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1 Introduction

Fractional integral operator I, of o order has a form
If(z) = / L)n_ady, 0<a<n.
R |2 =y

For locally integrable function b, commutator is defined as follows:

[0, I f(2) := b(z) Lo f(x) = La(bf)(2).

This commutator was introduced by Chanillo [2]. Adams [1] studied the boundedness
I,, from classical Morrey space LP#(R™) to L9*(R™). Conditions for the boundedness of
[b, I] from LP#(R™) to L9*(R™) have been found in [13].
Similar results can be found in [4, 18] and the references cited therein.
Let1 < p < ooand 0 < p < n. Classical Morrey space is defined as follows:
LPHR") == {f € L}, ,(R") := || fll o < 00},
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2 Boundedness criteria of the commutators of ...

there will be

»

10 = sup | Q17 / fapde | (1)
Q

supremum is taken over all cubes () C R".

It is known that when 1 < p < oo we have LP*(R") = LP(R") and LP"(R") =
L>*(R™). When p < 0 or pu > n, then LP*(R™) = O(R"), where O is the set of functions
equivalent to zero on R .

Classical Morrey space was introduced by Morrey [16]. Morrey spaces are widely used
to investigate the local behavior of solutions of second-order quasi-liner elliptic partial dif-
ferential equations. LP#- theory of fractional integral operator and its commutator is based
on the following theorems.

Theorem A (Adams [1]) Let0 < a<n,0<u<nandl1 <p< %

(@) if 1 < p < *=F, then

1 1 «

p g n—p
is a necessary and sufficient condition for the boundedness of I, from LP*(R™) to LZ*(R™).
(i) If p = 1, then

oo e
g n—p
is a necessary and sufficient condition for the boundedness of I, from L1#(R™) to W L& (R™).
Theorem B (Komori and Mizuhara [13]). Let 0 < a <nand 1 < p < g 0<pu<
n — ap and % — % = n%u Then, the following conditions are equivalent:
(a)b € BMO(R™).
(b) [b, 1] is bounded from LP#(R™) to LT*(R™).
The following theorem has been proved by Spanne but it was published in the paper of
Petre [17].
1
Theorem C [17]Let0 < a<n,1 <p< g,0<u<n—o¢p,and5—
Then:
(@) if p > 1, I, is bounded from LP*(R™) to L%%(R"), if and only if § = nu/(n — ap)
(i.e. u/p=0/q).
(b)if p = 1, I, is bounded from L'#(R™) to W L9%(R"), if and only if = nu/(n—a)
(i.e. 0 = uq).
'Mwme@MmeDmm<a<nJ<p<nMﬂ<u<n—ap%—%:
and 0 = nu/(n — a) (.e. u/p =0/q).
Then, the following conditions are equivalent:
(a)b € BMO(R™).
(b) [, I,] is bounded from LP*(R™) to L% (R™).

1_ o
q  n’

3e

2 Definitions, notations and auxiliary results

All of this study is based on the differential Gegenbauer operator
2

d 1
22+ 1) z— 1 A -
s@ADeg, velloo), Ae (o).

which was introduced in [3].
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Generalized shift operator (GSO) associated with operator G has a form [5]

I (A —+ 1 ™
( ) / f(chaxchy — shxshy cos ¢)(sin 90)2/\71d<p_

Achyf<0h$) = m )

This operator has all properties of generalized shift operator listed in the works of
Levitan ([14], [15]). Denote by L,(R;,G) = Lpi(R4), 1 < p < oo the space of
px(z) = sh® x measurable functions on R = [0, 00) with the finite norm

ey = ([ IstenP ) 1< < o

Iz sy = WLy = esssup [f(cha)],
’ zeRy

dpy(z) = sh®* xdx.
Let’s ug = |E|) = fd/u\ from any measurable set E C R.. Denote by WL, y(R4), 1

p < 0o, the weak space Lp, A(R4) of locally integrable functions f(chx), = € R, with the
finite norm

1
HfHWpr/\(Rﬁ_) = 51;187" [{z € Ry« |f(chz)| > r}[}

»
=supr / shPzdz | . 1<p< oo,
r>0 {z€Ry:|f(chx)|>r}

Further, A < B will mean that there exits constant C', which may depend on nonessen-
tial parameters such that 0 < A < CB.If A < B and B < A, then we’ll write A ~ B and
say that A and B are equivalent.

