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Abstract. In this paper we introduce the grand space lp), p > 1 of sequences of numbers. Their com-
pleteness is proved, and their connections with ordinary spaces lp of number sequences are studied. The
closure gp) of the set c00 of finite number sequences in the space lp) is considered. The basis property of
the system en = {δnm}m∈N , n ∈ N in the subspace gp) is proved.

Keywords. spaces of sequences of numbers, grand Lebesgue spaces, closure, completeness, basicity,
orthogonality, Fourier coefficients.

Mathematics Subject Classification (2010): 42C15, 46E30, 46B15

1 Introduction

Recently, in connection with important applications of the theory of partial differential
equations, in the theory of optimal control, etc., interest in research in non-standard Banach
function spaces has increased greatly. Such spaces include Morrey spaces, Lebesgue spaces
with variable summability exponent, grand Lebesgue spaces, Orlicz spaces, etc. The issues
of harmonic analysis and approximation theory in these spaces are the subject of works, for
example, [1-13].

Note that grand Lebesgue spaces Lp)(Ω) for a bounded set Ω ⊂ Rn were introduced in
[14] as a space of functions f ∈ L1(Ω) satisfying the condition

∥f∥p) = sup
0<ε<p−1

 ε

|Ω|

∫
Ω

|f(t)|p−εdt

 1
p−ε

< +∞.
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From the results of [14, 15], it follows that the integrability of the Jacobian of the mapping
is reduced to the belonging of its components to grand Lebesgue spaces. The basis property
of systems of exponentials and their perturbations in grand Lebesgue spaces and in their
weighted versions was considered in [16-19]. When studying discrete operators in grand
Lebesgue spaces, one has to consider the corresponding grand spaces of sequences of num-
bers. Concerning grand spaces of sequences of numbers, the work [20] is known. In [20],
grand spaces lp),θ, p > 1, θ > 0 of sequences of numbers x = {xn}n∈Z with a finite norm

∥ {xn}n∈Z ∥lp),θ = sup
0<ε<p−1

εθ

(
+∞∑

n=−∞
|xn|p(1+ε)

) 1
p(1+ε)

< +∞

are introduced, it is proved that the set of finite sequences is dense in the subspace of se-
quences x = {xn}n∈Z ∈ lp),θ satisfying the condition

lim
ε→+0

εθ
+∞∑

n=−∞
|xn|p(1+ε) = 0.

In this paper, another grand space lp), p > 1 of sequences of numbers is introduced, its
completeness is proved, and the structure of a subspace in which the set of finite sequences
of numbers is dense is given. Also, in this paper an analogue of the Hausdorff-Young theo-
rem in grand spaces of sequences lp), p > 1 is established.

2 Grand space lp) sequences of number

Let lp, p ≥ 1 be the space of sequences a = {an}n∈N of numbers satisfying the condition

∞∑
n=1

|an|p < +∞, p < +∞, sup
n∈N

|an| < +∞, p = +∞ .

The space lp, p ≥ 1 is a complete with the norm

∥a∥lp =

( ∞∑
n=1

|an|p
) 1

p

, p< +∞;

∥a∥l∞ = sup
n∈N

|an|, p = +∞.

For 1 < p < q < +∞ the following continuous strict embedding holds:

l1 ⊂ lp ⊂ lq ⊂ l∞,

such that
∥a∥lq ≤ ∥a∥lp , ∥a∥l∞ = lim

p→∞
∥a∥lp .

Consider the following grand space lp) of sequences of scalars {an}n∈Z , such that

∥ {an}n∈N ∥lp) = sup
0<ε<p−1

ε
1

p(ε)

( ∞∑
n=1

|an|p
′(ε)

) 1
p′(ε)

< +∞, (2.1)



56 On some properties of grand sequence spaces

where p(ε) = p − ε, p
′
(ε) = p(ε)

p(ε)−1 . The function ∥ · ∥lp) : lp) → R defined by formula
(2.1) is a norm, and thus lp) becomes a normed space.

