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Abstract. In this paper we give a sufficient condition for the boundedness of the multidimensional Haus-
dorff operator from one weighted Lebesgue spaces to anther weighted Lebesgue spaces to anther. Also,
we get similar results for important operators of harmonic analysis which are special cases of the multi-
dimensional Hausdorff operator. The results are illustrated by a number of corollaries.
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1 Introduction

It is well known that one-dimensional Hausdorff operator has a deep root in the study of
the Fourier analysis and it has a long history in the study of real and complex analysis. In
particular, it is closely related to the summability of the classical Fourier series. The reader
is referred to [19] for a survey of some historic background and recent developments on
one-dimensional Hausdorff operators. Modern theory of Hausdorff operators started with
the work of Siskakis [22] in complex analysis setting and with the work of Georgakis [14]
and Liflyand-Moéricz [21] in the Fourier transform setting.

Let Ry = (0,00) and let ¢ be a locally integrable function on R.. Then the one-
dimensional Hausdorff operator is defined by
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Many important operators in analysis are special cases of the one-dimensional Hausdorff
operators, by taking suitable choice of ¢. For example, the Hardy operator, the adjoint Hardy
operator, the Hardy-Littlewood-Pdlya operator, the Cesaro operator, fractional Riemann-
Liouville operator are special cases of the one-dimensional Hausdorff operators or fractional
one-dimensio-nal Hausdortf operators. In the last two decades various problems related to
one-dimensional Hausdorff operators attracted much attention. The Hausdorff operators has
been extensively studied in recent years, particularly its boundedness on the Lebesgue space
as well as on the Hardy space [1], [9], [15], [17], [18]-[21] and so on. We also refer to [4],
[5], [7] and [10]-[13] for some recent works in this vein. Recently, two-weight inequali-
ties in the framework of one-dimensional Hausdorff operators were studied in [8] and [20]
(see, also [4]). We note that in [20] the obtained necessary conditions differ from the suf-
ficient conditions and coincide for the Hardy and Bellman operators. Also, in [5] and [8]
the obtained necessary conditions differ from the sufficient conditions. Moreover, in [8],
the corresponding boundedness of one-dimensional Hausdorff operators has been studied
in the framework of other function spaces as well, namely, grand Lebesgue spaces and vari-
able exponent Lebesgue spaces. Next, in [8], the authors establish necessary and sufficient
conditions on monotone weight functions for the boundedness of special kind Hausdorff
operators on weighted Lebesgue spaces. In [16] the boundedness of Dunkl-Hausdorff op-
erator on weighted Lebesgue spaces has been characterized, and for a power type weight
function the corresponding operator norm has been obtained. Very recently, in [16], the
results of [5] were extended for the Dunkl-Hausdorff operator and the boundedness of one-
dimensional Hausdorff operator on the cone of non-increasing functions was proved. We
refer to [2], [3], [6] and [15] for more results on two-weight inequalities and its applications
for different type integral operators.

It is well-known that Hausdorff operators, particularly in high dimension, are important
operators in harmonic analysis and they were attracted extensive research by many authors.
These observations motivate us to study the multidimensional Hausdorff operators and their
boundedness in various function spaces, while the Hardy operators are our model case. For
multidimensional Hausdorff operators, there are many kinds of definitions [1], [9], [10],
[18], [19] and so on. One of the interesting definitions of the Hausdorff operators is

Hoaf(z) = / B(y) f (A(y)) dy, (LD

R’Il

where A(u) = (aij (y))Zj:1 is an n X n matrix with the entries a;;(y) being Lebesgue
measurable functions of y. This matrix is nonsingular almost everywhere in the support of
@. And also, it is assumed that ¢(y) det A~ (y) € Ly (R™) . The operator Hg 4 was defined
and studied by Lerner and Liflyand [18]. The definition (1.1) suggests much wider range of
the Hausdorff type operators than those for which efficient results were obtained.

This is how Hausdorff operators are defined in [9] and [22] for the Borel measures. In
[22] the boundedness of such operators in H! (R") is proved for a very special case of
diagonal matrices A with all entries on the diagonal equal to one another.