Let H, = (0,7) C R,. Below, we’ll need the following relation [12, lemma 2.3]

T

|H:|y = /shz/\:vdx ~ <shg>7,

0

WhereO<)\<%
- 22 +1, 0<r<2,
v=nr) = 4\, 2<7r < oo

By analogy with (1.1) in [7] the following definitions are introduced.

Definition 2.1. Let 1 < p < 00,0 < A < % and 0 < v < . Denote by the Gegenbauer-
Morrey (G-Morrey space) Ly, 5, (R ) space associate with the differential Gegenbauer op-
erator G on the set of locally integrable functions f(chx), x € R with the finite norm

1l = sup |1y /Achyuchm P dun(a) |

r>0,0€R

Therefore, by definition, we have

Loaw(Ry) = (f € LISR) 11, me) < 00)

<
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Let 1 < p < oo. In [8] it was proved, that L, y o(R;) = L, \(R), when v = 0. If
v=r,then L ) (Ry) = Loo(R4), and, if v <O orv > ~,then Ly, 5 ,(Ry) = O(R4).

Definition 2.2. [7] Let 1 < p < oo and 0 < v < . Denote by WL, 5 ,(R) the weak
space Ly, » (R4 ) of locally integrable functions f(chx), x € Ry with the finite norm

{y € [0,8) : Ady, |f(cha) > ry}D ’

t -V
17w ..y = SUP 7sup ((sh2)

r>0,z,teR4

p
t 2
= sup r sup <3h> / dpy(z)
>0z, teR 4 2
{velot):AY,, |f (cha)|>r}

The following concept of G-BMO space is given in [9].
Definition 2.3. By definition,

BMOg(Ry) = {f € LYSRY) : 1 fllparog(r,) < OO}

where

£l mnropen = _sup 1L [ |4, F(cha) = fu (cha) | din(y
r>0,z€R

18 a seminorm, and

fi,(ch) = | H, 3! / Ay, f(chr)dpn (v).
H,

In [5], the fractional maximal function M and fractional Gegenbauer integral J&, v € R,
are defined as follows:

Mg f(che) = sup |H,|5~ / A%, 1f(cha) dpaa(y),

reRy

MEf(cha) = M f(ch),
Ag\hyf(cha:)

(1) dux(y), 0<a<7.

T f(eha) = |

0

For b € Lll"i (R4 ), commutators of these operators are defined in [9] by the following
formulas, respectively:

reRy

Mg»af(chx) = sup ]Hr| v / ’Achy f(chz) — by, (chx) Aé\hy | f(chz)| dux(y),
H,

Ag\hyf(chx) — by, (chz)]

(sng)"°

Jo f(cha) = / |

0

ARy, f(cha)dpy(y).

Further we will need some auxiliary assertions.
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Lemma 2.4. For any 1 < p < oo the following relation [11, lemma 4.2]

p
[ 48w (eh) = i (k)| dis@) | = 1l ssogce,-
Hy

1
sup
r>00eRy \ |[Hrly

18 true.

Lemma 2.5. [10] Let f € BMOg. For any interval H, C R, and positive integer m,
the following inequality

| fr, (cha) — foxmp, (cha)| < 2m ”fHBMOG(RJr) :

18 true.

Lemma 2.6. [7] For any ¢ € [0, A] C R, the following ¢ < sht < e“t is true for any
A>0.

3 Main results

The following theorems are analogues of the corresponding theorems A, B, C.
Theorem E [10, Adams type]. Let yx(r) = 2A + 1if 0 < r < 2 and y,(r) = 4\ if

2<r<oo,0<a<yy(r),l<p< “T(r),()<1/<7)\(r)—ozpand%—é: ’Y/\(:})_V'
Then, Jg’o‘ is bounded from L,),(Ry) to Lgy,(Ry), if and only if
b e BMOG(R,).