The space lp) is complete. Indeed, let a(k) = {an(k)}n∈N , k ∈ N be a fundamental
sequence in lp) i.e. for any η > 0 there exists a number kη ∈ N such that for any k ≥ kη
and m ∈ N the relation

∥ {an(k)− an(k +m)}n∈N ∥lp) =

= sup
0<ε<p−1

ε
1

p(ε)

(
+∞∑
n=1

|an(k)− an(k +m)|p
′
(ε)

) 1

p
′
(ε)

< η (2.2)

is satisfied.
It follows that for an arbitrary ε ∈ (0, p− 1) we have

ε
1

p(ε) |an(k)− an(k +m)| < η, n ∈ N,

i.e. for any n ∈ N the sequence an(k), k ∈ N is fundamental. Let an = lim
k→∞

an(k). Let

us take an arbitrary number M ∈ N . Then according to (2.2) we have

ε
1

p(ε)

(
M∑
n=1

|an(k)− an(k +m)|p
′
(ε)

) 1

p
′
(ε)

< η. (2.3)

Passing to the limit in (2.3) as m → ∞ we get

ε
1

p(ε)

(
M∑
n=1

|an(k)− an|p
′
(ε)

) 1

p
′
(ε)

≤ η .

Due to the arbitrariness of M ∈ N, we have

ε
1

p(ε)

(
+∞∑
n=1

|an(k)− an|p
′
(ε)

) 1

p
′
(ε)

≤ η, ε ∈ (0, p− 1).

Consequently,

∥ {an(k)− an}n∈N ∥lp) = sup
0<ε<p−1

ε
1

p(ε)

(
+∞∑
n=1

|an(k)− an|p
′
(ε)

) 1

p
′
(ε)

≤ η .

Therefore, a = {an}n∈Z ∈ lp) and the sequence a(k) = {an(k)}n∈Z converges to a in the
space lp). Thus, the space lp) is complete.

The following embeddings are valid:

lp′ ⊂ lp), p
′
=

p

p− 1
, p ≤ 2;

lp′ ⊂ lp) ⊂ l2, p > 2.

We will demonstrate the strictness of these embeddings using the following example. Let
an = n

− 1
p′ , n ∈ N . For p ≤ 2 we have

∥a∥lp) = sup
0<ε<p−1

ε
1

p(ε)

(
+∞∑
n=1

n
− p

′
(ε)

p
′

) 1

p
′
(ε)
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= sup
0<ε<p−1

ε
1

p(ε)

(
1 +

+∞∑
n=2

n
− p

′
(ε)

p
′

) 1

p
′
(ε)

≤ sup
0<ε<p−1

ε
1

p(ε)

1 +
+∞∑
n=2

n∫
n−1

x
− p

′
(ε)

p
′
dx

 1

p
′
(ε)

= sup
0<ε<p−1

ε
1

p(ε)

(
1 +

p
′

p′(ε)− p′

+∞∑
n=2

((n− 1)
− p

′
(ε)−p

′

p
′ − n

− p
′
(ε)−p

′

p
′

)

) 1

p
′
(ε)

= sup
0<ε<p−1

ε
1

p(ε)

(
1 +

p
′

p′(ε)− p′

) 1

p
′
(ε)

= sup
0<ε<p−1

ε
1

p(ε)

(
1 +

p(p− ε− 1)

ε

) 1

p
′
(ε)

= sup
0<ε<p−1

ε
1

p−ε
− p−ε−1

p−ε ((p− 1)(p− ε))
p−ε−1
p−ε ≤ c sup

0<ε<p−1
ε

2−p+ε
p−ε = c,

where c = max {p(p− 1), 1}.
Now let p > 2. Then

sup
0<ε<p−1

ε
1

p(ε)

(
+∞∑
n=1

n
− p

′
(ε)

p
′

) 1

p
′
(ε)

≥ sup
0<ε<p−1

ε
1

p(ε)

+∞∑
n=1

n+1∫
n

x
− p

′
(ε)

p
′
dx


1

p
′
(ε)

= sup
0<ε<p−1

ε
1

p(ε)

