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On strong solvability of one nonlocal boundary value problem for
Poisson’s equation in grand Sobolev space in rectangle
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Abstract. We consider a nonlocal boundary value problem for the Poisson’s equation on a rectangle in
Sobolev spaces generated by the norm of the grand Lebesgue space. The concept of strong solvability
of this problem is introduced and it’s correct solvability is proved. The basis property of the eigen and
associated functions of the corresponding spectral problem in separable grand Lebesgue spaces is proved,
and this fact is used to establish correct solvability.
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1 Introduction

The theory of the strong and weak solvability of linear elliptic equations in the Sobolev
spaces is well developed and can be found in the classical monographs. In spite of this, a
lot of problems, arising in the mechanics and the mathematical physics do not fit to this
theory. An example, of such a problem is the following degenerate elliptic equation, studied
by Moiseev in [14] (see, also [10])

Consider the following (formal for now) nonlocal boundary value problem for the Pois-
son’s equation

uxx + uyy = f (x, y) , 0 < x < 2π, 0 < y < h, (1.1)

u (x, 0) = 0, u (x, h) = 0, 0 < x < 2π, (1.2)

ux (0, y) = 0, u (0, y) = u (2π, y) , 0 < y < h. (1.3)
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Such problems have specific features in comparison with problems with local conditions.
Earlier F. I. Frankl [5]; [6, p. 453-456] considered a problem with a nonlocal boundary con-
dition for a shifted type equation. The Bitsadze-Samarskii problem [4] for elliptic equations
is also nonlocal with supports on a part of the boundary of the domain and, moreover, the
supports are free from other boundary conditions. In the work of N. I. Ionkin and E. I. Moi-
seev [9], for multidimensional parabolic equations, a boundary value problem was solved
with nonlocal conditions supported by the characteristic and improper parts of the domain
boundary. It was considered a nonlocal boundary value problem for the Laplace equation
in an unbounded domain studding the weak and strong solvability of that problem in the
framework of the weighted Sobolev space in the work of B.Bilalov [19]

2 Auxiliary concepts and facts

21 Notations

We will use standard notations. N will be the set of positive integers, while α = (α1;α2) ∈
Z+ × Z+ will denote a multi-index, where Z+ = N ∪ {0}. Denote ∂αu = ∂|α|u

∂xα1
∂yα2 ,

where |α| = α1 + α2. By |M | we will denote the Lebesgue measure of the set M ; M will
be the closure of M . C∞

(
M
)

will stand for the infinitely differentiable functions on M ,
and C∞0 (M) will denote the infinitely differentiable and finite functions onM . Throughout
this paper we will assume that p

′
is a conjugate number of p, 1 < p < +∞: 1

p′
+ 1

p = 1, dσ
is an area element. We also accept pε = p− ε.

22 Grand Sobolev space W 2
p) (Π)

Let us define grand Sobolev space. Let Π = (0, 2π)× (0, h). Denote by Lp) (Π) a Banach
space of functions on Π with the mixed norm

‖f‖Lp)(Π) = sup
0<ε<p−1

∫ h

0

(
ε

∫ 2π

0
|f (.; y)|p−Edx

) 1
p−ε

dy, 1 < p < +∞.

Denote by W 2
p) (Π) a grand Sobolev space generated by the norm

‖u‖W 2
p)
(Π) =

∑
|α|≤2

‖∂αu‖Lp)(Π).

Also denote by Lp) (I), where I = (0, 2π), a grand Lebesgue space generated by the norm

‖f‖Lp)(I) = sup
0<ε<p−1

(
ε

∫
I
|f (x)|p−εdx

) 1
p−ε

.

These spaces are nonseperable and therefore the method of biorthogonal expansion (essen-
tially the spectral method) is not applicable for studying the solvability of differential equa-
tions with respect to these spaces. In this regard we select the subspace Np)(Π) ⊂ Lp)(Π)
(seperable) based on the shift operator Tδ:

(Tδu)(x; y) =

{
u (x+ δ : y) , (x+ δ : y) ∈ Π,
0, (x+ δ : y) /∈ Π.
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So let us assume

N2
p)(Π) =

W 2
p)(Π) :

∑
|α|≤2

‖Tδ(∂αu)− ∂αu‖Lp)(Π)→0, δ→0

 .

N1,0
p) (Π) =

{
W 1
p)(Π) :

∥∥∥∥Tδ(∂f∂x )− ∂f

∂x

∥∥∥∥
Lp)(Π)

→0, δ→0

}
.

23 Basicity of one system for Np)(I)

Definition 2.1 A function u ∈ N2
p) (Π) is called a strong solution of the problem (1.1)-(1.3)

if the equality (1.1) is satisfied for a.e. (x; y)∈Π and its trace u|∂Π satisfies the relations
(1.2), (1.3).

