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Abstract. This article presents the properties of the Blaschke product in the space C [m×m], which is a
matrix model of the multidimensional space Cm2

. We study the properties of the Blaschke product in the
matrix unit circle and in the matrix upper half-plane. A matrix analogue of the Horwitz-Rubel theorem
about the Blaschke product in the complex plane is proved.
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1 Introduction

The Blaschke product plays an important role in many problems of classical complex
analysis. Related with the important applications of the Blaschke product in complex analy-
sis, since the second half of the last century, interest in the study of functions of the Blaschke
product type has increased and several of its analogues have been obtained (see, for exam-
ple, [4], [5], [9], [11], [23]).

We recall the Blaschke product in C. Let U = {t ∈ C : |t| < 1} be unit circle. The finite
Blaschke product is a function of the form

B (t) = eiϕ
n∏
j=1

t− tj
1− t̄jt

, |tj | < 1.

The number n of its zeros is called the degree of the Blaschke product. The Blaschke product
of degree 0 is a constant, which module is equal to one.

? Corresponding author

The work is supported by the project ”Methods and algorithms for the inter-survey selection of the trajectory of an anti-
radar missile aimed at a surveillance radar” no IL-4821091588 - of Ministry of Innovative Development of the Republic of
Uzbekistan.

J.Sh. Abdullayev
Urgench State University, Hamid Olimjon street, 14, Urgench, 220100, Uzbekistan
E-mail: j.abdullayev@nuu.uz

G. Khudayberganov
National University of Uzbekistan, University St. 4, 100174, Tashkent, 100174, Uzbekistan
E-mail: gkhudaiberg@mail.ru



2 On the Blaschke matrix product and an analogue of the Horwitz-Rubel theorem for . . .

The Blaschke product has the following properties (see, for example, [12,21]):
(i) B is continuous up to ∂U;
(ii) |B| = 1 to ∂U;
(iii) B has a finite number of zeros in the circle U.
These three properties determine B (t) up to a factor of eiϕ. If a holomorphic function

f satisfies (i),(ii) and (iii), and B is a finite Blaschke product with the same zeros, then
|f/B| ≤ 1 and |B/f | ≤ 1 to U by the maximum principle, and f/B is constant.

The following theorem holds (see [12]) :

Theorem 1.1 Let {tn} be a sequence of points on the circle U, such that

∞∑
n=1

(1− |tn|) <∞

and m is the number of tn, which equal to 0. Then the Blaschke product

B (t) = tm
∏
|tn|6=0

−tn
|tn|

t− tn
1− tnt

(1.1)

converges in U. The function B (t) belongs to H∞ (U)1, and its zeros are exactly {tn},
and each zero has multiplicity equal to the number of its occurrence in the sequence {tn}.
Moreover, |B (t)| ≤ 1 and ∣∣∣B (eiθ)∣∣∣ = 1

almost everywhere.

The following Horwitz-Rubel’s theorem expresses one of the most important properties of
the Blaschke product (see [4]).

Theorem 1.2 Let

A1 (t) =
k∏
j=1

t− aj
1− ājt

,

A2 (t) =

k∏
j=1

t− bj
1− b̄jt

be the Blaschke products of degree k, where aj , bj ∈ U = {t ∈ C : |t| < 1}. If A1 (λj) =
A2 (λj) for k distinct points λ1, λ2, . . . , λk from U, then

A1 (t) ≡ A2 (t) .

Note that the specified (canonical) form for A1 (λj) and A2 (λj) is essential.
Indeed, let |c| = 1, c 6= 1 and

A (t) = c

k∏
j=1

t− aj
1− ājt

,

B (t) =
t− ca1

1− ca1t

k∏
j=1

t− aj
1− ājt

,

1 The Hardy class H∞ (U) is the set of all holomorphic and bounded functions in U.
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where aj 6= 0 for any j. Then A (aj) = B (aj) = 0 for j = 2, 3, . . . , k and

A (0) = B (0) = c
k∏
j=1

(−1)jaj ,

but A (t) 6≡ B (t). Hence, A 6≡ kB for any constant k. Theorem 1.2 is essentially based on
the possibility of representing rational functions A1 (t) and A2 (t) in the form:

A1 (t) =
α0 + α1t+ . . .+ αk−1t

k−1 + tk

1 + ᾱk−1t+ . . .+ ᾱ1tk−1 + ᾱ0tk
, (1.2)

A2 (t) =
β0 + β1t+ . . .+ βk−1t

k−1 + tk

1 + β̄k−1t+ . . .+ β̄1tk−1 + β̄0tk
, (1.3)

where the coefficients α0, α1, . . . , αk−1 and β0, β1, . . . , βk−1 are expressed by aj and bj ,
j = 1, 2, . . . , k, as follows:

α0 = (−1)ka1 · . . . · ak,
. . . . . . . . . . . . . . . . . .

