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Abstract. In this paper, we study the boundedness of the Marcinkiewicz operator g, and its commutator
o, on total mixed Morrey spaces LP A (R™M).
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1 Introduction

In 1961, Benedek and Panzone [7] introduced Lebesgue spaces L? with mixed norm
over Euclifean spaces, which extend Lebesgue spaces and their related properties. In 1975,
Bagby [6] investigated the boundedness of the Hardy-Littlewood maximal operator for
functions taking values in spaces IP(R™). Since then, manu papers focus various mixed
norm spaces and the bounded properties of integral operators on spaces with mixed norm.
In 2019, Nogayama [22,23] considered a new Morrey space, with the L? norm replaced by
the mixed Lebesgue norm LP(R"™), which is call mixed Morrey spaces.

Classical Morrey spaces LP* were originally introduced by Morrey in [21] to study the
local behavior of solutions of second-order elliptic partial differential equations. In 2022,
Guliyev [12] introduced a variant of Morrey spaces called total Morrey spaces LPM#(R™),
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2 Commutator of Marcinkiewicz integral on total mixed Morrey spaces

0 <p<oo, A€ Rand p € R. Total Morrey spaces generalize the classical Morrey spaces
LPA(R™) so that LPAA(R™) = LPA(R™) and the modified Morrey spaces LP*(R™) so that
LPAO(R™) = [PA(R™). Necessary and sufficient conditions for the boundedness of the
maximal commutator operator M} and the commutator of the maximal operator [b, M| on
LPAH(R™) when b belongs to the spaces BMO(R"), are given in [12, Theorems 3 and 4],
see also [9, 14-16,24,25].

In [16], the authors consider the total mixed Morrey spaces LPM#(R™) introduced by
Guliyev in [12] in the case p'= (p, ..., p). These spaces generalize mixed Morrey spaces so
that LPAA(R™) = LP*(R™) and the modified mixed Morrey spaces so that LPA0(R™) =
LPA(R™). The main properties of the spaces LP**(R™) were presented and some embed-
dings into the Morrey space LPM*(R™) were studied. Necessary and sufficient conditions
for the boundedness of the maximal commutator operator M; and the commutator of the
maximal operator [b, M] on LP*#(R™) were also presented. New characteristics for some
subclasses of BM O(R™) were obtained.

For z € R", and r > 0, let B(z,r) be the open ball centered at x with the radius r,
and B¢(z,r) be its complement. Let S"~! = {x € R" : |z| = 1} is the unit sphere of
R™ (n > 2) equipped with the normalized Lebesgue measure. Suppose that {2 satisfies the
following conditions.

(1) £2is a homogeneous function of degree zero on R™. That is,

Qtx) = 2(x) (1.1)

forallt¢ > 0 and x € R"™.
(ii) {2 has mean zero on S™~!. That is,

/ Q(2")dz" = 0, (1.2)
Sn—1

where 2’ = x/|z| for any x # 0.
The Marcinkiewicz integral operator of higher dimension u; is defined by

ot = ([ rFQ,t<f><x>Pf§)m ,

where
2(z —y)

Fou(f)(z) = /B(xt) [z —ypT

It is well known that the Littlewood-Paley g-function is a very important tool in har-
monic analysis and the Marcinkiewicz integral is essentially a Littlewood-Paley g-function.
In this paper, we will also consider the commutator /¢, ;, which is given by the following

expression
b Ldt\"?
nast@) = ([T IFb PG )

f(y)dy.

3
where o )
r—Yy
Fhu(o) = [ 20 ) - b)) (),
! B [T =y}

On the other hand, the study of Schrodinger operator L = —A + V recently attracted
much attention. In particular, Shen [26] considered LP estimates for Schrodinger opera-
tors L with certain potentials which include Schrodinger Riesz transforms RjL = %L‘é,
7 = 1,...,n. Then, Dziubanfiski and Zienkiewicz [10] introduced the Hardy type space
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H i (R™) associated with the Schrodinger operator L, which is larger than the classical
Hardy space H!(R"), see also [2-5,8,13,17,18].

Similar to the classical Marcinkiewicz function, we define the Marcinkiewicz functions
15,2 associated with the Schrodinger operator L by

Mﬁrzf(@ = /o

I I : 5 ;1 .
where KJL(x,y) = K]L(x,y)kv — y| and K]-L(x,y)f/the kernel of R; = a%jL 2, ) =

9 1/2
dt

/B(:c,t) ‘Q(m - y)’KjL(l';y)f(y)dy = ,

z—y)j/lz—y|

1,...,n. In particular, when V' = 0, KjA(:E,y) = Kf(x,y)bs —y| = ( oy and

KjA(CC, y) is the kernel of R; = %A‘é,j =1,...,n. In this paper, we write K;(z,y) =
K2(x,y) and

J
wief(x) = /0

Obviously, yu; o f are classical Marcinkiewicz functions with rough kernel. Therefore, it
will be an interesting to study the properties of the operator Mﬁ - The main goal of this paper
is to show that Marcinkiewicz operators with rough kernel associated with the Schrodinger
operators uﬁ o»J = 1,...,n, are bounded on the total mixed Morrey space LPAR(R™),
1<p<o0,0<A<n,0< pu<n.

