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Abstract. In this paper, we consider the following nonlinear Kirchhoff-Carrier-Love equation

wer = B (@)1 [z ()] (e + Ne)

= f(z, t,u,ug, ut,ugt), 0 <z <1, 0 <t < T, 0.1
u(z,0) = ag(x), ut(z,0) =01 (),

1
where X\ > 0 is a constant, ig, @1, f, B are given functions and ||u(t)|* = / u? (z,t) d, |luz ()] =
0
1
u (z,t) dz. First, combining the linearization method for nonlinear terms, the Faedo-Galerkin method

0
and the weak compact method, a unique weak solution of the problem (0.1) is obtained. Next, by using
Taylor’s expansion of the functions B (y,z), f(x,t, u, ugz, ut,uzt) up to order N + 1, we establish an
asymptotic expansion of high order in many small parameters of solution.
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1 Introduction

In this paper, we consider the following Dirichlet problem for a nonlinear Kirchhoff-
Carrier-Love equation

w = B (Ju) ata (8)?) (ttr + Mtatr) (1.1)
= flx,t,u, ug, u, ugt), x € 2=1(0,1), 0 <t < T,

u(0,t) = u(1,t) =0, (1.2)

u(z,0) = tdp(z), u(x,0) =ui(x), (1.3)

where A > 0 is a constant and g, %1, f, B, are given functions.
When 2 = (0,L), B=1, f =0, Eq. (1.1) is related to the Love equation

FE
Utt — ;umz - 2M2k2uzztt =0, (1.4)

presented by V. Radochova in 1978 (see [34]). This equation describes the vertical oscilla-
tions of a rod, which was established from Euler’s variational equation of an energy function

T L
1 1
/ dt/ [sz (uf + W2k ug,) = SF (Bug + ppk uatian) | do,— (1.5)
0 0

the parameters in (1.5) have the following meanings: « is the displacement, L is the length
of the rod, F' is the area of cross-section, k is the cross-section radius, E is the Young
modulus of the material and p is the mass density. By using the Fourier method, Radochova
[34] obtained a classical solution of Prob. (1.4) associated with initial conditions (1.3) and
boundary conditions

u(0,4) = u(L,t) =0, (1.6)
or
U(O, t) = 07
{ Mgt (L, t) + cPug(L,t) = 0, (1.7)
where ¢* = %’ A = 24%k*. On the other hand, the asymptotic behaviour of solutions for

Prob. (1.3), (1.4), (1.6) as A — 0 was also established by the method of small parameters.
Equations of Love waves or equations for waves of Love types have been studied by
many authors, we refer to [3], [8], [22] and references therein.
On the other hand, in [37], a symmetric version of the regularized long wave equation
(SRLW)
Uggt — Ut = Py + UlUg,
ek as)

has been proposed to describe weakly nonlinear ion acoustic and space - charge waves.
Eliminating p from (1.8), a class of SRLWE is obtained as follows

Ut — Ugy — Upgtt = —Ullgt — UgUg. (1.9)

Eq. (1.9) is explicitly symmetric in the = and ¢ derivatives and it is very similar to
the regularized long wave equation that describes shallow water waves and plasma drift
waves [1], [2]. The SRLW equation also arises in many other areas of mathematical physics
[4], [21], [30]. It is clear that Eq. (1.9) is a special form of Equation (1.1), in which
(@, u, Uy, U, Ugt) = —Ulgr — Ugly.
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When 2 = (0,L), B = B <||ux(t)||2) , A = 0, Eq. (L.1) is related to the Kirchhoff

equation
Eh [F|ou
phug = (Po +—

2y (y,1)

2L

2
d@/) Ugz, (1.10)

presented by Kirchhoff in 1876 (see [11]). This equation is an extension of the classical
D’ Alembert’s wave equation by considering the effects of the changes in the length of the
string during the vibrations. The parameters in (1.10) have the following meanings: v is the
lateral deflection, L is the length of the string, & is the area of the cross-section, E is the
Young modulus of the material, p is the mass density, and F is the initial tension.