αk−2 = a1a2 + a1a3 + . . .+ ak−1ak,

αk−1 = − (a1 + . . .+ ak) ,

and
β0 = (−1)kb1 · . . . · bk,

. . . . . . . . . . . . . . .

βk−2 = b1b2 + b1b3 + . . .+ bk−1bk,

βk−1 = − (b1 + . . .+ bk) .

Therefore the functionsA1 (t) , A2 (t) are defined uniquely by k different parameters α0,α1,
. . . , αk−1; β0, β1,. . . , βk−1. Further, we introduce the Blaschke product in matrix domains,
and then we obtain some of its properties and give analogues of the above Theorem 1.2.

2 Preliminaries and problem statement

Many fundamental theorems of classical complex analysis of one variable still do not have
full-fledged generalizations in multidimensional complex analysis. Many formulas in use
today are not complete, although each new obtained formula is stronger and more conve-
nient than the previous one. In the 30s and 60s of the twentieth century such scientists as
E. Cartan [8], I.I. Pyatetsky-Shapiro [24] and Hua Lo-Keng [16] investigated the problems
of multivariate complex analysis using a matrix approach. They conducted research mainly
in the classical domains2 and dealt with questions related to the theory of functions in these
domains and the geometry of the domains themselves. Further, B.S. Vladimirov [27,28],
A.G. Sergeev [25], [26], [28], Sh. Zhou [30], G. Khenkin [15], S.G.Gindikin [13], Xiao-
Ming [29], L. A. Aizenberg [1], [2], [3], G.Khudayberganov [14], [17], [18], [19], and
others continued to study the properties of holomorphic functions in matrix domains. In
these scientific studies, the biholomorphic equivalence of these domains with bounded do-
mains was widely used in constructing the theory of holomorphic extensions in unbounded
domains. In the course of these investigations significant results were obtained in domains

2 Recall that a bounded domain D ⊂ Cn is called classical if the group of its holomorphic automorphisms is a classical
Lie group and is transitive on it.
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of the space Cn and in matrix domains. Despite this, many unresolved problems remain in
these areas, the solution of which is very important.

Great interest in complex analysis on matrix domains, in recent years, is associated
with applications in mathematical physics, the theory of electrical circuits and in solving
practical problems using them, including in solving problems of quantum field theory and
others, interest in this direction has increased even more complex analysis. About these in
the works of V.S. Vladimirov [27,28], A.G.Sergeyeev [25], [26], A.V. Efimova and V.P.
Potapova (see [10]), F. Barbaresco [6], E.Bedford and Y.Dadok [7].

The selection of classes of biholomorphically equivalent domains is of great impor-
tance in multidimensional complex analysis and its applications. It is fairly well known that
any two simply connected domains of the same type on the complex plane map confor-
mally onto each other (Riemann’s theorem). But in the multidimensional case, the situation
is completely different. For example, two simplest domains, a ball and a polydisk from
the space Cn− do not map biholomorphically onto each other. Therefore, in multivariable
complex analysis it is very important to have a stock of domains that are biholomorphically
equivalent to each other. Since the set of biholomorphic automorphisms of the matrix unit
circle and the matrix upper half-plane are given by linear-fractional functions of matrices, it
is natural to consider Blaschke products (for these matrix domains) as a function of matri-
ces. Such products for the matrix circle and for the matrix upper half-plane were introduced
in [20].

3 Matrix unit circle and matrix upper half-plane

Consider the space Cm2
, the space of m2 complex variables. In some questions, it is con-

venient to represent the point Z of this space as Z = (zij)
m
i,j=1, i.e., as square [m×m]-

matrices. With this point representation, the space Cm2
will be denoted by C[m × m].

Denote by Cn[m×m] the direct product of n instances of [m×m]-matrix spaces

C[m×m]× · · · × C[m×m]︸ ︷︷ ︸
n

.

Let Z = (Z1, . . . , Zn) be a vector composed of square matrices Zj of order m, con-
sidered over the field of complex numbers C. Let us write the elements of the vector
Z = (Z1, . . . , Zn) as points z of the space Cnm2

:

z = (z
(1)
11 , . . . , z

(1)
1m, . . . , z

(1)
m1, . . . , z

(1)
mm, . . . , z

(n)
11 , . . . , z

(n)
1m , . . . , z

(n)
m1 , . . . , z

(n)
mm) ∈ Cnm

2
.