Introduce the systems of functions {un (x)}n∈Z+ and {ϑn (x)}n∈Z+ , where

u2n (x) = cosnx , n ∈ Z+, u2n−1 (x) = xsinnx , n ∈ N, (2.1)

ϑ0 (x) =
1

2π2
(2π − x) , ϑ2n (x) =

1

π2
(2π − x) cosnx , ϑ2n−1 (x) =

1

π2
sinnx , n ∈ N.

(2.2)
Note that these systems are biorthogonal conjugate, which can be verified directly. To obtain
our main result, we will significantly use the following theorem.

Theorem 2.1 The system (2.1) forms a basis for Np) (I).

Proof. From the embedding Lp (I) ⊂ Np) (I) ⊂ Lp−ε(I) it follows that (2.1) is complete
and consequently, complete and minimal in Np) (I) .

Let’s prove the basicity of the system (2.1) for Np) (I). Consider the projectors

Pn (f) =
n∑
k=0

〈f, ϑk〉uk,∀n ∈ Z+,∀f ∈ Np) (I) ,

where

〈f, g〉 =
∫ 2π

0
f (x) g (x)dx.

By constructing the Green’s function similarly to [1], it is easy to show that system (2.1)
forms a basis with brackets for Np) (I) for any p ∈ (1,+∞). The basis properties of the
eigenfunctions of differential operators were studied in works [2,3,7,15,19]. From the ba-
sicity with brackets of the system (2.1) for Np) (I) it follows that

∃C > 0 : ‖P2n (f)‖Lp)(I) ≤ C‖f‖Lp)(I), ∀n ∈ N. (2.3)

On the other hand, from (2.1), (2.2) we have

∃M > 0 : ‖un‖Lp)(I) ≤M, ‖ϑn‖L
p
′
)
≤M, ∀n ∈ N. (2.4)

Considering the relations (2.3), (2.4), we obtain

‖P2n+1(f)‖Lp)(I) = ‖P2n (f) + 〈f, ϑ2n+1〉u2n+1‖Lp)(I) ≤

≤ ‖P2n (f)‖Lp)(I) + ‖〈f, ϑ2n+1〉u2n+1‖Lp)(I) ≤

≤ C‖f‖Lp)(I) + ‖f‖Lp)(I)‖un‖Lp(I)‖ϑn‖Lp′ )(I) ≤
(
C +M2

)
‖f‖Lp)(I). (2.5)
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3 Main Results

In this section, we will study the existence and uniqueness of strong solution of the problem
(3.1)-(3.2) in the sense of Definition 2.1. First, denote Γ0 = {(0; y) : 0 < y < h} and Γ2π =
{(2π; y) , 0 < y < h}. Consider the following nonlocal problem

∆u = f (x; y) ∈ Π, (3.1)

u|I0 = 0, u|Ih = 0, u|Γ0 = u|Γ2π , ux|Γ0 = 0. (3.2)

By the solution of this problem, we mean a function u ∈ N2
p) (Π), which satisfies the

equality (3.1) a.e. in Π and whose traces satisfy the relations (3.2) on the boundary ∂Π =
I0 ∪ Ih ∪ Γ0 ∪ Γ2π.

F0 (y) =
1

2π2

∫ 2π
0 f (x, y) (2π − x)dx,

F2n (y) =
1
π2

∫ 2π
0 f (x, y) (2π − x)cosnx dx

F2n−1 (y) =
1
π2

∫ 2π
0 f (x, y)sinnx dx, n ∈ N.

,

 (3.3)

Let’s first examine the uniqueness of the solution. We obtain the uniquenss of solution from
results of the works [17,18].

Theorem 3.1 Let the function f (x, y) ∈ N1,0
p) (Π) and satisfies the following condition

f (0, y) = f (2π, y) . Then problem (3.1)-(3.2) has a unique solution inN2
p) (Π) and more-

over it is valid the following estimate ‖u‖N2
p)
(Π) ≤ c‖f‖N1,0

p)
(Π)

, where c > 0 is a constant

independent of f (x, y) .

Suppose u (x, y) ∈ N2
p) (Π) is a solution of the problem (3.1)-(3.2). Consider Un (y) =

〈u (·, y) , ϑn (·)〉, i.e.

U0 (y) =
1

2π2

∫ 2π
0 u (x, y) (2π − x)dx

U2n (y) =
1
π2

∫ 2π
0 u (x, y) (2π − x)cosnx dx

U2n−1 (y) =
1
π2

∫ 2π
0 u (x, y)sinnx dx, n ∈ N.