(
p
′

p′(ε)− p′

+∞∑
n=1

(n
− p

′
(ε)−p

′

p
′ − (n+ 1)

− p
′
(ε)−p

′

p
′

)

) 1

p
′
(ε)

= sup
0<ε<p−1

ε
1

p(ε)

(
p
′

p′(ε)− p′

) 1

p
′
(ε)

= sup
0<ε<p−1

ε
1

p(ε)

(
p(p− ε− 1)

ε

) 1

p
′
(ε)

= sup
0<ε<p−1

ε
1

p−ε
− p−ε−1

p−ε (p(p− ε− 1))
p−ε−1
p−ε ≥ lim

ε→0
ε

2−p+ε
p−ε = +∞.

By gp) we denote the closure of the set c00 in the space lp). It is clear that gp) coincides
with the closure of lp′ in the space lp).

The following statement studies the structure of the subspace gp).

Theorem 2.1 Let a = {an}n∈N ∈ lp). Then the following conditions are equivalent:
1) a = {an}n∈N belongs to the space gp);
2) the equality

lim
ε→+0

ε
1

p(ε)

(
+∞∑
n=1

|an|p
′(ε)

) 1
p′(ε)

= 0 (2.4)

holds;
3) the equality

lim
m→+∞

sup
0<ε<p−1

ε
1

p(ε)

(
+∞∑

n=m+1

|an|p
′
(ε)

) 1

p
′
(ε)

= 0 (2.5)

holds.
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Proof. First, we show that 1) implies 2). Let a ∈ gp) be an arbitrary sequence and δ > 0 an
arbitrary number. Then there exists a sequence b = {bn}n∈N ∈ lq such that

∥a− b∥lp) = sup
0<ε<p−1

ε
1

p(ε)

(
+∞∑
n=1

|an − bn|p
′
(ε)

) 1

p
′
(ε)

< δ.

We have

ε
1

p(ε)

(
+∞∑
n=1

|an|p
′
(ε)

) 1

p
′
(ε)

≤ ε
1

p(ε)

(
+∞∑
n=1

|an − bn|p
′
(ε)

) 1

p
′
(ε)

+ ε
1

p(ε)

(
+∞∑
n=1

|bn|p
′
(ε)

) 1

p
′
(ε)

≤ sup
0<ε<p−1

ε
1

p(ε)

(
+∞∑
n=1

|an − bn|p
′
(ε)

) 1

p
′
(ε)

+ε
1

p(ε)

(
+∞∑
n=1

|bn|p
′
) 1

p
′

< δ+ε
1

p(ε)

(
+∞∑
n=1

|bn|p
′
) 1

p
′

.

From here we get that

lim
ε→+0

ε
1

p(ε)

(
+∞∑
n=1

|an|p
′
(ε)

) 1

p
′
(ε)

< δ.

Therefore, due to the arbitrariness of the number δ we obtain equality (2.4).
Now let us establish 2) implies 3). Let us take an arbitrary number δ > 0. Then there

exists a number ε0 such that for ∀ε : ε < ε0 we have

ε
1

p(ε)

(
+∞∑
n=1

|an|p
′
(ε)

) 1

p
′
(ε)

<
δ

2
.

Since a ∈ lp′ (ε0), there exists a number m0 ∈ N such that for ∀m > m0 we have(
+∞∑

n=m+1

|an|p
′
(ε0)

) 1

p
′
(ε0)

<
δ

2(p− 1)
.

Thus, for ∀m > m0 we have

sup
0<ε<p−1

ε
1

p(ε)

(
+∞∑

n=m+1

|an|p
′
(ε)

) 1

p
′
(ε)

≤ sup
0<ε<ε0

ε
1

p(ε)

(
+∞∑

n=m+1

|an|p
′
(ε)

) 1

p
′
(ε)

+ sup
ε0≤ε<p−1

ε
1

p(ε)

(
+∞∑

n=m+1

|an|p
′
(ε)

) 1

p
′
(ε)

<
δ

2
+ sup

ε0≤ε<p−1
ε

1
p(ε)

(
+∞∑

n=m+1

|an|p
′
(ε0)

) 1

p
′
(ε0)

<
δ

2
+

δ

2
= δ.

