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Abstract. This paper focuses on a new methodology of the ρ-Khalouta decomposition method (ρ-KHDM)
to investigate the approximate analytical solutions for a system of time-fractional nonlinear partial dif-
ferential equations based on the Caputo-Katugampola fractional derivative. The proposed method is a
mixture of the ρ-Khalouta transform method and the new decomposition method. The uniqueness and
convergence of the solution for the proposed system are proven. The effectiveness of the method is demon-
strated through three numerical applications. The proposed method is efficient and reliable compared to
other methods, and it produces accurate results based on the obtained results.
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1 Introduction

Fractional partial differential equations (FPDEs) have recently proven to be valuable
tools for modeling many real-world problems in different domains [7,9,10,24]. This is
because realistic modeling of a physical phenomenon depends not only on instantaneous
time, but also on the history of past time, which can also be successfully achieved using
fractional calculus. For example, half-order derivatives and integrals have proven to be more
useful for formulating some electrochemical problems than classical models [19,21,25,
26]. Recently, a large amount of studies have been developed regarding the application
of FPDEs in various applications in fluid mechanics, viscoelasticity, biology, physics, and
engineering. An excellent account of the study of FPDEs can be found in,[2,5,17,22]. Now,
in this paper, we will be interested in studying the system of m-nonlinear time-fractional
partial differential equations which is as follows:

Dα,ρiϕ Xi($,ϕ) + Li (Xi($,ϕ)) +Ni (Xi($,ϕ)) = fi($,ϕ), i = 1, 2, ...,m
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with the initial conditions
Xi($, 0) = Xi0($),

where Dα,ρiϕ are the Caputo-Katugampola fractional derivative operators of order α, ρ with
0 < α ≤ 1 and ρ > 0, Li and Ni represents linear and nonlinear operators, respectively,
and fi is the nonhomogeneous term.

Systems of nonlinear time-fractional partial differential equations are of valuable in-
terest in many areas of applied sciences, nonlinear hydrodynamics, mathematical physics,
mathematical biology, chemistry, engineering, and finance. In [18], the author efficiently
employed the homotopy perturbation trasform method (HPTM) and the variational itera-
tion transform method (VITM) for solving a system of time-fractional nonlinear equations
describing the unsteady flow of a polytropic gas under Caputo’s fractional derivative. In
[23], the approximate solutions of multi-dimensional time-fractional Navier-Stokes system
have been provided based on the Laplace residual power series method (LRPSM). In [4],
by adopting the natural decomposition method (NDM), the approximate analytical solutions
of the Kersten-Krasil’shchik coupled KdV-mKdV systemswere considered in the sense of
Atangana-Baleanu derivative and Caputo-Fabrizio derivative. In [1], the numerical solutions
of the one and two dimensional fractional coupled Burger’s equations was investigated us-
ing the iterative Elzaki transform method (IETM).

In general, semi-approximate analysis techniques or traditional analysis techniques can-
not provide exact closed-form or approximate solutions for systems of nonlinear time-
fractional partial differential equations. Therefore, there is an urgent need for efficient nu-
merical techniques capable of finding exact or accurate approximate solutions for these
these systems.

The main motivation of this paper is to propose a new methodology of ρ-KHDM to
tackle solutions of a system of nonlinear time-fractional partial differential equations based
on the Khalouta-Caputo-Katugampola fractional derivative. The ρ-KHDM approach com-
bines the ρ-Khalouta transform method [15] and new decomposition method [16]. The sug-
gested approach provides a closed-type solution in terms of infinite series and the resultant
series converges rapidly to the exact solution. Also, it has been observed that the results
obtained give better results than the methods in the literature.

The structure of this paper is as follows. In Section 2, we provide some basic definitions,
theorems, and formulas related to the paper. In Section 3, we use the proposed method for
a system of nonlinear nonhomogeneous time-fractional partial differential equations and
obtain an approximate solution to a general problem. The uniqueness and convergence are
demonstrated in Section 4. The approximate solutions are found using ρ-KHDM on several
applications presented in Section 5. Finally, the conclusion is given in Section 6.

2 Definitions and mathematical formulas

This section explains some basic formulas, concepts, results for the ρ-Khalouta trans-
form of the Caputo-Katugampola time-fractional derivative and related formulas that will
be relevant throughout the work.

Definition 2.1 [13] Let the function X : R × R+ → R, then the Katugampola fractional
integral of order α, ρ is defined as

Iα,ρϕ X ($,ϕ) =
1

Γ (α)

∫ ϕ

0

(
ϕρ − τρ

ρ

)α−1 X ($, τ)
τ1−ρ

dτ, ρ > 0. (2.1)

where Γ (.) is the gamma function and 0 < α ≤ 1, ρ > 0.
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Definition 2.2 [11] Let the function X : R × R+ → R, then the Caputo-Katugampola
time-fractional derivative of order α, ρ is defined as

Dα,ρϕ X ($,ϕ) = In−α,ρϑ ξnX ($,ϕ)

=
1

Γ (n− α)

∫ ϕ

0

(
ϕρ − τρ

ρ

)n−α−1 ξnX ($, τ)
τ1−ρ

dτ, (2.2)

where the differential operator ξ is given by ξ = ϕ1−ρ d
dϕ and n− 1 < α ≤ n, ρ > 0.

For equations (2.1) and (2.2), we have the following relations

Dα,ρϕ Iα,ρϕ X ($,ϕ) = X ($,ϕ), (2.3)

and

Iα,ρϕ Dα,ρϕ X ($,ϕ) = X ($,ϕ)−
n∑
k=0

Dα−k,ρX ($, 0)
Γ (α− k + 1)

(
ϕρ

ρ

)α−k
. (2.4)

Now, we present our main results related to the ρ-Khalouta transform of the Caputo-
Katugampola time-fractional derivative.