Theorem F [8, Spanne type.]. Let 0 < a < y»(r), 1 <p < 0w <y < (r) —ap

«
andi - 1—-_o_
P qa = )

Then, J¢ is bounded from Ly, y , (R+.) to Lg 5 . (R+.), if and only if = = £.
Theorem G [7, Adams type]. Let v\ (r) = 2A + 1,if 0 < r < 2 and v, (r) = 4\, if
(r)—
2<r<o00,0<a<(r),0<v<y(r)—apand1 < p<
Dif1 < p< 207V then

«

123
q

1 1 «

p q nr)-v

is the necessary and sufficient condition for the boundedness J& from L, ) ,(R4) to Ly » , (R).
(i) Ifp=1< 207" then

)=
T
q n(r)—-v

is the necessary and sufficient condition for the boundedness J& from Ly  ,(R4) to W Lg » , (Ry).

The proof of the theorem for commutators Jé’;’a and M, g’o‘ which is an analogue of The-
orem D [18] is the aim of this paper.

Theorem 3.1 (Main theorem, Spanne type). Let 0 < o < v\ (1), 1 < p < ”T(r)
0<1/<fyA(r)—ap,%—%: Sy and 5 =14

Then Jga is bounded from L), ) ,(R) to Ly ,(R,) if and only if b € BMOg(R..).
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Proof. (Sufficiency). Let 0 < o < 7,1 < p < =¥ and b € BMOg(R). The proof
technique that is implemented here allows us not to consider each case separately when
r € (0,2)orr € [2,00).
Denote
E, - { (0,2) if y=2X\+1
[2,00)if y=4X =

Let’s estimate the commutator Jgo‘ above.

ba ‘Achyb (chx) bHr(ch:r)‘ \
‘JG Chx (/ / ) Shy)v a Achy‘f(Chx)‘d:uz\(y)

= Ji(z,r) + Ja(z,r). (3.1

Consider the integral J; (z, 7).

a—y
Ier) = [ |Adb(cha) = ba, (cha)| Ay | f(cha)] (shS)" " dan(y)
5o ot ’Ah chm)—bHT(ch:c)’A)‘h \f (cha)]

< / o o djia(y)

~ o Jr/at (Sh%)’y—a
. r/2k

.

S (shyrrr) (shyrrr) [ 1A3bcha) — b (cho) AY, |F (cha)ldia (9132

For§ > 0 and f € LY(R.), denote

1
5
1
Mg s f(chz) = sup /|Achy F(cha)Pdpx(y)
r>0 |Hr‘)\H

Letd <e <1, r+7¢" =rr'andr = § > 1. By Hélder’s inequality, we have

/’Achy (chx) (ch:c)|Achy|f(ch:c)|du/\(y)
/|Achy (chx) (chx)\&“’dm(y)]#

[(Sh) /0 Ayl F (ch) P dpa ()]

S bl BrvograyMa.ef(chz) < |bll Brrog )y Ma f(chz), (3.3)

Since by the inverse Holder’s inequality [[11], Lemma 4.2], we have Mq . f(chx) <
Mg f(chx).
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Using (3.3) in (3.2), we get the following

I(@,1) S Dlpaoaee o Maf(cha)y (shr)
k=0

r « - —RQ
5(5h§) ||b||BMOg(R+)MGf(Chx)Z2 F
k=0

,
S (Shi)a||b||BMoG(R+)MGf(Ch$)-

By Holder’s inequality, we have

r

Tiar) = (sh)sup(sh ) [ 48 |f(cha)ldualy)

r>0
0
1 1
D r p!
S (sh) sup(sh)” / A lreoPan) | | [duw)
0

< (shl)ysup(sh? >a+m Sz, (Re)
r>0

r=-y
< (sh)sup(sh5) 7 |z, (Ry), 7 € E,
2" >0 2

Consider the integral Jo(z, r). According to Holder’s inequality, we have

1
oo

aowr) | [ )50l (shd) ™" duntw)

/

P
/ ‘Achy (chx) — by, (chx)
X —— dp(y)
, (sh%)(v a=B/p)p

= Jg.l(l’,r) . Jz,g(l’,’l"), re E,y.