Other multidimensional extension of the Hausdorff operator is the following operator

(=
Hoof(z) = / éfjﬂ)!?(y’) Fy) dy, (12)
R’ﬂ

where @ is a radial function on R™ and {2 is an integrable function defined on the unit sphere
S™~1. We denote He o = He, if £2 = 1. The operator He » was defined and studied by
Chen, Fan and Li [10].
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We observe that for a radial function @ the boundedness of the Hausdorff operator Hg
on the Lebesgue spaces was proved in [10]. For a general function ¢ the boundedness of the
Hausdorff operator Hg on the Lebesgue spaces was proved in [24]. Later for a general func-
tion @ the boundedness of the Hausdorff operator Hg on the Lebesgue space with power
weight was proved in [12] and [13]. In [13], the authors give some sufficient conditions for
the boundedness of several types of Hausdorff operators on the Lebesgue spaces with power
weights. In some cases, these conditions are also necessary, and the corresponding operator
norms are worked out in [13].

The main goal of the paper is to study the boundedness of multidimensional Hausdorff
operator Hg on weighted Lebesgue spaces.

Let us denote by X, the characteristic function of & C R". In particular, we get the
n-dimensional Hardy operator

1
Hf(fﬁ)_w f(y)dy
|yl <|=|
and the n-dimensional adjoint Hardy operator
yl™
ly|> ]
o Xy W) B . . 1
if we choose @(y) = T and D(y) = X, .1, (y), respectively. If &(y) = min { 1, W
we get the n-dimensional version of Calderén operator
1 f)
@) = [ twa+ [ 2
|yl <|z| |y|> ||
. Xzn (¥) Xzn (U) . ,
s0, if P(y) = —————— or P(y) = then we have n-dimensional version of the
Also, if @(y) 0 ‘11)71 D (y) | |;+1h h d 1 f th
Y Yy
Hardy-Hilbert type operators
f)
Tif(x) = / T 4y
REEITE
T
or
f)
T: = | —————d
L
respectively.

The remainder of the paper is structured as follows. Section 2 contains some prelimi-
naries along with the standard ingredients used in the proofs. Our principal assertions, con-
cerning the continuity of the multidimensional Hausdorff operator Hg from one weighted
Lebesgue spaces to another are formulated and proved in Section 3. In particular, we estab-
lish a sufficient condition for the boundedness of the multidimensional Hausdorff operator
on weighted Lebesgue spaces for radial weight functions.
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2 Preliminaries

Let R" be the n-dimensional Euclidean space and let R = {z: z € R", x, > 0}. By
B(0,t) we denote the open ball centered at the origin of radius ¢. Suppose that S*~! is the
unit sphere centered at the origin in R™. Throughout this paper, |S”_1| denotes the surface
area of unit sphere S”~! and | B(0, 1)| is the volume of the unit ball in R"™. Let 1 < p < oo

and let p’ denote the conjugate exponent defined by p’ = Ll By a weight function, we
p—

shall mean a function which is Lebesgue measurable, positive and finite almost everywhere
on R™. A function f is called a radial function, if f(x) = f(|x|) for all z € R™. Throughout
this paper, C is a positive constant, whose value can be different at different places.

We recall the definition of the weighted Lebesgue spaces.

We shall denote by L, , (R"), the weighted Lebesgue space which is the space of all
Lebesgue measurable functions f on R" such that

1 £z, = (/Rn |f(m)|pw(a:)da:> ' < 0.

Observe that for w = 1, L, ., (R™) means the usual Lebesgue space L, (R") .

3 Main results

In this section, we state and prove our principal results of the multidimensional Hausdorff
operator Hg for a general function P.

Theorem 3.1 Let 1 < q < p < o0, and let u and v be weight functions defined on R™.
Suppose D is a locally summable function on R™. Let ¥ be a positive radial function on R"
satisfying the following conditions:

i) there exists a constant C' > 0 such that

|B(t&)| < CW(t) for all t>0 and &€ S" 1,

. =
i) B(u,v):/wit) £ / /[v(\x|§)]_rfqtzda(§) (ta)] e de | dt < oo,
; L\
Then the inequality
1Hofll, ) < C |S"|7 7% B(u,v) [1lln, . cen) G.1)
holds.
Proof.