Definition 2.3 [15] The ρ-Khalouta transform of the function X ($,ϕ) with respect to the
variable ”ϕ” is defined as

KHρ [X ($,ϕ)] = Kρ($, s, γ, η) =
s

γη

∫ ∞
0

exp

(
− s

γη

ϕρ

ρ

)
X ($,ϕ)
ϕ1−ρ dϕ, ρ > 0, (2.5)

where s > 0, γ > 0 and η > 0 are the Khalouta transform variables.

Theorem 2.1 [15]
1) For all real constants λ and µ , we have

KHρ [λX ($,ϕ)± µY($,ϕ)] = λKHρ [X ($,ϕ)]± µKHρ [Y($,ϕ)] , (2.6)

2) Let Kρ($, s, γ, η) and Hρ($, s, γ, η) are the ρ-Khalouta transform of X and Y re-
spectively. Then

KHρ [(X ∗ρ Y) ($,ϕ)] =
γη

s
Kρ($, s, γ, η)Hρ($, s, γ, η), (2.7)

where X ∗ρ Y is the ρ-convolution integral defined by

(X ∗ρ Y) ($,ϕ) =
∫ ϕ
0 X (κ, (ϕ

ρ − τρ)
1
ρ )Y(κ,τ)

τ1−ρ dτ

=
∫ t
0 Y(κ, (ϕ

ρ − µρ)
1
ρ )X (κ,µ)

µ1−ρ dµ

= (Y ∗ρ X ) ($,ϕ). (2.8)

3) Let a, b and c ∈ R and ρ > 0, then

KHρ [a] = a,

KHρ

[
ϕb
]
=
(ργη
s

) b
ρ
Γ

(
b

ρ
+ 1

)
, (2.9)

KHρ

[
ϕnρ

ρn

]
=
(γη
s

)n
Γ (n+ 1) ,

KHρ

[
exp

(
c
ϕα

α

)]
=

s

s− cγη
.
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4) LetX ∈ Cn−1ξ (R × R+), then the ρ-Khalouta transform of ξnX ($,ϕ) with respect
to the variable ”ϕ” is defined by

KHρ [ξ
nX ($,ϕ)] =

(
s

γη

)n
KHρ [X ($,ϕ)]−

n−1∑
k=0

(
s

γη

)n−k
ξkX ($, 0) (2.10)

Proof. To prove the Theorem, see. [15].

Theorem 2.2 The ρ-Khalouta transform of the Katugampola fractional integral of order
α, ρ > 0 of the function X ($,ϕ) is expressed as

KHρ

[
Iα,ρϕ X ($,ϕ)

]
=
(γη
s

)α
KHρ [X ($,ϕ)] . (2.11)

Proof. By applying the ρ-Khalouta transform to equation (2.1) and using Theorem 2.1, we
get

KHρ

[
Iα,ρϕ X ($,ϕ)

]
= KHρ

[
1

Γ (α)

∫ ϕ

0

(
ϕρ − τρ

ρ

)α−1 X ($, τ)
τ1−ρ

dτ

]

=
s

γη

∫ ∞
0

exp

(
− s

γη

ϕρ

ρ

)[
1

Γ (α)

∫ ϕ

0

(
ϕρ − τρ

ρ

)α−1 X ($, τ)
τ1−ρ

dτ

]
dϕ

ϕ1−ρ

=
s

γη

∫ ∞
0

exp

(
− s

γη

ϕρ

ρ

)[
ρ1−α

Γ (α)

∫ ϕ

0

(
(ϕρ − τρ)

1
ρ

)ρ(α−1) X ($, τ)
τ1−ρ

dτ

]
dϕ

ϕ1−ρ

=
ρ1−α

Γ (α)

s

γη

∫ ∞
0

exp

(
− s

γη

ϕρ

ρ

)(
ϕρ(α−1) ∗ρ X ($,ϕ)

) dϕ

ϕ1−ρ

=
ρ1−α

Γ (α)
KHρ

[
ϕρ(α−1) ∗ρ X ($,ϕ)

]
. (2.12)

By using Theorem 2.2 and properties (2) and (3) of Theorem 2.1, we get

KHρ

[
Iα,ρϕ X ($,ϕ)

]
=
ρ1−α

Γ (α)

γη

s
KHρ

[
ϕρ(α−1)

]
KHρ [X ($,ϕ)]

=
ρ1−α

Γ (α)

γη

s

(ργη
s

) ρ(α−1)
ρ

Γ

(
ρ (α− 1)

ρ
+ 1

)
KHρ [X ($,ϕ)]

=
(γη
s

)α
KHρ [X ($,ϕ)] . (2.13)

So, the proof is complete.

Theorem 2.3 The ρ-Khalouta transform of the Caputo-Katugampola time-fractional deriva-
tive of order α, ρ > 0 of the function X ($,ϕ) is expressed as

KHρ

[
Dα,ρϕ X ($,ϕ)

]
=

(
s

γη

)α
KHρ [X ($,ϕ)]−

n−1∑
k=0

(
s

γη

)α−k
ξkX ($, 0). (2.14)

Proof. By applying the ρ-Khalouta transform to equation (2.2) and using Theorem 2.1, we
get

KHρ

[
Dα,ρϕ X ($,ϕ)

]
= KHρ

[
Iα−n,ρϕ ξnX ($, 0)

]
. (2.15)
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By using Theorem 2.2, we get

KHρ

[
Dα,ρϕ X ($,ϕ)

]
= KHρ

[
Iα−n,ρϕ ξnX ($, 0)

]
=
(γη
s

)n−α
KHρ [ξ

nX ($, 0)] . (2.16)

From property (4) of Theorem 2.1, we get

KHρ

[
Dα,ρϕ X ($,ϕ)

]
=
(γη
s

)n−α
KHρ [ξ

nX ($, 0)]

=
(γη
s

)n−α(( s

γη

)n
KHρ [X ($,ϕ)]−

n−1∑
k=0

(
s

γη

)n−k
ξkX ($, 0)

)

=

(
s

γη

)α
KHρ [X ($,ϕ)]−

n−1∑
k=0

(
s

γη

)α−k
ξkX ($, 0). (2.17)

So, the proof is complete.