One of the early classical studies dedicated to Kirchhoff equations was given by Po-
hozaev [31]. After the work of Lions, for example see [15], Eq. (1.10) received much atten-
tion where an abstract framework to the problem was proposed. We refer the reader to, e.g.,
Cavalcanti et al. [5] - [7], Ebihara, Medeiros and Miranda [9], Miranda et al. [26], Lasiecka
and Ong [13], Hosoya, Yamada [10], Larkin [12], Medeiros [23], Menzala [27], Park et al.
[32], [33], Rabello et al. [35], Santos et al. [36], for many interesting results and further
references. A survey of the results about the mathematical aspects of Kirchhoff model can
be found in Medeiros, Limaco and Menezes [24], [25], and the references therein.

Motivated by the problems in the above mentioned works, in this paper, we consider
Prob. (1.1) - (1.3) with f € C*([0,1] x Ry x R*), B € CY(R2). Since f, B are ar-
bitrary, the methods used in [34] or in [37] are no longer suitable, here we will combine
the linearization method for a nonlinear term, the Faedo-Galerkin method and the weak
compactness method.

The paper consists of four sections. At first, some preliminaries are done in Section 2.
With the technique presented as above, we begin Section 3 by establishing a sequence of
approximate solutions of Prob. (1.1) - (1.3) based on the Faedo-Galerkin’s method. Thanks
to a priori estimates, this sequence is bounded in an appropriate space, from which, using
compact imbedding theorems and Gronwall’s Lemma, one deduce the existence of a unique
weak solution of Prob. (1.1) - (1.3). In particular, an asymptotic expansion of a weak solu-
tion u = u(ey, -+ ,€p) of order N + 1 in p small parameters €1, - - - , &, for the equation

Utt —

B (Jlu(®)|* et )+Zez B: (lu(t)? ||ux<t>u2)] (t + Nt 1)

P
- f(x,t,u,ux,ut,uxt) + Z‘Eif’i(x7t7 u)uz7ut7uxt)7
i=1
0<x<1,0<t<T,associated to (1.2), (1.3), with B € CNTY(R2), B; € CN(R%),
B(y,z) > by > 0, Bi(y,2) >0, (i =1,---,p), forall( z) e RZ, f e CVNTY([0,1] x
R, x RY), f; € CN(]0,1] x Ry x R4) (z =1,---,p)is estabhshed in Section 4. This
result is a relative generalization of [16] - [20], [28], [29]

2 Preliminaries

Without losing of generality, we consider Prob. (1.1) - (1.3) with A = 1.

We put 2 = (0,1) and denote the usual function spaces used in this paper by the
notations LP = LP(£2), H™ = H™ ({2). Let {-,-) be either the scalar product in L? or
the dual pairing of a continuous linear functional and an element of a function space. The
notation ||-|| stands for the norm in L? and we denote by ||-||  the norm in the Banach space
X. We call X’ the dual space of X.
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We denote by LP(0,7;X), 1 < p < oo for the Banach space of real functions u :
(0,7) — X measurable, such that

T 1/p
ll o) = ( [ o dt) < ocforl < p < oo,

and
[ull oo 0,7, x) = €sssup [lu(t)| x for p = oc.
o<t<T

On H', we shall use the following norm

1/2
lollen = (ol + o)) @0

Then the following lemma is known.
Lemma 2.1. The imbedding H* — C(2) is compact and

vl < V2ol forallve H. 2.2)
Remark 2.1. On H}, v — ||v|| ;1 and v — ||v,|| are equivalent norms. Furthermore,

HUHC ) < ||vg|| forallv € HO (2.3)

Let u(t), u'(t) = ué(t) = uEy) u”(t) g wg (t) zgd(t), ug(t) = wvu(t), ug(t) =
Au(t), denote u(z,t), a;t( , 1), 2 (x,t), az(:c,t) 82