From the last relation it follows that (2.5) is true.
Finally, let us establish 3) implies 1). Let δ > 0 be an arbitrary number. Then there exists

a number m0 ∈ N such that for ∀m > m0 we have

sup
0<ε<p−1

ε
1

p(ε)

(
+∞∑

n=m+1

|an|p
′
(ε)

) 1

p
′
(ε)

< δ.
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Let us set bm = (a1, a2, ..., am, 0, 0, ...). For ∀m > m0 we have

∥a− bm∥lp) = sup
0<ε<p−1

ε
1

p(ε)

(
+∞∑

n=m+1

|an|p
′
(ε)

) 1

p
′
(ε)

< δ,

i.e. the inclusion a ∈ gp) holds. The theorem is proved.

Theorem 2.2 The system en = {δnm}m∈N , n ∈ N forms a basis in the space gp).

Proof. Take an arbitrary sequence a ∈ gp). For any m ∈ N we have

∥a−
m∑
k=1

akek∥lp) = sup
0<ε<p−1

ε
1

p(ε)

(
+∞∑

n=m+1

|an|p
′
(ε)

) 1

p
′
(ε)

.

Hence, by Theorem 2.1, we obtain the decomposition a =
+∞∑
k=1

akek. The uniqueness of the

decomposition is obvious. The theorem is proved.

Remark 2.1 It follows from the proven theorem that gp) is a separable subspace of the
space lp).

3 Analogue of the Hausdorff-Young theorem in grand spaces of sequences

Let Lp(a, b), p ≥ 1, be the Lebesgue space of measurable on [a, b] functions f with finite
norm

∥f∥Lp =

 b∫
a

|f(t)|pdt


1
p

.

Suppose that {φn}n∈N is an orthonormal sequence of measurable functions such that al-
most everywhere |φn(t)| ≤ M< +∞, n ∈ N . It is known ([21, Theorem 2.8, p. 154])
that a generalization of the Hausdorff-Young theorem in spaces Lp(a, b) is the Riesz theo-

rem, which states that if f ∈ Lp(a, b), 1 < p ≤ 2 and an =
b∫
a
f(t)φn(t)dt, n ∈ N then

{an}n∈N ∈ lp′ and the inequality

∥ {an}n∈N ∥l
p
′ ≤ M

2−p
p ∥f∥Lp ,

holds, and if {an}n∈N ∈ lp, 1 < p ≤ 2, then ∃f ∈ Lp′ (a, b), such that an =
b∫
a
f(t)φn(t)dt,

n ∈ N and the inequality

∥f∥L
p
′ ≤ M

2−p
p ∥ {an}n∈N ∥lp

holds.
Let p > 1, Lp)(a, b) be a grand Lebesgue space, i.e. the space of measurable on [a, b]

functions f with finite norm

∥f∥p) = sup
0<ε<p−1

 ε

b− a

b∫
a

|f(t)|p−εdt


1

p−ε

.
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The space Lp)(a, b) is a non-reflexive and non-separable Banach function space. The con-
nection of these spaces with Lebesgue spaces is expressed by the following continuous
embedding

Lp(a, b) ⊂ Lp)(a, b) ⊂ Lp−ε(a, b), ε ∈ (0, p− 1).

The following theorem establishes an analogue of the Hausdorff-Young theorem in
grand sequence spaces.

Theorem 3.1 The following statements are true:

1) if f ∈ Lp)(a, b), 1 < p ≤ 2 and an =
b∫
a
f(t)φn(t)dt, n ∈ N , then {an}n∈N ∈ lp)

and we have

∥ {an}n∈N ∥lp) ≤ M1∥f∥p), (3.1)

where M1 does not depend on f ;
2) if {φn}n∈N is total and {an}n∈N ∈ lp), p > 2, then ∃f ∈ Lp)(a, b) such that

an =
b∫
a
f(t)φn(t)dt, n ∈ N and we have

∥f∥p) ≤ M2∥ {an}n∈N ∥lp) , (3.2)

where M2 does not depend on {an}n∈N .