3 Description of ρ-Khalouta decomposition method

This section describes the new methodology of ρ-Khalouta decomposition method to solve
a system of nonlinear nonhomogeneous time-fractional partial differential equations.

Theorem 3.1 Consider the system ofm-nonlinear nonhomogeneous time-fractional partial
differential equations

Dα,ρiϕ Xi($,ϕ) + Li (Xi($,ϕ)) +Ni (Xi($,ϕ)) = fi($,ϕ), i = 1, 2, ...,m, (3.1)

with the initial conditions
Xi($, 0) = Xi0($), (3.2)

where Dα,ρiϕ are the Caputo-Katugampola time-fractional derivative operators of order α, ρ
with 0 < α ≤ 1 and ρ > 0, Li and Ni represents linear and nonlinear operators, respec-
tively, and fi are the nonhomogeneous terms.

The solution of the system of m-nonlinear nonhomogeneous time- fractional partial dif-
ferential equations (3.1) with the initial conditions (3.2) can be formulated as

Xi($,ϕ) =
∞∑
n=0

Xin($,ϕ)

= Xi0($,ϕ) +
∞∑
n=1

KH−1ρ
[(γη

s

)α
KHρ

[
fi($,ϕ)− Li

(
Xi(n−1)($,ϕ)

)
−Ki(n−1)

]]
, (3.3)

where Kin are polynomials of Xi0,Xi1, ...,Xin defined in [16].

Proof. The solution Xi($,ϕ) of the system (3.1) be assumed, as

Xi($,ϕ) =
∞∑
n=0

Xin($,ϕ). (3.4)
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To resolve the system (3.1) with the initial conditions (3.2), we consider for i = 1, 2, ...,m
the following system

Dα,ρiϕ Xiλi($,ϕ) = λi [fiλi($,ϕ)− Li (Xiλi($,ϕ))−Ni (Xiλi($,ϕ))] , λi ∈ [0, 1] ,
(3.5)

with the initial conditions
Xiλi($, 0) = Xi0λi($). (3.6)

Now, we assume that the solution of (3.5)-(3.6) can be expressed as follows

Xiλi($,ϕ) =
∞∑
n=0

λni Xin($,ϕ). (3.7)

Applying the ρ-Khalouta transform on equation (3.5) with respect to the variable ”ϕ”,
we get

KHρ

[
Dα,ρiϕ Xiλi($,ϕ)

]
= λiKHρ [fiλi($,ϕ)− Li (Xiλi($,ϕ))−Ni (Xiλi($,ϕ))] .

(3.8)
Using Theorem 2.3 and the initial conditions (3.2), we have

KHρ [Xiλi($,ϕ)] = Xiλi($, 0) +
(γη
s

)α
λiKHρ

[
fiλi($,ϕ)− Li (Xiλi($,ϕ))

−Ni (Xiλi($,ϕ))

]
.

(3.9)
Taking the inverse ρ-Khalouta transform of equation (3.9) to get

Xiλi($,ϕ) = Xi0λi($) + λiKH−1ρ
[(γη

s

)α
λiKHρ

[
fiλi($,ϕ)− Li (Xiλi($,ϕ))

−Ni (Xiλi($,ϕ))

]]
.

(3.10)
Replacing (3.7) into (3.10), the following equation is obtained.

∞∑
n=0

λni Xin($,ϕ) = Xi0λi($)+λiKH−1ρ

(γηs )αKHρ

fiλi($,ϕ)− Li

( ∞∑
n=0

λni Xin($,ϕ)
)

−Ni

( ∞∑
n=0

λni Xin($,ϕ)
)


 .

(3.11)
Application of the new decomposition method [16] to equation (3.11) implies

∞∑
n=0

λni Xin($,ϕ) = Xi0λi($)+λiKH−1ρ

(γηs )αKHρ

fiλi($,ϕ)−
∞∑
n=0

Li (λ
n
i Xin($,ϕ))

−
∞∑
n=0

λniKin


 ,

(3.12)
where Kin are polynomials of Xi0,Xi1, ...,Xin defined by

Kin =
1

n!

dn

dλn

N
 n∑
j=0

λjiXij


λ=0

, n = 0, 1, 2, .... (3.13)

By equating the terms in (3.12) with identical powers of λi, the following relation is
obtained.

Xi0($,ϕ) = Xi0($),

Xi1($,ϕ) = KH−1
ρ

[(γη
s

)α
KHρ [fi($,ϕ)− Li (Xi0($,ϕ))−Ki0]

]
, (3.14)

Xin($,ϕ) = KH−1
ρ

[(γη
s

)α
KHρ

[
−Li

(
Xi(n−1)($,ϕ)

)
−Ki(n−1)

]]
, n = 2, 3, 4, ...
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Substituting the components of (3.14) into (3.7) gives the solution of the system (3.5).
Now, according to (3.4) and (3.7), we have

Xi($,ϕ) = lim
λi→1

Xiλi($,ϕ) = Xi0($,ϕ) +
∞∑
n=1

Xin($,ϕ). (3.15)

Using the first equation of (3.14), we see that

Xi0($, 0) = lim
λi→1

Xi0λi($). (3.16)

Substituting (3.14) into (3.15), we get

Xi($,ϕ) =
∑∞

n=0Xin($,ϕ)

= Xi0($,ϕ) +
∞∑
n=1

KH−1ρ
[(γη

s

)αKHρ

[
fi($,ϕ)− Li

(
Xi(n−1)($,ϕ)

)
−Ki(n−1)

]]
. (3.17)

So, the proof is complete.

4 Convergence analysis

This section states the convergence and uniqueness statements of the ρ-KHDM solutions.

Theorem 4.1 (Uniqueness theorem) The solution for the system ofm-nonlinear nonhomo-
geneous time-fractional partial differential equations (3.1) obtained by ρ-KHDM is unique
for 0 < ε < 1, where ε = (ψ + φ)MT.