,

 (3.4)

From Theorems 1.1.1-1.1.3 of [12, pp.13-15] it follows that the functions Un (y) are
twice differentiable they can be differentiated under the integral sign. Since the function
u (x; y) satisfies the equation (3.1), multiplying it by sinnx (by 2π − x)cosnx ) and inte-
grating over I , we obtain the following relations for U2n−1 (y) (respectively, for U2n (y)):

U
′′
2n−1 (y)− n2U2n−1 (y) = F2n−1(y), y ∈ (0, h) , (3.5)

U
′′
2n (y)− n2U2n (y) = −2nU2n−1 (y) + F2n(y), y ∈ (0, h) (3.6)

From the boundedness of the trace operator we immediately obtain that

Un (0) = 0, Un (h) = 0, ∀n ∈ Z+, (3.7)

The solution of the problem (3.5), (3.7) is

U2n−1 (y) = −
1

n

sinhn (h− y)
sinhnh

∫ y

0
sinhnt F2n−1 (t) dt
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− 1

n

sinhny

sinhnh

∫ h

y
sinhn(h− t )F2n−1 (t) dt,∀n ∈ N (3.8)

and the solution of the problem (3.6), (3.7) is

U0 (y) = −
y

h
+

∫ h

0
(h− t)F0 (t) dt+

∫ y

0
(y − t)F0 (t) dt, (3.9)

U2n (y) = −
1

n

sinhn (h− y)
sinhn h

∫ y

0
F2n (t) sinhnt dt−

1

n

sinhny

sinhnh

∫ y

0
F2n (t) sinhnt dt−

− 2

n

sinhn (h− y)
sinhnh

∫ y

0

sinhn (h− t)
sinhnh

∫ t

0
F2n−1 (τ) sinhnτ dτdt−

− 2

n

sinhn (h− y)
sinhnh

∫ y

0

sinhnt

sinhnh

∫ h

t
F2n−1 (τ) sinhn (h− τ) dτdt −

− 2

n

sinhny

sinhnh

∫ h

y

sinhn(h− t )
sinhnh

∫ t

0
F2n−1 (τ) sinhnτ dτdt −

− 2

n

sinhny

sinhnh

∫ h

y

sinhnt

sinhnh

∫ h

t
F2n−1 (τ) sinhn (h− τ) dτdt, ∀ n ∈ N, (3.10)

Consider the function

u (x, y) = U0 (y) +

∞∑
n=1

Un (y)un (x) = U0 (y)+

+

∞∑
k=1

(U2k (y) coskx+ U2k−1 (y)xsinkx) , (x, y) ∈ Π, (3.11)

where the coefficients U0 (y) , U2k (·) , U2k−1 (·) , k ∈ N , are defined by (3.8)-(3.10). Let’s
show that the function u (x, y) belongs to N2

p) (Π). Denote by uα1,α2 (x, y) the sum of the
series obtained by the formal differentiation of the series (3.11), i.e.

uα1,α2 (x, y) = U
(α2)
0 (y) +

∞∑
n=1

U (α2)
n (y)u(α1)

n (x), (3.12)

where
α1, α2 ∈ Z+, α1 + α2 ≤ 2;u0,0 (x, y) = u (x, y)

and
U

(α2)
n (y) =

dα2Un
dyα2

; U
(α1)
n (x) =

dα1Un
dxα1

.

Let us first consider the following member of series (3.11).

u1 (x, y) =
∞∑
k=1

U2k−1 (y) xsinkx .

So, differentiating this series formally term-by-term, we have

∂2u1
∂y2

=
∞∑
k=1

U
′′
2k−1 (y) xsink x =

∞∑
k=1

k2U2k−1 (y) xsinkx , (3.13)
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∂u1
∂x

=

∞∑
k=1

U2k−1 (y) sink x+

∞∑
k=1

kU2k−1 (y) xcosk x, (3.14)

∂2u1
∂x2

= 2

∞∑
k=1

kU2k−1 (y) cosk x−
∞∑
k=1

k2U2k−1 (y) xsink x. (3.15)

Denote

w (x, y) =
∞∑
k=1

k2U2k−1 (y)xsink x.

Let’s show that the functionw(x; y) belongs toNp)(Π). LetF
′
2k= 1

π2

∫ 2π
0 f

′
(x; y) coskx dx.

From (3.3), integrating by parts, we obtain

F2k−1 =

∫ 2π

0
f(x; y)sinkx dx = − 1

π2k
(f (2π; y)− f (0; y))−

−
∫ 2π

0
f
′
(x; y) coskx dx =

1

π2k

∫ 2π

0
f
′
(x; y) coskx dx =

1

k
F
′
2k.