Hence, we can assume that Z is an element of the space Cn [m×m], i.e., we came to the
isomorphism Cn [m×m] ∼= Cnm2

.
The matrix unit circle (the classical domain of the first type according to E. Cartan’s

classification [8]) is defined as the set

RI (m,m) = {Z ∈ C[m×m] : ZZ∗ < I} ,

where Z∗ = Z̄ ′ is conjugate and transposed matrix to Z, notation ZZ∗ < I (I = Im is
the identity matrix [m×m] ) means that the Hermitian matrix I −ZZ∗ is positive definite,
thus, all its eigenvalues are positive. It is useful to note that, if Z ∈ C [m×m], then

det (I − ZZ∗) = det (I − Z∗Z) .

In addition, the conditions I − ZZ∗ > 0 and I − Z∗Z > 0 is equivalent. This statement is
also true for rectangular matrices (see Theorem 2.1.3 in [16]).
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The boundary RI (m,m) consists of the set

∂RI (m,m) = {Z ∈ C[m×m] : det(I − ZZ∗) = 0, ZZ∗ ≤ I} ,

i.e., from the set of matrices Z, for which the matrix I − ZZ∗ is non-negative definite but
not positive definite Hermitian matrix (its eigenvalues are non-negative and at least one of
them is equal to zero).

On the border lies the set

ΓR = {Z ∈ C[m×m] : ZZ∗ = I} ,

which is called the skeleton of RI (m,m) (note that, ΓR is the Shilov boundary for RI (m,m)).
It is clear that, the set ΓR is the set of all unitary [m×m]-matrices (the set of unitary ma-
trices of order n is usually denoted by U (n)). It should be noted that, the set of matrices
{Z : det (I − ZZ∗) = 0} contains a bounded component distinguished by the condition
ZZ∗ ≤ I , and unbounded component, for which ZZ∗ ≥ I . These components intersect
along the skeleton ΓR (see [16]).

Note that, the matrix unit circle is a bounded domain centered at O (O is zero matrix).
Indeed, if we denote by zj =

(
zj1, z

j
2, . . . , z

j
m

)
of any j-th row of the matrix Z, then the

elements of the main diagonal I − ZZ∗ will be 1 −
∣∣zj∣∣2, and since this matrix is positive

definite, hence they are all positive. Therefore

|Z|2 =
m∑
j=1

∣∣zj∣∣2 < m

and the domain RI (m,m) lies in the ball B = {|Z| <
√
m}. Further, from [16] it is known

that, for any Z ∈ C [m×m] there exist unitary matrices U of order m and V of order m
such that

Z = U


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm

V

for some λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0. Hence it follows that

det
(
I(m) − ZZ̄ ′

)
=
(
1− λ2

1

)
. . .
(
1− λ2

m

)
= det

(
I(m) − Z̄ ′Z

)
.

Therefore, for a given Z ∈ C [m×m] the relation I(m) − ZZ̄ ′ > 0 holds if and only if
1− λ2

s > 0 or λs < 1, s = 1, . . . ,m. On the other hand, for any Z ∈ Bm2
(1), where

Bm
2

(1) =

Z = (z11, . . . , z1m, z21 . . . , z2m, . . . , zm1 . . . , zmm) ∈ Cm
2

:
m∑
s=1

m∑
j=1

|zsj |2 < 1


is the ball from space Cm2

, we have

|Z|2 =
m∑
s=1

m∑
j=1

|zsj |2 =
m∑
s=1

m∑
j=1

zsj z̄sj = Sp
(
ZZ̄

′
)

=
m∑
s=1

λ2
s < 1.

Whence λs < 1 (s = 1, . . . ,m) and Z ∈ RI (m,m). Therefore, we have the following
relation

Bm
2

(1) ⊂ RI (m,m) .
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For m = 1 the domain RI (m,m) coincides with the unit circle, and the ΓR is the unit
circle in the complex plane C.

For m = 2 the domian τ admits the representation

τ = {Z ∈ C[2× 2] : ψ(Z) < 0} ,

where
ψ(Z) = max

[
|z11|2 + |z12|2 − 1, |z21|2 + |z22|2 − 1, ψ0 (Z)

]
,

ψ0(Z) = detZZ∗ + SpZZ∗ − 1,

and Sp (Z) is the trace (hole) of the matrix Z (this representation can be obtained from
Sylvestr’s criterion for a positive definite matrix).

The matrix upper half-plane is defined as the set of matrices

I = {Z ∈ C [m×m] : ImZ > 0} ,

where ImZ = 1
2i (Z − Z∗). It is the usual upper half-plane when m = 1.

The boundary ∂I of this domain consists of matrices Z, for which ImZ is a non-
negative definite but non-positive definite Hermitian matrix (its eigenvalues are non-negative
and at least one of them is equal to zero). Since the vanishing of the eigenvalues of a Her-
mitian matrix is expressed by a real analytic equality, then ∂I consists of pieces of real
analytic surfaces of dimension 2m2 − 1.