Proof. The solution of system of m-nonlinear nonhomogeneous time-fractional partial dif-
ferential equations is given by

Xi($,ϕ) =
∞∑
n=0

Xin($,ϕ), (4.1)

where
Xin($,ϕ) = Xi0($) +KH−1ρ ×

×
[(γη

s

)α
KHρ

[
fi($,ϕ)− Li

(
Xi(n−1)($,ϕ)

)
−Ni

(
Xi(n−1)($,ϕ)

)]]
. (4.2)

Suppose Xi and Yi are two different solutions to the system (3.1), Li and Ni satisfies the
conditions |Li (Xi − Yi)| ≤ ψ |Xi − Yi| and |Ni (Xi − Yi)| ≤ φ |Xi − Yi| , where ψ and φ
are constants, respectively. Then using the aforementioned system, we get

|Xi − Yi| =
∣∣∣KH−1ρ

[(γη
s

)α
KHρ [Li (Xi − Yi) +Ni (Xi − Yi)]

]∣∣∣
≤ KH−1ρ

[(γη
s

)α
KHρ |Li (Xi − Yi)|+ |Ni (Xi − Yi)|

]
≤ (ψ |Xi − Yi|+ φ |Xi − Yi|)KH−1ρ

[(γη
s

)α]
≤ (ψ |Xi − Yi|+ φ |Xi − Yi|)

ϕαρ

Γ (α+ 1) ρα
. (4.3)

Now, using the convolution theorem, we obtain the following formula

|Xi − Yi| ≤
∫ ϕ

0
(ψ |Xi − Yi|+ φ |Xi − Yi|)

(ϕ− τ)αρ

Γ (α+ 1) ρα
dτ. (4.4)
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Using mean value theorem of integral calculus [6], we obtain

|Xi − Yi| ≤ ((ψ + φ)MT ) |Xi − Yi|
≤ ε |Xi − Yi| , (4.5)

where M = max
ϕ∈[0,T ]

(ϕ−τ)αρ
Γ (α+1)ρα .

Consequently, we have (1− ε) |Xi − Yi| ≤ 0. As 0 < ε < 1, then |Xi − Yi| = 0, which
implies that Xi = Yi. Therefore, the solution is unique.

Theorem 4.2 (Convergence theorem) Suppose that B is a Banach space and that F : B →
B is a nonlinear mapping. If the inequality

‖F(Xi)−F(Yi)‖B ≤ θ ‖Xi − Yi‖B , ∀Xi,Yi ∈ B, (4.6)

exists, then F has a fixed point according to Banach’s fixed point theorem [12]. Moreover,
the sequence generated by ρ-KHDM converges to a fixed point of F and

‖Sin − Siq‖B ≤
θq

1− θ
‖Si1 − Si0‖B , (4.7)

where {Sin}n≥0 is the sequence of partial sums of the series defined as Sin =
∑n

j=0Xij($,ϕ).

Proof. Let us take a Banach space B =(C[Ω], ‖.‖B) of all continuous functions on Ω ⊂
R× [0, T ] with the norm expressed as ‖Xi($,ϕ)‖B = max

($,ϕ)∈Ω
|Xi($,ϕ)| .

Now, we demonstrate that the sequence {Sin}n≥0 is a Cauchy sequence in the Banach
space

‖Sin − Siq‖B = max
($,ϕ)∈Ω

|Sin − Siq|

= max
($,ϕ)∈Ω

∣∣∣KH−1ρ
[(γη

s

)α
KHρ

[
Li
(
Si(n−1) − Si(q−1)

)
+Ni

(
Si(n−1) − Si(q−1)

)]]∣∣∣
≤ max

($,ϕ)∈Ω

∣∣∣KH−1ρ
[(γη

s

)α
KHρ

[
Li
∣∣Si(n−1) − Si(q−1)∣∣+Ni

∣∣Si(n−1) − Si(q−1)∣∣]]∣∣∣
≤ max

($,ϕ)∈Ω

(
ψ
∣∣Si(n−1)Si(q−1)∣∣+ φ

∣∣Si(n−1) − Si(q−1)∣∣)KH−1ρ
[(γη

s

)α]
≤ max

($,ϕ)∈Ω

(
ψ
∣∣Si(n−1) − Si(q−1)∣∣+ φ

∣∣Si(n−1) − Si(q−1)∣∣) ϕαρ

Γ (α+ 1) ρα

≤ (ψ + φ)
∥∥Si(n−1) − Si(q−1)∥∥B ϕαρ

Γ (α+ 1) ρα
. (4.8)

Now, using the convolution theorem, we obtain the following formula

‖Sin − Siq‖B ≤
∫ ϕ

0
(ψ + φ)

∥∥Si(n−1) − Si(q−1)∥∥B (ϕ− τ)αρ

Γ (α+ 1) ρα
dτ. (4.9)

Using mean value theorem of integral calculus [6], we obtain

‖Sin − Siq‖B ≤ ((ψ + φ)MT )
∥∥Si(n−1) − Si(q−1)∥∥B

≤ ε
∥∥Si(n−1) − Si(q−1)∥∥B , (4.10)

where M = max
ϕ∈[0,T ]

(ϕ−τ)αρ
Γ (α+1)ρα .
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Choosing n = q + 1, then we obtain∥∥Si(q+1) − Siq
∥∥
B ≤ ε

∥∥Siq − Si(q−1)∥∥B ≤ ε2 ∥∥Si(q−1) − Si(q−2)∥∥B
≤ ... ≤ εq ‖Si1 − Si0‖B , (4.11)

Using the triangular inequality, we get

‖Sin − Siq‖B =
∥∥Si(q+1) − Siq + Si(q+2) − Si(q+1) + ...+ Sin − Si(n−1)

∥∥
B

≤
∥∥Si(q+1) − Siq

∥∥
B
+
∥∥Si(q+2) − Si(q+1)

∥∥
B
+ ...+

∥∥Sin − Si(n−1)∥∥B
≤ εq ‖Si1 − Si0‖B + εq+1 ‖Si1 − Si0‖B + ...+ εn−1 ‖Si1 − Si0‖B
= εq

(
1 + ε+ ...+ εn−q−1

)
‖Si1 − Si0‖B

≤ εq
(
1− εn−q

1− ε

)
‖Si1 − Si0‖B . (4.12)

Now by definition 0 < ε < 1, we have 1− εn−q < 1, thus we have

‖Sin − Siq‖B ≤
εq

1− ε
‖Si1 − Si0‖B . (4.13)

For ‖Si1 − Si0‖B < +∞, so as q → ∞ then ‖Sin − Siq‖B → 0. Thus, the sequence
{Sin}n≥0 is a Cauchy sequence in B =(C[Ω], ‖.‖B), and so the sequence is convergent.