34

(3.5)

Let v < 8 < v — ap. Taking into account the inequality shat > asht where a > 1, and

Lemma 2.6, we get the following:

8
[\
<.
+
I
RS

Joa(z,7) < 2/23

A

(]2
YounS
V2)
>
[\V]

<.

|+
—_
IS

[\3‘ SN—"
AN

»
\M
<

t

3 =

chy‘f Ch(]?)‘ d,u)\( )
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1
00 2]+1 ht )V g /21+17" !
- AN | f(cha)[Pdpy(y)
< 17’ chy
= sh2J+ 0
1
v—5 > ’
" G+ (=)
< (Sh2) ||f||Lp,)\,u(R+) ZQ ’
7=0
7,. v—
N ( ) ||f||L oot TE By o

In the same way, taking into account the Lemma 2.4, we get the following for J3 o(z, r):

1
/ =
Y

Yt Aghyb cha) — b (chz)|”

J22 .'I) 'r Zé )('y—a—ﬁ/p)p' d/’L)\(y)

2Ji+1 ’ p

p
chyb(Chx) - bHr(Ch(L') dpix (y)

z:;) <8h2j;>(ﬂ/p+a—v)p’/0

g (shQM)V*(V*a B/p)p'  git+1, y -
< 2 B
- Z (sh275)” / ab(che) = ba, (che) | dua(y) |

Taking into account the Minkowski inequality and the Lemma 2.5, we have

2]'+1
0
2i+1,
< (&
2J+1

1
Y

Ag\hyb(chx) — by, (chx)

gy

/

dpx(y)

1
Y

(chx) — byj+1py, (chx) :

chy

e e

(chx) — boj+1y, (chx) |p du,\(y)>

Then

HbHBMOg(]R+) Zgj(v—(v—a—ﬁ/p)p’
j=0

r\/P+B8/p+a—y
Joo(x, 1) < (Shi)

+(B—)/
S (5h5) T bl sarogyy s € B (3.7)
Using (3.6) and (3.7) in (3.5), we get
a+(v—)/p
oalw,r) S (shl) 1£l12, sy Ilsriogen: T€ B, (38
From (3.4), (3.8) and (3.1), we have

b,ox T\ T\ (v—
‘JG f(chx)’ S <Sh§> §§%<Sh§)( /P HfHLp,/\,V(R-!—)’ reE,.
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From here it follows that

! Lanu(®) <(Sh;) -’ /gr )Jgaf(chwlqdux(yoé

1
w—/p-na [ ’
< (sh) " suptsn ) e ([ i) 1, e,

r>0

b,a
|7

v— 0l
( ) i1>118 (sh= )( N/emulaty ||f||LpM (Ry)
r +(1/p-1/a)
< (sh2) sup(oh ) OVl e

r
= (sh3)" ig}g(sh ) ANy sy S WAL, Ry -

Necessity. Let 1 < p < v/a, f € Ly, (R4) and Jg’o‘ be bounded from L), » ., (R4) to
Ly, (Ry), thatis

s

Sl

N0

; o 3.9

The necessity of this theorem is proved in the same way as the necessity of theorem F.
In order to do this, it is sufficient to replace the fractional integral .J& with the commutator

Jgo‘. Therefore, we only provide a schematic proof of the necessity. In order to do this, we
use the stretch operator f; which was introduced in [7]. Let f be a positive and increasing
function. The stretch operator f; has a form

f <ch <th;> x> < fi(chx) < f <ch <ch;> x) , 0<t <2,
f <ch <th;> x> < fi(chx) < f <ch <sh;> :c> , 2<t< 0. (3.10)

According to (3.10), it is proved that [see [7], for (3.37)]

||ft”Lp,>\7y ~ sup ’H |>\ /Achy’ft Chl’ ‘pd/j,)\( )

z,reRy

£\ ot o
~ (sn5) £l £ € By, G.11)

and also [see [13], for (3.48)]

+\ (—m/a -
! Loan (8h2> ’JG ft‘

Then, according to (3.9), from (3.11) and (3.12), it follows that

(v=m)/q X
(sh ) |71
Lq)nu

£\ v/P—rla
S(shg) Ml e By

|72 te b, (3.12)

Lo u

X

e

Lgu



10 Boundedness criteria of the commutators of ...

Now,if%—% > O thent — 0,

b,af)

b,af‘

=0, forany f € Ly, (R).