The set
S(I) = {Z : ImZ = 0} ,

which lies on ∂I, is called the skeleton of the upper half-plane I. It consists of all Hermitian
matrices. The Hermitianity condition is expressed by m2 independent equations, so the real
dimension of S(I) is equal to m2.

For m = 2 this special case has the form

I =

{
Z ∈ C [2× 2] :

(
Im z11

z12−z̄21
2i

z21−z̄12
2i Im z22

)
> 0

}
.

This domain is defined by the inequalities

I =

{
Im z11 > 0, Im z11 Im z22 −

1

4
|z12 − z̄21|2 > 0

}
,

and its boundary by the equation

∂I =

{
Im z11 Im z22 =

1

4
|z12 − z̄21|2

}
,

where the skeleton is the real four-dimensional plane

S(I) = {Im z11 = Im z22 = 0, z12 = z̄21} .

Note that, the non-degenerate affine transformation

Φ (Z) =

(
z11 + z22 z12 + z21

i (z21 − z12) z11 − z22

)
maps I to the domain defined by the inequalities

τ(2) =
{

Im z11 > 0, (Im z11)2 > (Im z12)2 + (Im z21)2 + (Im z22)2
}
,
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which called the pipe of the future (see [28]), i.e. into the tubular domain T = R4 (x) + iC
over the cone

C =
{
y2

11 − y2
22 − y2

12 − y2
21 > 0

}
,

more precisely, over one cavity C+ of this cone for which y11 > 0 (we put zjk = xjk +
iyjk). Then the boundary ∂I maps ∂C+ × R4 (x), and the skeleton becomes into the real
subspace R4 (x), more precisely, into the product of the vertex of the cone C+ by it. These
implementations are given in more detailed in [27], [28].

4 Blaschke matrix product

In this section, using the Blaschke product for the matrix unit circle and the matrix upper
half-plane, some results are obtained for one variable.

A finite Blaschke matrix product of degree k in RI (m,m) we will call a function of
matrices of the form (see [20])

B (Z) =

k∏
j=1

(Z − Pj)
(
I − P ∗j Z

)−1
,

where Pj ∈ RI (m,m), j = 1, 2, ..., k.

Theorem 4.1 The Blaschke product for the matrix unit circle has the following properties:
(i) The function B (Z) is continuous up to the boundary RI (m,m);
(ii) B (Z)B∗ (Z) = I on ΓR;
(iii) B (Pi) = O,O ∈ RI (m,m) , j = 1, 2, . . . , k.

Proof. i) follows from the fact that det
(
I − P ∗j Z

)
6= 0. Pj ∈ RI (m,m) by condition.

Since the conditions I − ZZ∗ > 0 and I − Z∗Z > 0 are equivalent we have P ∗j ∈
RI (m,m) . From the relation

I −
(
P ∗j Z

) (
P ∗j Z

)∗
= I − P ∗j ZZ∗Pj =

(
I − P ∗j Pj

)
+ P ∗j (I − ZZ∗)Pj > 0

follows that
(
P ∗j Z

)
∈ RI (m,m). Therefore, all eigenvalues of the matrix

(
P ∗j Z

)
∈

RI (m,m) lie inside the unit circle. And so det
(
I − P ∗j Z

)
6= 0.

ii) According to [16], the automorphism RI (m,m), which maps an arbitrary point P ∈
RI (m,m) to the origin has the form

W = A (Z − P ) (I − P ∗Z)−1B−1, (4.1)

where A,B are [m×m] -square matrices such that

Ā
(
I − P̄P ′

)
A′ = I, B̄

(
I − P ′P̄

)
B′ = I.

The inverse mapping to (4.1) has the form

Z =
(
I −A−1WBP ∗

)−1 (
A−1WB + P

)
. (4.2)

Since for P = O, it follows from (4.2) that Z = A−1WB, then the automorphism (4.1)
can be represented as

ζ = (Z − P ) (I − P ∗Z)−1. (4.3)
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It is cear that, the unitary matrix Z ∈ ΓR we can take as Z = V U∗ and the matrix P ∈
RI (m,m) as P = V SU∗ Here V,U are unitary matrices.

Indeed, let P ∈ RI (m,m) be, then for all unitary matrices U, V matrix S we have

I − (V SU∗)(V SU∗)∗ = I − V SU∗US∗V ∗ = V (I − SS∗)V ∗ > 0 .