5 Applications

This section presents various examples of system of nonlinear time-fractional partial differ-
ential equations involving the Caputo-Katugampola fractional derivative to demonstrate the
effectiveness of our new methodology.

Example 1 Consider the system of nonlinear nonhomogeneous time-fractional partial dif-
ferential equations of the form{

Dα,ρϕ X1 + X2X1$ + X1 = 1
Dα,ρϕ X2 + X1X2$ −X2 = −1

, (5.1)

with the initial conditions {
X1($, 0) = e$

X2($, 0) = e−$
, (5.2)

where X1 = X1($,ϕ),X2 = X2($,ϕ) and Dα,ρϕ is the Caputo-Katugampola fractional
derivative of order α, ρ with 0 < α ≤ 1 and ρ > 0.

To resolve the system (5.1) with the initial conditions (5.2), we follow the same steps
presented in Section 3.

First, we assume that the solution of (5.1)-(5.2) is of the form
X1($,ϕ) =

∞∑
n=0
X1n($,ϕ)

X2($,ϕ) =
∞∑
n=0
X2n($,ϕ)

. (5.3)

Next, we consider the following system{
Dα,ρϕ X1λ1 = λ1 [1−X1λ1 −X2λ1X1λ1$]
Dα,ρϕ X2λ2 = λ2 [−1 + X2λ2 −X1λ2X2λ2$]

, λ1, λ2 ∈ [0, 1] , (5.4)
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and the solution of the system (5.4) can be expressed as
X1λ1($,ϕ) =

∞∑
n=0

λn1X1n($,ϕ)

X2λ2($,ϕ) =
∞∑
n=0

λn2X2n($,ϕ)
. (5.5)

Applying the ρ-Khalouta transform on (5.4) with respect to the variable ”ϕ” and Theo-
rem 2.3, we get{

KHρ [X1λ1 ] = e$ +
(γη
s

)α
λ1KHρ [1−X1λ1 −X2λ1X1λ1$]

KHρ [X2λ2 ] = e−$ +
(γη
s

)α
λ2KHρ [−1 + X2λ2 −X1λ2X2λ2$]

, (5.6)

Taking the inverse ρ-Khalouta transform on (5.6), we get{
X1λ1($,ϕ) = e$ + λ1KH−1ρ

[(γη
s

)αKHρ [1−X1λ1 −X2λ1X1λ1$]
]

X2λ2($,ϕ) = e−$ + λ2KH−1ρ
[(γη

s

)αKHρ [−1 + X2λ2 −X1λ2X2λ2$]
] , (5.7)

Application of the new decomposition method [16] implies

∞∑
n=0

λn1X1n($,ϕ) = e$ + λ1KH−1ρ

(γηs )αKHρ

1−
∞∑
n=0

λn1X1n

−
∞∑
n=0

λn1K1n




∞∑
n=0

λn2X2n($,ϕ) = e−$ + λ2KH−1ρ

(γηs )αKHρ

−1 +
∞∑
n=0

λn2X2n

−
∞∑
n=0

λn2K2n



, (5.8)

where K1n and K2n are polynomials which respectively represent the nonlinear terms
X2X1$ and X1X2$.

According to the relation (3.13), the first few components of the polynomials K1n and
K2n are given by

K10 = X20X10$,

K11 = X20X11$ + X21X10$, (5.9)
K12 = X20X12$ + X21X11$ + X22X10$,

...

and

K20 = X10X20$,

K21 = X10X21$ + X11X20$, (5.10)
K22 = X10X22$ + X11X21$ + X12X20$,

...
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By equating the terms in (5.8) with identical powers of λ1 and λ1, the following relation
is obtained. {

X10($,ϕ) = e$

X20($,ϕ) = e−$
,{

X11($,ϕ) = KH−1
ρ

[(γη
s

)αKHρ [1−X10 −K10]
]

X21($,ϕ) = KH−1
ρ

[(γη
s

)αKHρ [−1 + X20 −K20]
] , (5.11){

X1n($,ϕ) = KH−1
ρ

[(γη
s

)αKHρ

[
−X1(n−1) −K1(n−1)

]]
X2n($,ϕ) = KH−1

ρ

[(γη
s

)αKHρ

[
X2(n−1) −K2(n−1)

]]
Now, according to (5.3) and (5.5), we have
X1($,ϕ) = lim

λ1→1
X1λ1($,ϕ) = X10($,ϕ) + X11($,ϕ) +

∞∑
n=2
X1n($,ϕ)

X2($,ϕ) = lim
λ2→1
X2λ2($,ϕ) = X20($,ϕ) + X21($,ϕ) +

∞∑
n=2
X2n($,ϕ)

. (5.12)

Thus, the following approximations are obtained successively{
X10($,ϕ) = e$

X20($,ϕ) = e−$
,{

X11($,ϕ) = − 1
Γ (α+1)

ϕαρ

ρα e
$

X21($,ϕ) =
1

Γ (α+1)
ϕαρ

ρα e
−$ ,{

X12($,ϕ) =
1

Γ (2α+1)
ϕ2αρ

ρ2α
e$

X22($,ϕ) =
1

Γ (2α+1)
ϕ2αρ

ρ2α
e−$

, (5.13){
X13($,ϕ) = − 1

Γ (3α+1)
ϕ3αρ

ρ3α
e$

X23($,ϕ) =
1

Γ (3α+1)
ϕ3αρ

ρ3α
e−$

,

...