Using polar coordinates in R™, by condition ¢) and by change of variable, we have

1
q

1Hof I, ) = / Ho f ()| u(z) de

= //@?(Jlé) f(y)dy| u(z)dx qdm

n n
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< (@/ (@/ ’@‘('ﬁb)‘ f(y)dy)quuc)das)é

(7 o) )
7letza)
(115
{2 (gaee o)
(g

By Minkowski’s inequality and change of variables, we have

(R/ (7%@ (ﬁ/ f(a:tlg)}da(g)) dt)q u(z) dx)q

SZWE“ (@/ Q / f(:vt15)}d0(£)>qU(:v)dfc)th

/ ({R/(g/ (i) dore ) (t2)d )édt,

By Holder inequality, one has

/ (R/Q/ £ ()] doe ) (12)d );dt

1

| (t8)|do (€ )dt) u(z) dx)

S (R/ (ﬁ / f(xf)qcza@)) u(tw)dw) dt.
0 n n—1

) |

3.2)
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p
, one has

7 2 ({R/ Q / f<x§>qczo<5>> u(t) da:) "

0 n

Using Holder inequality with exponents P and
q

1
q

- [7P (R/ Q [ £l eien? [v(a:f)]ido@)) u(t@dx) gt <
/5 (ﬁ/ Q / f(:v£)”v(w£)d0(€)) Q / [v(xf)]”qqda(f)) u(tm)dx) .

n—1
By Holder inequality with similar exponents in variable x, we get

23

<3
hSIS)

q pP—q

/ Q / f(wawxf)da@) Q / [v(xé)]f’qqdo(ﬁ)> u(tz)d <

R™ n—

pP—q

(R/ (g/ / “ff)”v(xg)do(@) dx)p (@/ Q / [v<xs>]p%da<5>) [u<m>mdx)p.

By condition i), we get

JEt (R/ Q / f(wﬁ)”v(wf)da(ﬁ)) Q / [v(mf)}quda(g)) u(tsc)dx) a

n

< ( [ (R/ Q [ Wil da<s>) ()] 7 dz) dt) x
0

n n—1

< (@/ Q/ £ (2l€)F v (|l€) da(&)) dx)

— B(u,v) (@/ Q / f(wﬁ)pv(xi)da(é)) da:) | (3.3)

n

Again, using polar coordinates in R™ and Holder’s inequality, we get

1

(@/ Q / £ (2l v (|le) da(&)) d:c)



60 Two-weight norm inequality ...

b ([ [ [ vreor s ot ) as) =18 10
0 n—1

This completes the proof.
From Theorem 2.1 we have the following corollaries.

Corollary 3.1 Let 1 < q¢ < p < 00. Suppose u,v are weight functions defined on R™
and let v be a radial function. Suppose ¢ € Llf’c (R™) is a radial function satisfying the
following conditions:

0o » B
P n p—a
Bl(u,v):/‘ it)’tq /[u(m)]qdaj dt < oo.
/ A=
Then the inequality
Hafllr, . @) < "1 By (u,v) 11z, &) 3.4

holds.

Corollary 3.2 Let 1 < ¢ < p < oo and let u(z) = |z|® and v(z) = (1 + |z|)®. Suppose

n(p — q) (a+n)p
p q

x
that — —n. Let &(z) = Xgoion (7)

<a<n(qg—1)and g > PO

Then

1 1
g |S U te  ea (Bg—ap
VHflly, oy < Lo 17" gt (P00

ap
n, —— +n ||| fllz, &)
n(g—1) —a pP—q pP—q )H 20229
Corollary 3.3 Let 1 < q < p < 0o and let u(z) = |z|* and v(z) = (1 + |z|)®. Suppose

that o > —M(H’ldﬁ> w

Then

—n. Let D(z) = X, <y, (%)

1
L4
p/

Q=

q ‘Snfl
a+n

p=a (Bq—ap ap
VL, ) < B (20 )l

p—q

Remark 3.1 We observe that in the one-dimensional case Theorem 3.1 was proved in [5].
In the non-weighted Lebesgue spaces Theorem 3.1 for a radial function ¢ was proved in
[10]. Also, in the non-weighted Lebesgue spaces Theorem 3.1 for a general function @
was proved in [24]. Later for a general function @ the boundedness of the n-dimensional
Hausdorff operator H¢ on the Lebesgue space with power weight was proved in [12] and
[13]. In [13], authors give some sufficient conditions for the boundedness of several types
of Hausdorff operators on the Lebesgue spaces with power weights.
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