Therefore, this means that P = V SU∗ ∈ RI (m,m). This is one of those looks we have
a relationship:

P ∗j Pj = Z∗PjP
∗
j Z. (4.4)

To prove the equality
B (Z)B∗ (Z) = I

we will show that, the equality B∗ (Z)B (Z) = I holds, which is equivalent to mentioned
equality above. Let’s look at the difference between the right and left sides of this last
expression, by virtue of (4.3):

B∗ (Z)B (Z)− I =
[
(Z − Pj)

(
I − P ∗j Z

)−1
]∗ [

(Z − Pj)
(
I − P ∗j Z

)−1
]
− I =

=
[(
I − P ∗j Z

)−1
]∗

[(Z − Pj)]∗
[
(Z − Pj)

(
I − P ∗j Z

)−1
]
− I =

=
[(
I − P ∗j Z

)∗]−1 (
Z∗ − P ∗j

)
(Z − Pj)

(
I − P ∗j Z

)−1 − I =

= (I − Z∗Pj)−1 (Z∗ − P ∗j ) (Z − Pj)
(
I − P ∗j Z

)−1 − I =

= (I − Z∗Pj)−1 (Z∗ − P ∗j ) (Z − Pj)
(
I − P ∗j Z

)−1 − I =

= (I − Z∗Pj)−1 [(Z∗ − P ∗j ) (Z − Pj)− (I − Z∗Pj)
(
I − P ∗j Z

)] (
I − P ∗j Z

)−1
=

= (I − Z∗Pj)−1 [P ∗j Pj − Z∗PjP ∗j Z] (I − P ∗j Z)−1

The second multiplier in the last multiplication is zero according to (4.4) multiplication.
Hence, B (Z)B∗ (Z) = I is true on ΓR.

iii) Since the functionB(Z) vanishes at the pointsZ = Pj we get reality of the statement
iii.

5 The Blaschke product for the matrix upper half-plane

Let Iσ = {Z ∈ C [m×m] : ImZ > −σI} be the matrix half-plane of square [m×m]
matrix in the space C [m×m], where σ > 0.

The next theorem is true.

Theorem 5.1 Transformation

W = (Z −A∗ + 2iσI)−1 (Z −A) , (5.1)

where A ∈ Iσ, A−A∗ = cI, c ∈ C, biholomorphically maps Iσ to the matrix unit circle

RI (m,m) = {W ∈ C [m×m] : WW ∗ < I} .



J.Sh. Abdullayev, G. Khudayberganov 9

Proof. First of all, let us show that the next matrix is invertible

(Z −A∗ + 2iσI) .

Let ρ be column vector of length m and

(Z −A∗ + 2iσI) ρ = 0.

Hence
(Z + iσI) ρ = (A∗ − iσI) ρ,

ρ∗ (Z∗ − iσI) = ρ∗ (A+ iσI) .

Multiplying both sides of the first equality on the left by ρ∗, the second equality on the right
by ρ and subtracting the second equation from the first, we get

ρ∗ (Z − Z∗ + 2iσI) ρ = −ρ∗ (A−A∗ + 2iσI) ρ,

Consequently,
ρ∗ (ImZ + σI) ρ = −ρ∗ (ImA+ σI) ρ.

Since
ImZ + σI > 0,

ImA+ σI > 0,

then ρ = 0. This means that the matrix

(Z −A∗ + 2iσI)

is nondegenerate, i.e. it is invertible and therefore the map (5.1) is holomorphic in Iσ.
Now we need to show that (5.1) maps Iσ to RI (m,m). This follows from the following
relationship:

I −WW ∗ = I − (Z −A∗ + 2iσI)−1 (Z −A) (Z∗ −A∗) (Z∗ −A− 2iσI)−1

= (Z −A∗ + 2iσI)−1 [(Z −A∗ + 2iσI) (Z∗ −A− 2iσI)− (Z −A) (Z∗ −A∗)]

×
(

(Z −A∗ + 2iσI)−1
)∗

= G[ZZ∗ −A∗Z∗ + 2iσZ∗ − ZA+A∗A− 2iσAI − 2iσZ + 2iA∗σI + 4σ2I

−ZZ∗ +AZ∗ + ZA∗ −AA∗]G∗ = G[2i

(
A−A∗

2i
+ σ

)
Z∗ − Z

(
A−A∗

2i
+ σ

)
2i

−2i

(
A−A∗

2i
+ σ

)
2iσ]G∗ = G[2i

(
A−A∗

2i
+ σ

)
×
(
Z − Z∗

2i
+ σ

)
(−2i)]G∗

= 4G

(
A−A∗

2i
+ σI

)(
Z − Z∗

2i
+ σI

)
G∗ = 4G (ImA+ σI) (ImZ + σI)G∗,

where G = (Z −A∗ + 2iσI)−1.
It is known that, the Hermitian matrices B and ABA∗ are both positive definite if A is

nondegenerate. Since A−A∗ = cI, c ∈ C, then

B = (ImA+ σI) (ImZ + σI) = [(ImA+ σI) (ImZ + σI)]∗ = B∗,

i.e. B is Hermitian matrix. Therefore, the matrices I −WW ∗ and

B = (ImA+ σI) (ImZ + σI) = θ (ImZ + σI) ,
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are simultaneously positive definite where θ is a positive number. This says that (5.1) maps
Iσ to RI (m,m).