The solution is finally expressed by X1($,ϕ) =
(
1− 1

Γ (α+1)
ϕαρ

ρα + 1
Γ (2α+1)

ϕ2αρ

ρ2α
− 1

Γ (3α+1)
ϕ3αρ

ρ3α
+ ...

)
e$

X2($,ϕ) =
(
1 + 1

Γ (α+1)
ϕαρ

ρα + 1
Γ (2α+1)

ϕ2αρ

ρ2α
+ 1

Γ (3α+1)
ϕ3αρ

ρ3α
+ ...

)
e−$

. (5.14)

Taking ρ = 1 in (5.14), the following solution is obtained. X1($,ϕ) =
(
1− ϕα

Γ (α+1) +
ϕ2α

Γ (2α+1) −
ϕ3α

Γ (3α+1) + ...
)
e$

X2($,ϕ) =
(
1 + ϕα

Γ (α+1) +
ϕ2α

Γ (2α+1) +
ϕ3α

Γ (3α+1) + ...
)
e−$

, (5.15)

which is the solution of the system (5.1) based on the Caputo fractional derivative.
Taking α = 1 in (5.14), the following solution is obtained. X1($,ϕ) =

(
1− ϕρ

ρ + ϕ2ρ

2!ρ2
− ϕ3α

3!ρ3
+ ...

)
e$

X2($,ϕ) =
(
1 + ϕα

ρ + ϕ2α

2!ρ2
+ ϕ3α

ρ3
+ ...

)
e−$

, (5.16)

which is the solution of the system (5.1) based on the conformable fractional derivative.
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Taking α = ρ = 1 in (5.14), the following solution is obtained.X1($,ϕ) =
(
1− ϕ+ ϕ2

2! −
ϕ3

3! + ...
)
e$ = e−ϕ+$

X2($,ϕ) =
(
1 + ϕ+ ϕ2

2! +
ϕ3

3! + ...
)
e−$ = eϕ−$

, (5.17)

which is the exact solution available in the literature [8].

Example 2 Consider the system of nonlinear homogeneous time-fractional partial differen-
tial equations of the form{

Dα,ρϕ X1 −X1$$ − 2X1X1$ + (X1X2)$ = 0
Dα,ρϕ X2 −X2$$ − 2X2X2$ + (X1X2)$ = 0

, (5.18)

with the initial conditions {
X1($, 0) = sin($)
X2($, 0) = sin($)

, (5.19)

where X1 = X1($,ϕ),X2 = X2($,ϕ) and Dα,ρϕ is the Caputo-Katugampola fractional
derivative of order α, ρ with 0 < α ≤ 1 and ρ > 0.

To resolve the system (5.18) with the initial conditions (5.19), we follow the same steps
presented in Section 3.

First, we assume that the solution of (5.18)-(5.19) is of the form
X1($,ϕ) =

∞∑
n=0
X1n($,ϕ)

X2($,ϕ) =
∞∑
n=0
X2n($,ϕ)

. (5.20)

Next, we consider the following system{
Dα,ρϕ X1λ1 = λ1 [X1λ1$$ + 2X1λ1X1λ1$ − (X1λ1X2λ1)$]
Dα,ρϕ X2λ2 = λ2 [X2λ2$$ + 2X2λ2X2λ2$ − (X1λ2X2λ2)$]

, λ1, λ2 ∈ [0, 1] , (5.21)

and the solution of the system (5.4) can be expressed as
X1λ1($,ϕ) =

∞∑
n=0

λn1X1n($,ϕ)

X2λ2($,ϕ) =
∞∑
n=0

λn2X2n($,ϕ)
. (5.22)

Applying the ρ-Khalouta transform on (5.21) with respect to the variable ”ϕ” and The-
orem 2.3, we get{

KHρ [X1λ1 ] = sin($) +
(γη
s

)α
λ1KHρ [X1λ1$$ + 2X1λ1X1λ1$ − (X1λ1X2λ1)$]

KHρ [X2λ2 ] = sin($) +
(γη
s

)α
λ2KHρ [X2λ2$$ + 2X2λ2X2λ2$ − (X1λ2X2λ2)$]

,

(5.23)
Taking the inverse ρ-Khalouta transform on (5.23), we get{
X1λ1($,ϕ) = sin($) + λ1KH−1ρ

[(γη
s

)αKHρ [X1λ1$$ + 2X1λ1X1λ1$ − (X1λ1X2λ1)$]
]

X2λ2($,ϕ) = sin($) + λ2KH−1ρ
[(γη

s

)αKHρ [X2λ2$$ + 2X2λ2X2λ2$ − (X1λ2X2λ2)$]
] ,

(5.24)
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Application of the new decomposition method [16] implies

∞∑
n=0

λn1X1n($,ϕ) = sin($) + λ1KH−1ρ

(γηs )αKHρ


∞∑
n=0

λn1X1n$$ + 2
∞∑
n=0

λn1K1n

−
∞∑
n=0

λn1K3n




∞∑
n=0

λn2X2n($,ϕ) = sin($) + λ2KH−1ρ

(γηs )αKHρ


∞∑
n=0

λn2X2n$$ + 2
∞∑
n=0

λn2K2n

−
∞∑
n=0

λn2K3n



,

(5.25)
whereK1n,K2n andK3n are polynomials which respectively represent the nonlinear terms
X1X1$,X2X2$ and (X1X2)$.

According to the relation (3.13), the first few components of the polynomials K1n,K2n

and K3n are given by

K10 = X10X10$,

K11 = X10X11$ + X11X10$, (5.26)
K12 = X10X12$ + X11X11$ + X12X10$,

...