The commutator of the classical Marcinkiewicz function with rough kernel is defined by

1/2
wiopf(x) = /0

The commutator ,uJL o formed by b € BMO(RR™) and the Marcinkiewicz function with

5\ 1/2
dt
3

/ 19 — 4)| K (2, 9) () dy
B(z,t)

2
dt
3

/ 10z — o) |K;(,9)b(x) — b)) ()dy
B(z,t)

rough kernel ,u;;’ (o 1s defined by

9 1/2
dt
3

uh () = /0

The well-known classical Hardy-Littlewood maximal operator M is defined by

1
M (@) = sup e /B Ly

/ 190 — o) [KE (2, ) b() — b))/ (w)dy
B(z,t)

where f € L} (R") and |B(x,7)| is the Lebesgue measure of the ball B(xz,r) . As we

loc
know, the Hardy-Littlewood maximal operator M is bounded on LP(R"), 1 < § < o0
(see [22,23]), but there is no complete boundedness results for some other operators on the
mixed Lebesgue spaces.

We find the conditions with b € BMO(R"™) which ensures the boundedness of the
operators Mﬁn,b’ j = 1,...,n on total mixed Morrey space LPAH(R"™), 1 < p < oo,
0<A<n,0< u<n.

By A < B, we mean that A < CB for some constant C' > 0, and A ~ B means that
A< Band B S A.
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2 Definitions and preliminaries

Forany r > 0 and x € R", let B(x,r) = {y : |y — x| < r} be the ball centered at =
with radius . Let B = {B(z,r) : = € R", r > 0} be the set of all such balls. We also use

X £ and | E| to denote the characteristic function and the Lebesgue measure of a measurable
set 1.

We first recall the definition of mixed Lebesgue space defined in [7].
Let = (p1, --- , pn) € (0, oo]™. Then the mixed Lebesgue norm || - ||z or || -
| 1.o1..om) is defined by

R i r——
= (/ (/ (/ |f(x1, xo, ..., xn)|P1dx1>z?dx2>f,g . dxn>p1”
R e \Jr

where f : R" — C is a measurable function. If p; = oo for some j = 1, n, then we
have to make appropriate modifications. We define the mixed Lebesgue space LP (R™) =
LP1:n) (R™) to be the set of all locally integrable functions f with || f|| .5 < oc.

Definition 2.1 Let 0 < p' < 0o, A € R, p € R [t]; = min{1,t¢}, t > 0. We denote by
LPA(R™) the mixed Morrey space [23], by LPA (R™) the modified mixed Morrey space [11],
and by LIZ’\’“(R”) the total mixed Morrey space the set of all classes of locally integrable
functions f with the finite norms

_ n 1
Il = sup 2 5 F s,

zeR™ t>0
—2 (e, )
1fllzon = Eﬂs{ugw[th "N LB
TER™,
Az d) AT L)
I fllLaw = sup [t ViR PN (Ben)
zeR™,t>0

respectively.

Definition 2.2 Let 0 < p'< 0o, A € Rand p € R. We define the weak mixed Morrey space
WLPAR™) [23], the weak modified mixed Morrey space W LP(R™) [11] and the weak

total mixed Morrey space WLﬁ”\’“(]R”) as the set of all locally integrable functions f with
finite norms

sup 1;%(2221 p%)

I fllw o = 1 fllw 5B )
TER™, +>0
oz = sup [0 =5 g
W LE-A €™ 150 1 WLP(B(z,t))»
AT d) s L)
| fllwrprw = sup [t n Lty "N lwra @)
z€R™, >0

respectively.
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Note that
LPOOR") = IPO(R™) = LPO(R™) = LA(R"),
WILPOOR™) = LPO(R”) WILPOR™) = WLP(R™),
LPANRY) = LPAR™), LPAOR™) = LPAR™),
[ fllwpoaw < ”fHLF,ML and therefore LPM#(R™) C W LPAH(R™)

and
LPMRY) Co IPAR™), < Xand || fll o < [ fllpors

LPAH(R™) Cp LPHR™), < Aand || fl| e < |Lfl| s
LPAR") Cp LP(R™) and || fll s < [|£ 1 751
and if A < 0 or A > n, then
LPNR™) = LPMR™) = WIPAR™) = WLPANR™) = 6,
where © = O(R") is the set of all functions equivalent to 0 on R™.
Lemma 2.1 [I16]If0 <p < oo, 0 < <\ <n,then
LPAH(R™) = LPAR™) N LPA(R™)
and
11 znsncey = max {ILF1 o gemys I sy }
Lemma 2.2 [I16]If0<p < oo, 0< < A<n,then
W LPAH(R™) = W LPA(R™) N W LPH(R™)

and
| fllw Loam@ny = max {[| flly o, || fllwrsnt -

Remark 2.1 If 0 < ' < 0o, and u < 0 or A > n, then

LPAMHR™) = WLPM(R™) = O(R™).