Proof. Let f ∈ Lp)(a, b), 1 < p ≤ 2. Take an arbitrary number ε ∈ (0, p − 1). Then
f ∈ Lp−ε(a, b) and 1 < p− ε < 2. Therefore, by the Riesz theorem, the relation

(
+∞∑
n=1

|an|p
′
(ε)

) 1

p
′
(ε)

≤ M
2−p+ε
p−ε

 b∫
a

|f(t)|p−εdt


1

p−ε

holds. From this we obtain that

ε
1

p−ε

(
+∞∑
n=1

|an|p
′
(ε)

) 1

p
′
(ε)

≤ ((b− a)M2−p+ε)
1

p−ε

 ε

b− a

b∫
a

|f(t)|p−εdt


1

p−ε

.

Let M1 = sup
ε∈(0,p−1)

((b− a)M2−p+ε)
1

p−ε . From the last relation we obtain

ε
1

p−ε

(
+∞∑
n=1

|an|p
′
(ε)

) 1

p
′
(ε)

≤ M1

 ε

b− a

b∫
a

|f(t)|p−εdt


1

p−ε

.

Passing here to the upper bound on the possible values of ε ∈ (0, p − 1) we obtain the
required inequality (3.1).

Let {φn}n∈N now be total and {an}n∈N ∈ lp), p > 2. Then there exists a number
ε0 ∈ (0, p − 1) such that for any ε ∈ (0, ε0] we have p

′
(ε) ≤ 2. Then, according to
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the convergence of the series
+∞∑
n=1

|an|p
′
(ε) by the Riesz theorem ∃f ∈ Lp−ε(a, b), an =

b∫
a
f(t)φn(t)dt, n ∈ N and the inequality

 b∫
a

|f(t)|p−εdt


1

p−ε

≤ M
2−p

′
(ε)

p
′
(ε)

(
+∞∑
n=1

|an|p
′
(ε)

) 1

p
′
(ε)

, ε ∈ (0, ε0].

Note that here the non-dependence of the function f on ε ∈ (0, ε0] follows from the
condition of totality of the system {φn}n∈N . Let us multiply both parts of the last inequality

by
(

ε
b−a

) 1
p−ε . We have

 ε

b− a

b∫
a

|f(t)|p−εdt


1

p−ε

≤ (b− a)
− 1

p(ε)M
2−p

′
(ε)

p
′
(ε) ε

1
p−ε

(
+∞∑
n=1

|an|p
′
(ε)

) 1

p
′
(ε)

≤ C1∥ {an}n∈N ∥lp) , ε ∈ (0, ε0]. (3.3)

Further, for ε ∈ (ε0, p− 1) using Holder’s inequality with the exponent p(ε0)
p(ε) we get

 b∫
a

|f(t)|p(ε)dt


1

p(ε)

≤

 b∫
a

|f(t)|p(ε0)dt


1

p(ε0)

(b− a)
ε−ε0

p(ε0)p(ε) .

Consequently, for ε ∈ (ε0, p− 1) we get

 ε

b− a

b∫
a

|f(t)|p−εdt


1

p−ε

≤ ε
1

p(ε) ε
0
− 1

p(ε0)

 ε0
b− a

b∫
a

|f(t)|p(ε0)dt


1

p(ε0)

≤ (b− a)
− 1

p(ε) ε
1

p(ε) ε
0
− 1

p(ε0)
C1∥ {an}n∈N ∥p) ≤ C2∥ {an}n∈N ∥p). (3.4)

So, using (3.3) and (3.4), we obtain

∥f∥p) = sup
0<ε<p−1

(
ε

b− a

) 1
p−ε

∥f∥p−ε ≤ M2∥ {an}n∈N ∥p),

where M2 = 2max {C1, C2} , i.e. inequality (3.2) is true.
The theorem is proved.
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