K20 = X20X20$,

K21 = X20X21$ + X21X20$, (5.27)
K22 = X20X22$ + X21X21$ + X22X20$,

...

and

K30 = (X10X20)$ ,

K31 = (X11X20 + X10X21)$ , (5.28)
K32 = (X20X22 + X21X21 + X22X20)$ ,

...

By equating the terms in (5.25) with identical powers of λ1 and λ1, the following relation
is obtained.{

X10($,ϕ) = sin($)
X20($,ϕ) = sin($)

,{
X11($,ϕ) = KH−1

ρ

[(γη
s

)αKHρ [X10$$ + 2K10 −K30]
]

X21($,ϕ) = KH−1
ρ

[(γη
s

)αKHρ [X20$$ + 2K20 −K30]
] , (5.29){

X1n($,ϕ) = KH−1
ρ

[(γη
s

)αKHρ

[[
X1(n−1)$$ + 2K1(n−1) −K3(n−1)

]]]
X2n($,ϕ) = KH−1

ρ

[(γη
s

)αKHρ

[
X2(n−1)$$ + 2K2(n−1) −K3(n−1)

]]
Now, according to (5.20) and (5.22), we have
X1($,ϕ) = lim

λ1→1
X1λ1($,ϕ) = X10($,ϕ) + X11($,ϕ) +

∞∑
n=2
X1n($,ϕ)

X2($,ϕ) = lim
λ2→1
X2λ2($,ϕ) = X20($,ϕ) + X21($,ϕ) +

∞∑
n=2
X2n($,ϕ)

. (5.30)
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Thus, the following approximations are obtained successively{
X10($,ϕ) = sin($)
X20($,ϕ) = sin($)

,{
X11($,ϕ) = − 1

Γ (α+1)
ϕαρ

ρα sin($)

X21($,ϕ) = − 1
Γ (α+1)

ϕαρ

ρα sin($)
,{

X12($,ϕ) =
1

Γ (2α+1)
ϕ2αρ

ρ2α
sin($)

X22($,ϕ) =
1

Γ (2α+1)
ϕ2αρ

ρ2α
sin($)

, (5.31){
X13($,ϕ) = − 1

Γ (3α+1)
ϕ3αρ

ρ3α
sin($)

X23($,ϕ) = − 1
Γ (3α+1)

ϕ3αρ

ρ3α
sin($)

,

...

The solution is finally expressed byX1($,ϕ) =
(
1− 1

Γ (α+1)
ϕαρ

ρα + 1
Γ (2α+1)

ϕ2αρ

ρ2α
− 1

Γ (3α+1)
ϕ3αρ

ρ3α
+ ...

)
sin($)

X2($,ϕ) =
(
1− 1

Γ (α+1)
ϕαρ

ρα + 1
Γ (2α+1)

ϕ2αρ

ρ2α
− 1

Γ (3α+1)
ϕ3αρ

ρ3α
+ ...

)
sin($)

. (5.32)

Taking ρ = 1 in (5.32), the following solution is obtained.X1($,ϕ) =
(
1− ϕα

Γ (α+1) +
ϕ2α

Γ (2α+1) −
ϕ3α

Γ (3α+1) + ...
)
sin($)

X2($,ϕ) =
(
1− ϕα

Γ (α+1) +
ϕ2α

Γ (2α+1) −
ϕ3α

Γ (3α+1) + ...
)
sin($)

, (5.33)

which is the solution of the system (5.18) based on the Caputo fractional derivative.
Taking α = 1 in (5.32), the following solution is obtained.X1($,ϕ) =

(
1− ϕρ

ρ + ϕ2ρ

2!ρ2
− ϕ3α

3!ρ3
+ ...

)
sin($)

X2($,ϕ) =
(
1− ϕα

ρ + ϕ2α

2!ρ2
− ϕ3α

ρ3
+ ...

)
sin($)

, (5.34)

which is the solution of the system (5.18) based on the conformable fractional derivative.
Taking α = ρ = 1 in (5.32), the following solution is obtained.X1($,ϕ) =

(
1− ϕ+ ϕ2

2! −
ϕ3

3! + ...
)
sin($) = e−ϕ sin($)

X2($,ϕ) =
(
1− ϕ+ ϕ2

2! −
ϕ3

3! + ...
)
sin($) = e−ϕ sin($)

, (5.35)

which is the exact solution available in the literature [3].

Example 3 Consider the system of nonlinear nonhomogeneous time-fractional partial dif-
ferential equations of the form{

Dα,ρϕ X1 + 2X2X1$ −X1 = 2
Dα,ρϕ X2 − 3X1X2$ + X2 = 3

, (5.36)

with the initial conditions {
X1($, 0) = e$

X2($, 0) = e−$
, (5.37)
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where X1 = X1($,ϕ),X2 = X2($,ϕ) and Dα,ρϕ is the Caputo-Katugampola fractional
derivative of order α, ρ with 0 < α ≤ 1 and ρ > 0.

To resolve the system (5.36) with the initial conditions (5.37), we follow the same steps
presented in Section 3.

First, we assume that the solution of (5.36)-(5.37) is of the form
X1($,ϕ) =

∞∑
n=0
X1n($,ϕ)

X2($,ϕ) =
∞∑
n=0
X2n($,ϕ)

. (5.38)

Next, we consider the following system{
Dα,ρϕ X1λ1 = λ1 [2 + X1λ1 − 2X2λ1X1λ1$]
Dα,ρϕ X2λ2 = λ2 [3−X2λ2 + 3X1λ2X2λ2$]

, λ1, λ2 ∈ [0, 1] , (5.39)

and the solution of the system (5.39) can be expressed as
X1λ1($,ϕ) =

∞∑
n=0

λn1X1n($,ϕ)

X2λ2($,ϕ) =
∞∑
n=0

λn2X2n($,ϕ)
. (5.40)

Applying the ρ-Khalouta transform on (5.39) with respect to the variable ”ϕ” and The-
orem 2.3, we get{

KHρ [X1λ1 ] = e$ +
(γη
s

)α
λ1KHρ [2 + X1λ1 − 2X2λ1X1λ1$]