Now from (5.1) we will find the inverse mapping

Z = [A− (A∗ − 2iσI)W ] (I −W )−1. (5.2)

Since for W ∈ RI (m,m) all its eigenvalues are less than one, then det (I −W ) 6= 0,
i.e. the matrix (I −W ) is nondegenerate. This implies that the map (5.2) is holomorphic in
RI (m,m). Due to the relation

I −WW ∗ = 4(Z −A∗ + 2iσI)−1 (ImA+ σI)×

× (ImZ + σI) ((Z −A∗ + 2iσI)−1)∗,

it can be seen that forW ∈ RI (m,m), i.e. I−WW ∗ > 0, the matrixG = (Z −A∗ + 2iσI)−1,
is non degenerate also and hence, ImZ + σI > 0, i.e. (5.1) maps RI (m,m) to Iσ. The
statement is proved.

In a special case, when A = iI and σ = 0, the transformation (5.1) is the well-known
Cayley transformation. In addition, (5.1) transforms the skeleton

Γσ = {Z ∈ C [m×m] : ImZ = −σI}

of the matrix half-plane Iσ the set

ΓR = {W : WW ∗ = I}

the skeleton (Shilov boundary) RI (m,m), which consists of unitary [m×m] matrices.
By a finite Blaschke matrix product of degree k in Iσ we say the function of matrices

(mapping C [m×m]→ C [m×m] of the form (5.1))

Bk (Z) =
k∏
j=1

[(
Z −A∗j + 2iσI

)−1
(Z −Aj)

]qj
, (5.3)

where Aj ∈ Hσ, Aj −A∗j = cjI, cj ∈ C, qj are positive integers, j = 1, 2, ..., k.
Based on Theorem 5.1 for the Blaschke product of the form (5.3), we have the following

Corollary 5.1 The Blaschke product of the form (5.3) has the following properties:
i. Bk (Z) is continuous up to the boundary Iσ;
ii. Bk(Z)B∗j (Z) = I on Γσ;

iii. Bk (Aj) = O,O ∈ RI (m,m) , j = 1, 2, . . . , k;

iv. Transformation B (Z) is a map of domain Iσ to RI (m,m).

Proof. The first assertion i) follows from the invertibility of the matrices(
Z −A∗j + 2iσI

)
for all Z,A∗j ∈ Iσ.

Properties ii) is a consequence of the fact that the mapping

W =
(
Z −A∗j + 2iσI

)−1
(Z −Aj) , Aj ∈ Iσ,

maps Iσ to RI (m,m). In this case, the skeleton Iσ maps to the skeleton ΓR.
iii) It is clear that the function Bk(Z) vanishes at the points Z = Aj , which makes the

third statement true.
iv) Note that, Z,W ∈ RI (m,m) implies that (ZW ) ∈ RI (m,m). The validity of this

assertion follows from the statement above and from the Theorem 5.1.
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6 The Horwitz-Rubel theorem for the Blaschke matrix product

In this subsection, we prove an analogue of the Horwitz-Rubel theorem for the Blaschke
matrix product. It should be noted that in this case, Blaschke matrix products cannot be
represented in the form (1.2), (1.3), due to the noncommutativity of matrices.

Let

B1 (Z) =
k∏
j=1

[
(Z − Pj)

(
I − P ∗j Z

)−1
]
,

B2 (Z) =
k∏
j=1

[
(Z −Qj)

(
I −Q∗jZ

)−1
]
,

where Pj , Qj ∈ RI (m,m) , j = 1, 2, . . . , k, Blaschke matrix products of degree k for the
matrix unit disc.

The following theorem is true.

Theorem 6.1 Let be Pj , Qj be diagonal matrices. If B1 (νj) = B2 (νj) for diagonal ma-
trices νj from RI (m,m), such that det (νj) 6= 0, j = 1, . . . , 2, then

B1 (Z) ≡ B2 (Z) .

To prove Theorem 6.1, we first prove the following.

Lemma 6.1 If Pj , Qj are diagonal matrices, then for B1 and B2 there exists at least one
matrix U ∈ ΓR, such that

B1 (U) = B2 (U) .