3 Marcinkiewicz operator pio; in total mixed Morrey spaces

In this section, we investigate the boundedness of Marcinkiewicz operator iy, satisfies
the conditions (1.1), (1.2) and 2 € L°°(S™ 1) on the total mixed Morrey space LP .,

We first use one lemma, which give us the explicit estimates for the LP(R™) norm of j0
on a given ball B(zg, r).

Lemma 3.1 [1, Lemma 3.1] Let §2 be satisfies the conditions (1.1), (1.2) and £2 € L>(S™1).
Then for 1 < p' < oo, the inequality

no1 O 4 w1
”MQfHLﬁ(B(xo,r)) S 7'2“1 bi /2 t 2y, HfHLﬁ(B(xo,t)) dt 3.1

holds for any ball B(xo,r) and all f € LZOC(R”) )
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Now we can present the first main result in this section.

Theorem 3.1 Let (2 be satisfies the conditions (1.1), (1.2) and 2 € L*>(S"1). Let also
1< p<oo,0<A<nand0 < u < n. Then the operator L is bounded on LPAm
Moreover,

e fllorn < [ flloxm .

Proof. From the inequality (3.1) we get

_A( n )
n zlp,L

g( n L)
n \ 2<i=1 p;

ko fllern = €§3P>0[7“]1 [1/r] k2 f e B )
-2 (X R(Xg) sr 2 —1-
< swp ) (R, / EE 50 o(Baonsy dE
zeR™,r>0 2r
_% Z:L P n ZL pL TL* L
S Wless s 7l (2303 gt (B3)
22k Bk ;) dt
« [T A g ) g #(Z)
s d) L, (S )
Sfllppan  sup [r]y LR o
zeR™,r>0
o —mA(wn, L) o mme(Sn, L) gt
<[t g,
o A (T ) st (S ) dt
=Wl |1 o g, e
S lpmam-

By taking 7 = (p, ..., p) in Theorem 3.1, we obtain the boundedness of 11, on the Morrey
spaces.

4 Commutator of Marcinkiewicz operator (1, in total mixed Morrey spaces

In this section, we investigate the boundedness of commutator of Marcinkiewicz operator
o, satisfies the conditions (1.1), (1.2) and {2 € L‘X’(S”_l) on the total mixed Morrey

space LPMH, First, we review the definition of BMO(RR™), the bounded mean oscillation
space. A function f € L}, _(R") belongs to the bounded mean oscillation space BMO(R™)
if

1
= sup S —— — fBem|dy < co. (4.1)
| fllBrmo xeRn’ILO Bl Joen |f(y) = B2y |dy

If one regards two functions whose difference is a constant as one, then the space BM O(R")
is a Banach space with respect to norm ||.|| gasro. The John-Nirenberg ineqalitiy for BAM O
yields that for any 1 < ¢ < oo and f € BMO(R"™) , the BM O norm of f is equivalent to

1
[Fllsros = sup 5 o 1900 = Fotan )’
zeR™,r>0 ‘B z,r | (z,r)
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Recall that for any p'= (p1, - -+, pn) € (1, 00)", the John-Nirenberg inequality for mixed
norm space [19,20] shows that the BM O norm of all f € BMO(R™) is also equivalent to

H(f - fB(:c,r))XB(x,r) HLﬁ

1/l Brror = - (4.2)
z€R™ r>0 ||XB(m,r) HLP
The following property for BM O functions is valid.
Lemma 4.1 Let f € BMO(R"™) . Then for all 0 < 2r < t, we have
t
B = fBEn] S I flBaon . (4.3)

We use one lemma, which give us the explicit estimates for the LP(R™) norm of 111 , on
a given ball B(zg,r).