KHρ [X2λ2 ] = e−$ +
(γη
s

)α
λ2KHρ [3−X2λ2 + 3X1λ2X2λ2$]

. (5.41)

Taking the inverse ρ-Khalouta transform on (5.42), we get{
X1λ1($,ϕ) = e$ + λ1KH−1ρ

[(γη
s

)αKHρ [2 + X1λ1 − 2X2λ1X1λ1$]
]

X2λ2($,ϕ) = e−$ + λ2KH−1ρ
[(γη

s

)αKHρ [3−X2λ2 + 3X1λ2X2λ2$]
] . (5.42)

Application of the new decomposition method [16] implies

∞∑
n=0

λn1X1n($,ϕ) = e$ + λ1KH−1ρ

(γηs )αKHρ

2 +
∞∑
n=0

λn1X1n

−2
∞∑
n=0

λn1K1n




∞∑
n=0

λn2X2n($,ϕ) = e−$ + λ2KH−1ρ

(γηs )αKHρ

3−
∞∑
n=0

λn2X2n

+3
∞∑
n=0

λn2K2n



, (5.43)

where K1n and K2n are polynomials which respectively represent the nonlinear terms
X2X1$ and X1X2$.

According to the relation (3.13), the first few components of the polynomials K1n and
K2n are given by

K10 = X20X10$,

K11 = X20X11$ + X21X10$, (5.44)
K12 = X20X12$ + X21X11$ + X22X10$,

...
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and

K20 = X10X20$,

K21 = X10X21$ + X11X20$, (5.45)
K22 = X10X22$ + X11X21$ + X12X20$,

...

By equating the terms in (5.43) with identical powers of λ1 and λ1, the following relation
is obtained. {

X10($,ϕ) = e$

X20($,ϕ) = e−$
,{

X11($,ϕ) = KH−1
ρ

[(γη
s

)αKHρ [2 + X10 − 2K10]
]

X21($,ϕ) = KH−1
ρ

[(γη
s

)αKHρ [3−X20 + 3K20]
] , (5.46){

X1n($,ϕ) = KH−1
ρ

[(γη
s

)αKHρ

[
X1(n−1) − 2K1(n−1)

]]
X2n($,ϕ) = KH−1

ρ

[(γη
s

)αKHρ

[
−X2(n−1) + 3K2(n−1)

]]
Now, according to (5.38) and (5.40), we have
X1($,ϕ) = lim

λ1→1
X1λ1($,ϕ) = X10($,ϕ) + X11($,ϕ) +

∞∑
n=2
X1n($,ϕ)

X2($,ϕ) = lim
λ2→1
X2λ2($,ϕ) = X20($,ϕ) + X21($,ϕ) +

∞∑
n=2
X2n($,ϕ)

. (5.47)

Thus, the following approximations are obtained successively{
X10($,ϕ) = e$

X20($,ϕ) = e−$
,{

X11($,ϕ) =
1

Γ (α+1)
ϕαρ

ρα e
$

X21($,ϕ) = − 1
Γ (α+1)

ϕαρ

ρα e
−$ ,{

X12($,ϕ) =
1

Γ (2α+1)
ϕ2αρ

ρ2α
e$

X22($,ϕ) =
1

Γ (2α+1)
ϕ2αρ

ρ2α
e−$

, (5.48){
X13($,ϕ) =

1
Γ (3α+1)

ϕ3αρ

ρ3α
e$

X23($,ϕ) = − 1
Γ (3α+1)

ϕ3αρ

ρ3α
e−$

,

...

The solution is finally expressed by X1($,ϕ) =
(
1 + 1

Γ (α+1)
ϕαρ

ρα + 1
Γ (2α+1)

ϕ2αρ

ρ2α
+ 1

Γ (3α+1)
ϕ3αρ

ρ3α
+ ...

)
e$

X2($,ϕ) =
(
1− 1

Γ (α+1)
ϕαρ

ρα + 1
Γ (2α+1)

ϕ2αρ

ρ2α
− 1

Γ (3α+1)
ϕ3αρ

ρ3α
+ ...

)
e−$

. (5.49)

Taking ρ = 1 in (5.49), the following solution is obtained. X1($,ϕ) =
(
1 + ϕα

Γ (α+1) +
ϕ2α

Γ (2α+1) +
ϕ3α

Γ (3α+1) + ...
)
e$

X2($,ϕ) =
(
1− ϕα

Γ (α+1) +
ϕ2α

Γ (2α+1) −
ϕ3α

Γ (3α+1) + ...
)
e−$

, (5.50)
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which is the solution of the system (5.36) based on the Caputo fractional derivative.
Taking α = 1 in (5.49), the following solution is obtained. X1($,ϕ) =

(
1 + ϕρ

ρ + ϕ2ρ

2!ρ2
+ ϕ3α

3!ρ3
+ ...

)
e$

X2($,ϕ) =
(
1− ϕα

ρ + ϕ2α

2!ρ2
− ϕ3α

ρ3
+ ...

)
e−$

, (5.51)

which is the solution of the system (5.36) based on the conformable fractional derivative.
Taking α = ρ = 1 in (5.49), the following solution is obtained. X1($,ϕ) =

(
1 + ϕ+ ϕ2

2! +
ϕ3

3! + ...
)
e$ = eϕ+$

X2($,ϕ) =
(
1− ϕ+ ϕ2

2! −
ϕ3

3! + ...
)
e−$ = e−ϕ−$

, (5.52)

which is the exact solution available in the literature [20].

6 Conclusions

In this paper, we investigated the approximate analytical solutions of a system of nonlinear
time-fractional partial differential eqyations based on the Khalouta-Caputo-Katugampola
fractional derivative using ρ-KHDM. Theoretical and numerical results clearly reveal the
full reliability and effectiveness of the proposed method. As a future direction, this method
can be particularly considered to solve a variety of classes of nonlinear fractional partial
differential equation system involving different types of fractional derivative operators ana-
lytically and numerically.
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