Proof. The equality B1 (Z) = B2 (Z) is equivalent to the equality

k∏
j=1

[
(Z − Pj)

(
I − P ∗j Z

)−1
]

=
k∏
j=1

[
(Z −Qj)

(
I −Q∗jZ

)−1
]
. (6.1)

For ZZ∗ = I , i.e. Z ∈ ΓR, the matrices Z − Pj and Z − Qj are nondegenerate, i.e.
det (Z − Pj) 6= 0, det (Z −Qj) 6= 0, j = 1, 2, . . . , k, so from (6.1) we get

k∏
j=1

[
(Z − Pj)

(
I − P ∗j Z

)−1
] k∏

j=1

[
(Z −Qj)

(
I −Q∗jZ

)−1
]−1

= I. (6.2)

Consider a matrix function of a scalar variable t ∈ C of the form

ϕ (t) =
k∏
j=1

[
(tI − Pj)

(
I − P ∗j t

)−1
] k∏

j=1

[
(tI −Qj)

(
I −Q∗j t

)−1
]−1

.

Note that, the elements of ϕ (t) are holomorphic in the disc {|t| < 1} = U and continuous
functions on U.

If tt = 1 then, due to the diagonality of Pj , Qj , the function ϕ (t) can be presented in
the form

ϕ (t) =
k∏
j=1

[
(tI − Pj) (tI −Qj)−1

][
(tI − Pj) (tI −Qj)−1

]−1
.
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Then the elements of ϕ (t) are functions of the form

ϕss (t) =

k∏
j=1

[
(tI − Pj) (tI −Qj)−1

]
ss

[
(tI − Pj) (tI −Qj)−1

]
ss

−1
,

s = 1, 2, ...,m. Assuming that

Pj =
(
pssj
)
, Qj =

(
qssj
)
, i = 1, 2, . . . ,m, j = 1, 2, . . . , k,

we can rewrite the function ϕss (t) in the form

ϕss (t) =

k∏
j=1

 t− pssj
t− qssj

/

(
t− pssj
t− qssj

)−1 =
gss (t)

gss (t)
,

where

gss (t) =
k∏
j=1

t− pssj
t− qssj

.

If we represent gss (t) in exponential form, i.e.

gss (t) = |gss (t)| ei arg gss(t),

then ϕss (t) = e2i arg gss(t) (here we assume that arg gss (t) exists). We are interested in the
values ts, |ts| = 1, such that ϕss (ts) = 1 for each fixed s, i.e.

cos (2 arg gss (ts)) + i sin (2 arg gss (ts)) = 1.

It follows
cos (2 arg gss (ts)) = 1,

sin (2 arg gss (ts)) = 0.

Hence, arg gss (ti) = πn for some n. Thus,

ϕss

(
eiψs

)
= 1,

where
eiψs = ts, 0 ≤ ψs ≤ 2π.

Let us now show that for every fixed s, s = 1, 2, . . . ,m, there exists arg gss (t). Denote

δ = min
t∈{pssj ,qssj }

ζ∈∂U

|t− ζ| > 0.

Then the functions gss (t) are holomorphic and do not vanish in

Uδ = {t ∈ C : |t| > 1− δ} ,

since Pj , Qj ∈ RI (m,m), thats why pssj , q
ss
j ∈ U = {|t| < 1} . Consider the analytic

function
ln gss (t) = hss (t) ,
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which admits a holomorphic branch in Uδ, corresponding to the function gss (t) on∞. Since
gss (∞) = 1, then we choose a branch with the condition hss (∞) = 0. Let T (t) = 1

t . Then

T (Uδ) =

{
t ∈ C : |t| < 1

1− δ

}
⊃ U, T (∂U) = ∂U

and
T (∞) = 0.

It’s clear that

hss

(
1

t

)
∈ O

({
t ∈ C : |t| < 1

1− δ

})
.

Therefore, by virtue of the mean value theorem for harmonic functions (we apply this the-
orem in U for harmonic function Imhss

(
1
t

)
) we get

Imhss (∞) =
1

2π

2π∫
0

Imhss

(
eiψ
)
dψ.

From here

0 =
1

2π

2π∫
0

Imhss

(
eiψ
)
dψ.

Therefore, there exists a value ψs, 0 ≤ ψs ≤ 2π, such that Imhss
(
eiψs

)
= 0. Since

hss (t) = ln gss (t) = ln |gss (t)|+ i arg gss (t) = Rehss (t) + i · Imhss (t) ,

then

hss

(
eiψs

)
= Rehss

(
eiψs

)
+ i · Imhss

(
eiψs

)
= ln

∣∣∣gss (eiψs

)∣∣∣ = ln gss

(
eiψs

)
= 0.