I. p ≥ 2.

‖w(.; y)‖Lp)(I) ≤ c
(∫ 2π

0
|w (x, y)|pdx

) 1
p

≤

≤ c

( ∞∑
k=1

∣∣k2U2k−1 (y)
∣∣p′) 1

p
′

≤c1
∞∑
k=1

k2 |U2k−1 (y)|≤

≤ c1
∞∑
k=1

k

sinhkh

(
sinhk (h− y)

∫ y

0
sinhkt |F2k−1 (t)| dt+

+sinhky

∫ h

y
sinhk(h− t ) |F2k−1 (t)| dt

)
Hence, first integrating with respect to y ∈ (0, h) and let’s apply integration by parts formula
and then applying Holder’s inequality for any β∈ (1,∞), we obtain

‖w‖Lp)(Π) ≤ c1

h∫
0

 ∞∑
k=1

k

sinh kh
(sinh k(h− y)

y∫
0

sinh kt |F2k−1(t)|dt+

+sinh ky

h∫
y

sinh k(h− t) |F2k−1(t)| dt

 dy ≤

≤c2
∞∑
k=1

∫ h

0
|F2k−1 (t)| dt≤c2

∫ h

0

( ∞∑
k=1

|F2k−1 (t)|

)
dt≤

≤c2
∫ h

0

( ∞∑
k=1

1

k

∣∣∣F ′2k (t)∣∣∣
)
dt≤c2

( ∞∑
k=1

1

kβ
′

) 1

β
′ ∫ h

0

( ∞∑
k=1

∣∣∣F ′2k (t)∣∣∣β
) 1

β

 dt,
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where, we choose β
′
= εp . Now, assuming β ≥ 2 and applying classical Hausdorff-Young

inequality (see, e.g. [16, p.154]. We have

‖w‖Lp)(Π)≤c3
∫ h

0

∥∥∥∥∂f∂x
∥∥∥∥
L
β
′ (I)

 dt. (3.16)

Then, the last inequality means and

‖g‖Lr(I)≤c‖g‖Lpε (I), (3.17)

where c > 0 is a constant independent of g. Also note that the continuous embedding
Lp) (I)⊂Lα (I) is true for every α∈ (1, r). Let us choose β big enough to satisfy the condi-
tion 1 <β

′
< r⇒‖g‖L

β
′ (I)≤c‖g‖Lr(I) is satisfied. Then from inequalities (3.16),(3.17) we

obtain

‖w‖Lp)(Π)≤c

(∥∥∥∥∂f∂x
∥∥∥∥
Lp)(Π)

)
.

II. p∈ (1, 2) . Therefore, choosing α > 1 close enough to 1, we can provide that
p1= pα

′
> 2 (this is possible, because α

′→+∞ as α→1 + 0). With this, further consid-
erations are carried out similar to the previous case.

Other series from (3.13)-(3.15), and, consequently, all series from (3.11) are estimated
in a similar way. So, as a result, we obtain ‖u‖W 2

p)
(Π ) ≤ c‖f‖

N1,0
p)

(Π)
, where c > 0 is

a constant independent of f . The fulfillment of equation (3.1) by u (·; ·) can be verified
directly. Let’s verify the fulfillment of boundary conditions. Denote the trace operators on
Γ0, Γ2π, I0 and Ih by θ0, θ2π, T0 and Th, respectively. Let’s show that T0u=0. It is clear that,
T0u∈L1 (I) and 0∈L1 (I) . From the boundedness of the operator T0∈

[
W 2
p (Π) ;Lp (I)

]
,

∀ p ≥ 1 , it follows that if um→u in W 2
p) (Π), then um/I→u/I in Lp) (I).

Now, let’s consider the following functions:

um (x, y)=U0 (y)+
m∑
n=1

(U2n (y) cosnx +U2n−1 (y)xsinnx ), (x;y)∈Π,m∈N.

We have

T0um=um (x, 0)=U0 (0)+

m∑
n=1

(U2n (0) cosnx +U2n−1 (0) xsinnx )=

=
1

2π2

∫ 2π

0
ϕ (τ) (2π − τ) dτ +

m∑
n=1

(
1

π2

∫ 2π

0
ϕ (τ) (2π − τ) cosnτ dτcosnx +

+
1

π2

∫ 2π

0
ϕ (τ) sinnτ dτsinnx

)
. (3.18)

It is clear that, T0um→T0u. On the other hand, the basicity of the system (2.1) for Np) (I)
implies T0um→0,m→∞, in Lp) (I). Consequently, T0u = 0, a.e. on I.

Absolutely similar we can show that Thum→0,m→∞, inLp) (I). Consequently, Thu =
0, a.e. on I .

Consider the operators θ0 and θ1π. It is clear that θ0um=θ2πum, ∀m∈N . Obviously,
θ0um→θ0u and θ2πum=θ2πu⇒θ0u =θ2πu. Thus, the boundary conditions (3.2) are ful-
filled.

The theorem is proved.
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