Lemma 4.2 [1, Lemma4.2] Let §2 be satisfies the conditions (1.1), (1.2) and 2 € L>®°(S™1).
Letalso 1 < p'< oo and b € BMO(R™). Then the inequality

26/ | LB @) (4.4)
n 1 S
S Pllawo =50
2

holds for any ball B(xo,r) and all f € L? (R™).

loc

ty —1-yn L
(LI ) £ 720050 |

r

Now we give the boundedness of 1, on the mixed Morrey space.
Theorem 4.1 Let (2 be satisfies the conditions (1.1), (1.2) and 2 € L>(S™~1). Let also
l<p<oobe BMOR"),0 < X< nand0 < p < n. Then the operator pqy is
bounded on LP M Moreover,

ln2pfllore < l0llBaro | flpprm-
Proof. From the inequality (4.4) we get
_A( n p%)

luopfllppre = sup  [r] "
z€R™, r>0

ﬁ( n L)
n =1 p;
1

[1/7] le20f || Lo (B

—a (S LX) o1
Slbllsmo  sup [r] 2 (Z5) 1/r]; (i g) 2T
zeR™,r>0

oo ty —1-yn, L
X/2 (L4 )t 20|l (oo Ot

r

-2 () (L t) yomoa
S bllsao 1 fllppae  sup  [r]y ) i i,
zeR™,r>0
> n Afs L _p(sm 1
X/ @+miﬂ‘i1émﬂZH”nUm"&*wﬂf
A (X 5 —non(yn L
< Blssio [l sup [ a) g (S )
zeR™,r>0
- by g (S m (S gn) dt
X/ (1+ln;) [ty " (Z lm)[l/t]l (Z 1p1>t
= - (Ekg me (v, ) dt
= [lblBrmo Hf!mm/l (14 1Int) [t], ( lpz)[l/t]l ( lpz)t

S lollBaso 1 f [ -
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By taking ' = (p,...,p) in Theorem 4.1, we obtain the boundedness of 1, on the total
Morrey spaces.

5 Marcinkiewicz operators with rough kernel associated with the Schrodinger
operators pﬁ o and its commutator p,f’ 2. in total mixed Morrey spaces

Let us consider the Schrédinger operator
L=-A+YV on R* n>3,

where V' is a non-negative, V' # 0, and belongs to the reverse Holder class B, for some
q > n/2, i.e., there exists a constant C' > 0 such that the reverse Holder inequality

1 /i C
ey Vi(y)dy < / V(y)dy
(|B<:c,r>| e ) Bl o)

holds for every © € R™ and 0 < r < 1, where B(x, r) denotes the ball centered at = with
radius r. In particular, if V' is a nonnegative polynomial, then V' € B,.

Obviously, By, C By, if g2 > ¢1. The most important property of the class By is its
self-improvement, that is, if V' € By, then V' € B, for some € > 0.

In this section, we prove the boundedness of the Marcinkiewicz operators with rough
kernel associated with the Schrédinger operators uﬁ o and its commutator ,uﬁ 0, On total

mixed Morrey space LPAH,
For x € R™, the function my (x) is defined by

1
p(xz) =sup qr: ng/ Viydy <1;.
r>0 r B(z,r)

Lemma 5.1 [26] Let V € B, with g > n/2. Then there exists lo > 0 such that
l — —h _ lo/(lo+1)
<1+|ﬂf yl) Sp(y)§0<1+|x yl) '
C p(x) p(x) p(x)
In particular, p(x) ~ p(y) if |x — y| < Cp(x).
Lemma 5.2 [26] Let V € B, with g > n/2. For any | > 0, there exists C; > 0 such that

C 1
|z—y|
<1 +om )
and (@)
KE “Kiz—y)| < cY
J (x,y) ](‘T y)‘ — |.T _ y|n_2

Analogously proof of Lemma 3.1 and Theorem 3.1 the following results is valid.

Lemma 5.3 Let 2 be satisfies the conditions (1.1), (1.2), 2 € L>=(S" ) and V € B,.
Then for 1 < p < oo, the inequality

SR R TS Y
HMﬁngLﬁ(B(xo,r))fﬂ“z“l "l/ T £l 7 (B(wo,t)) @

2r

holds for any ball B(xo,r) and all f € P (R™).

loc
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Theorem 5.1 Let (2 be satisfies the conditions (1.1), (1.2), 2 € L=°(S" ') and V € B,.
Letalsol < p <00, 0 <A< nand0 < pu < n. Then the operator ,LL]LQ is bounded on

LPMHE Moreover,

g @ fllzorm < Ifllporm-
Analogously proof of Lemma 4.2 and Theorem 4.1 the following results is valid.

Lemma 5.4 Let §2 be satisfies the conditions (1.1), (1.2), 2 € L®(S" ) and V € B,.
Then for 1 < p < oo and b € BMO(R"), the inequality

[e.o]

n 1 ty, —1-yn L
Ik s S Wlloaor== 5 [ (11 2 7 E008 s

T

holds for any ball B(xo,r) and all f € Lfoc(R”) .
Theorem 5.2 Let §2 be satisfies the conditions (1.1), (1.2), 2 € L>°(S" ') and V € B,,.
Letalsol < p<oo,b€ BMO(R"),0 <X <nand0 <y < n. Then the operator Mﬁ(),b

is bounded on LP™* Moreover,

15 2 f lnw < bl Baro £l o
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