= 0, forany f € Ly, (Ry), and, if

@A

v

5—H<O,thent—>oo,

@A

Therefore, ¥ = £
P q

We still need to prove b € BM O¢.

Let xH, - be a characteristic function for interval H,. Using the property of symmetry

of GSO, AQM f(chy) = A, f(chz), and inequality (3.9), we get

1
|H |>\/ ‘A():\hyb(Chx) —bm, (Chl’)‘ d:u)\(y)

A? yb(Chx) — by, (chx)| (sh¥)"™*
= |H1‘)\/‘ h ( H ‘( 2) di (o)

shﬂ)w_a

|H ‘1** ‘Achy ch:n) bHT(chx)‘
/ 0
h§)

N A xH, (chy)dpx(y)
TIA
‘Achy (chz) — by, (chx)‘ G \
= xa, (chy)dux(y) [ Agnyxa, dpx ()
?J
|H |>\ "0 h3)’ 0
AN b(chy) — by, (chx)
2’ = / | : (shE)7 ‘ActhHT(chy)duA(:v) X, (chy)dpx(y)
H,l, (s
1
= 1;= JG (X, (chy))dpx(y)
=
[y 4
. 7 . , 2
S —= | [dmw) (76" (e (ehy) ) dpn(y)
Y
Hy[y " \z, 8
< 1 % % b,a < 777% 79
~ " |1+g [H X | Hy (x#,) Lo [He [ " | H,y ’,\ HXHrHLpA,,,
g A
TIA

_a_1 1—-x I
<V E T =1, e B

4 Commutator of fractional maximal operator

In this section, we find the necessary and sufficient conditions for the boundedness of M, é,a
from Ly x, (R) t0 Lgxu(Ry).

Theorem 4.1. Let 0 < o < )\ (r),1 < p < nlr)

1 a
a ’p

1 _ 2
NGO I
Then the commutator Mg’a is bounded from L, 5 , (R4) to Lg » (R4 ) if and only if b

BMOG(R.).

L
7
S
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Proof. Let b € BMOg(R,). For fixed 2z € R, we have
A b(chx) — bHT(chx)‘

chy
(shg)" "

b s
TG (| f]) (cha) = / Adpy|f (chax) dpux(y)

0

onb(chx) — by, (chx)
2/ ! (Sh%)fyia ‘ chy‘f(Ch‘T)‘d:u)\( ) (41)

0

. r
= o chy - Yy chy
> (sh5)" [ [Abblcha) ~ bu, (cha)| Ay | f(cha) dia )
0

21T [ by blcha) — b, (cha)| A 1 (cho)dis o).
H
By taking supremum with respect to > 0 on both sides (4.1), we get
Mg® f(cha) S Jg(1 fI)(cha), Vo € Ry.
Then, for b € BMO¢(R. ), by Theorem 3.1, we have
b,a
RV S TP

DA,V :
A p o

Now, let M, g,a be bounded from L, » , (R ) to Ly » (R4 ), then taking into account the
symmetry of the GSO, we get

r [ [Adbeho) — bu )| dis )
H,

- i [ Ay behe) = b )| dis0) [ A, (chy)da)
A
H, ,

| H|

1
1+"‘/ | | _/‘Achm Chy) _bHr(Chy)‘AchxXHr(Chy)d,u)\( ) dM,\(@/)
ol H vl

|H|A ) )
< e M G (k) dia(v)
H T,

1
J q

|H|11+ Jamw || [ (2 e ) it
A

H, H,
1 .
< T iye | H, |)\ G XHT ’Hruq
[ Hly 7 whn
< 1 a’ %
~ T2 |Hr|)\ ||XHT||LP’A’,, |H, A
[H, [y "

77 T T T - b) r T
|Hy |3 |Hrly |Hp |y 1 €k
=
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Thus, b € BMOg(R,).

Remark 4.2 Similar results can be found in the work [12].
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