Thus ϕss
(
eiψs

)
= 1, s = 1, 2, . . . ,m. Now, using the Cauchy formula for functions of

matrices (see e.g. [22]) for all Z ∈ RI (m,m), we have

ϕ (Z) =
1

2πi

∫
∂U

ϕ (t) (tI − Z)−1dt. (6.3)

The left side of (6.3) is the same as the left side of (6.2) and it is continuous on ΓR. At the
points ts = eiψs , 0 ≤ ψs ≤ 2π, the function ϕss (t) takes the value 1, hence at the points

U =


eiψ1 0 . . . 0

0 eiψ2 . . . 0
. . . . . . . . . . . .
0 0 . . . eiψm

 ∈ ΓR
the value of the matrix function ϕ(z) equals to I , i.e.,

ϕ (Z) =
k∏
j=1

[
(Z − Pj)

(
I − P ∗j Z

)−1
] k∏

j=1

[
(Z −Qj)

(
I −Q∗jZ

)−1
]−1

= I.

This means that
B1 (U) = B2 (U) .

The lemma is proved.
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7 Proof of Theorem 6.1

Let

R (Z) = B1 (Z) ·B−1
2 (Z) .

Then

R (Z) =
k∏
j=1

[
(Z − Pj)

(
I − P ∗j Z

)−1
] k∏

j=1

[
(Z −Qj)

(
I −Q∗jZ

)−1
]−1

.

Since B1 (Z) and B2 (Z) are automorphisms of RI (m,m), then

R (Z)R∗ (Z) = I

on ΓR. Hence

R (Z)R∗
(
Z∗
−1
)

= I

on ΓR. By the condition of the theorem we have R (νj) = I . Hence, R
(
ν∗
−1

j

)
= I for all

j = 1, 2, . . . , k. Consider the matrix function

R (t) = (Rss (t))m1 , t ∈ C.

Put

νj =

(νj)11 0 . . . 0
0 (νj)22 . . . 0
. . . . . . . . . . . .
0 0 . . . (νj)mm

 .

Then Rss
(
(νj)ss

)
= 1 and Rss

(
1

(νj)ss

)
= 1 for all s = 1, . . . ,m, j = 1, . . . , k.

By virtue of Lemma 6.1, we have R (U) = I for some

U =


eiψ1 0 . . . 0

0 eiψ2 . . . 0
. . . . . . . . . . . .
0 0 . . . eiψm

 ∈ ΓR
i.e.Rss

(
eiψs

)
= 1, s = 1, . . . ,m. Therefore, for every fixed s, the rational functionRss (t)

of degree 2k takes the value 1 at 2k + 1 points eiψs ; (ν1)ss, . . . , (νk)ss;
1

(ν1)ss
, . . . , 1

(νk)ss
.

Since Rss (t) ≡ 1, we have

B1 (Z) ≡ B2 (Z) .

The Theorem 6.1 is proved.
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8 Conclusion

This paper has advanced the theory of Blaschke products in the context of matrix-valued
functions, establishing key properties and proving a matrix analogue of the Horwitz-Rubel
theorem. By extending classical results from complex analysis to the of matrix domains,
we have developed a framework that preserves the essential characteristics of Blaschke
products while accommodating the complexities of higher-dimensional spaces.

We rigorously defined finite Blaschke products in the matrix unit circle RI(m,m) and
the matrix upper half-plane Iσ, proving their continuity, boundary behavior, and zero struc-
ture. These results generalize the well-known properties of scalar Blaschke products while
accounting for the noncommutative nature of matrix multiplication.

We established explicit transformations between the matrix upper half-plane and the
matrix unit circle, extending the classical Cayley transform to the matrix setting. These
mappings preserve the structural properties of Blaschke products and provide a foundation
for further investigations in matrix complex analysis.

A central result of this work is the matrix analogue of the Horwitz-Rubel theorem, which
guarantees the uniqueness of Blaschke products when they coincide on a sufficiently large
set of diagonal matrices. This theorem highlights the delicate interplay between algebraic
constraints and analytic behavior in matrix domains. In particular, for m = 1 Theorem 6.1
completely coincides with the Horwitz–Rubel theorem [4].

The implications of our findings extend beyond pure mathematics, with potential appli-
cations in mathematical physics, operator theory, and multidimensional signal processing.
Future research directions include:

Investigating whether the uniqueness theorem holds for non-diagonal matrices or more
general classes of operators;

Developing convergence criteria and factorization theorems for infinite Blaschke prod-
ucts in matrix unit circle RI(m,m) and the matrix upper half-plane Iσ;

Exploring the role of matrix Blaschke products in the spectral theory of linear operators
and their applications in system theory.

In conclusion, this work bridges classical complex analysis with modern matrix theory,
offering new insights into the behavior of holomorphic functions in noncommutative spaces.
The results presented here not only enrich the theoretical landscape but also pave the way for
novel applications in both mathematics and related disciplines. Further exploration of these
ideas promises to uncover deeper connections between complex analysis, matrix algebra,
and functional analysis.

Acknowledgement. The authors are grateful to the reviewers for their useful responses
to improve the article.
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