic maximal operator [b, M%) in the L% , (R™) spaces.

DAL
For a function b defined on R", we denote

_ 0, ifb(x) >0
b =
@ =, it 20
and bt () := |b(z)| — b~ (). Obviously, b*(z) — b~ (z) = b(z).
The following relations between [b, MY] and M, b‘fa are valid :

Let b be any non-negative locally integrable function. Then for all f € L°¢(R"™) and
x € R” the following inequality is valid

|[b, M) f(2)] = [b(2) M f(z) — M (bf)(2)]
= |M*(b(z)f)(x) — M*(bf) ()]

< M(|b(x) — bl f)(x) = M f (). 4.1
Applying Theorem 3.3, we obtain the following result.
Theorem 4.1 Let0 < 3 < landb € L*°(R"). Letalso 0 < p < A < |d, 1 <p < MT—A
and W\L—u < % — % < WIL—X Then, the following statements are equivalent:
(i) b e Agq4(R™) and b > 0.
(i) The operator [b, MY is bounded from Li/\’u (R™) to LZJ\’/» (R™).
(t31) There exists a constant C > 0 such that
2 16— ME®) xel o
LR L 4.2)

sup €] 141
£ Ixellza
a, A0

Proof. (i) = (ii). Suppose that b € Ag 4(R"). Combining Theorems 2.2 and 3.3, and
inequality (4.1), we get

1o Ml < UM flga S WOl oy I3 SN e S I lpe -

(43) = (iii). Assume that [b, M?] is bounded from L;/\#

given ellipsoid £, we define the following local maximal function:

(R") to L¢

g u(R™). For a

Méfw) = swp &7 [ 1w ds

EDE >z
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where the supremum is taken over all ellipsoid £’ such that x € £ C £.

Since
M%(bxe)xe = ME(b) xe and M%(xg)xe = Mixe = xe,

we have

(b= ME®) xe = (b= MED)) xe

= (bM%(xe) — M (bxe)) xe = [b; M7 (xe)- (4.3)

By this and [b, M{J] : LY, (R") — L, (R™), we obtain

(b = MEW®)) Xellzg . <N Mxella, @y S Ixellpa,  @ny:

Thus from (3.3) we get

\d| ||(b Mg( )) XsHLq,M < _%
IXel Lgrp

€l

dl—X [d]—-X d|— d|—
ldl=X _ld|=A B_I\u+l\u

+
T

(791) = (i). Assume that (4.2) is valid.
Now, let us prove b € Ag 4(R™) and b > 0. For any ellipsoid £,let E = {y € £ : b(y) <
bp}and F = {y € £ : b(y) > bp}. The following equality is true (see [4, page 3331]):

/E b(y) — beldy = /F b(y) — beldy.

Since b(y) < be < |bg| < ME(b)(y) for any y € E, we obtain
[b(y) — be| < [b(y) — ME®) ()], v € B.

Then from Holder’s inequality and (4.2) we have

1 2
|5\1+5/W|/ |b(?/) - b5|dy = WW/ ‘b(y) - bg\dy

‘g|1+6/d/ |b(y) (y)|dy < |g|1+5/|d|/’b — ME(b)(y)|dy

<m”b Ms()”Lq ’5‘(1’

A
<IETTTI BT 1/ 10— MEO)) Xellpa |

S 1 el
S i 0 i

From Theorem 4.1 in the case A = p or u = 0 we get the following corollaries.
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Corollary 4.1 [31] Let

ld[=X 1 _ _B
7 and » g = Td=x

(i) be Agd(R”) and b > 0.

(i1) The operator [b, M%) is bounded from Li/\(Rn) to Li/\(R").

(131) There exists a constant C > 0 such that

(b= ME®) xel s
sup :

£ Ixellre

0<B<landbec LY(R"). Letalso0 < A< |d| — 3,1 <p<

Then, the following statements are equivalent:

Corollary 4.2 Let 0 < 8 < land b € L'°¢(R™). Letalso0 < A < |d| — 8, 1 <p < |d| A

and ‘g‘ < 1 1 < i d|5 5+ Then, the following statements are equivalent:
( ) be A[&d(Rn) and b > 0.
(i) The operator [b, MY is bounded from Lgy/\(R”) to Li/\(R”).

(7i1) There exists a constant C' > 0 such that

(b~ ME®) el

sup L2 < C
£ HXstdA

Remark 4.1 Note that Corollaries 4.1 and 4.2 are new. In the case of d = 1 = (1,...,1)
the Theorem 4.1 were proven in [15], see also [16,19,24].

5 Conclusion

The paper gives necessary and sufficient conditions for the boundedness of anisotropic max-
imal commutators M and commutators of the anisotropic maximal operator [b, M ¢] in total

anisotropic Morrey spaces Lp A\ H(]R”), when b belongs to the anisotropic Lipschitz spaces

Agyd(]R”). As an application, new characterizations of some subclasses of anisotropic Lip-
schitz spaces Ag 4(R™) are obtained.
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