(z,t), respectively.

of

With f € CN([0,1] x Ry x RY), f = f(x,t,u,v,w,2), we put Dy f = A
a

Dyf =

of of of of of a a
— . D3f = —, Dyf = —, Dsf = ——, D — DYf — DX ... f.
8t7 3f 8u7 4f 8’1}7 5f 8w7 6f az and f 1 6 f7
a=(ag, - ,Oéﬁ)EZg_, || a1+ +ag=N; D00 f— 7
.. . N 2 0B 0B
Similarly, with B € C¥(R%), B = B(y, z), we put D1B = o , DoB = 5 and
y’ z

DPB =D}'"D*B, 3= (1, p2) € 22, |B| = B+ po = N; DB = .

3 The existence and uniqueness theorem

We make the following assumptions:

(Hy) i, 4y € H? N HE;

(Hy) Be C’l@i) and B(y, z) > by > 0, for all (y, z) € R?;

(H3) feCY (2 xR,y xR*Y) and

f(0,£,0,v,0,2) = f(1,t,0,v,0,2) = 0, for all (¢,v,2) € Ry x R2
The weak formulation of Prob. (1.1) - (1.3) can be stated in the following manner: Find

ue Wr ={ueL®(0,T;H*NH}) : o, v € L*(0,T; H* N H})}, such that u
satisfies the following variational equation

(u"(t), w) + Blu](t)(ua(t) + uz(t), wa) = (Flu](t), w), 3.1)
forallw € Hy, ae., t € (0,T), together with the initial conditions

u(0) = 1o, u'(0) = 1, (3.2)
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where
Blul(t) = B (lu(®)] uz(t)]) (3.3)
Flu)(z,t) = F (z,t,u(z,t), uz(z, t), ' (2, 1), u, (2, 1)) .
Consider T* > 0 fixed, let M > 0, we put

Km(B) = |Blorqompy =  suwp (B(y,2) + [D1B(y, 2)| + [D2B(y, 2)|) (3.4)
0<y,z<M?
6
KM(f): Hf”Cl(AJW) = sup \f(fv,t,u,v,w,z)]—|—Z|Dif(x,t,u7v,w,z)| )
(z,t,u,v,w,2)EA N i1

where
Anr = (@t v,w,2) € [0,1] x [0,T%] x R < ul, || < M, [o], |2] < V2M},
For each T € (0,7*] and M > 0, we put

W(M,T) = {v € L0, T; H2 N HY) : o € L®(0,T; H N HY),
o' € L0, T; HY), with o]z < M}, (3.5)

Wi (M, T) = {v e W(M,T) :v" € L®(0,T; H? N Hg)},

with [[v]|7 = maX{HUHLw(o,T;H?mHg)a ||U/HL<>0(0,T;H20H5)a HUH||L<><>(0,T;H3)} .
We establish the linear recurrent sequence {u,, } as follows.
We choose the first term ug = g, suppose that

Um—1 € Wl(Mv T)) (3.6)

and associate with Prob. (1.1) - (1.3) the following problem:
Find u,, € W1(M,T) (m > 1) which satisfies the linear variational problem

(upp, (£), 1) + Bun (£) (thma (1) + i (£), w2) = (Fin(£), w) , Vw € Hy, 4
U (0) = tg, up, (0) = 1, )

in which

B(t) = Blum1)(t) = B (lum-1 (01 [ Vm-1(8)])

Fm(x7 t) = f[um—l](xv t) = f(.%', ty um—1(t), vum—l(t)7 ’U,;n_1<t), vulm—l(t))'
(3.8)

Then we have the following theorem.

Theorem 3.1. Let (Hy) — (H3) hold. Then there exist positive constants M, T > 0 such
that, for ug = g, there exists a recurrent sequence {u,,} C W1(M,T) defined by (3.7),
(3.9).

Proof. The proof consists of several steps.

Step 1. The Faedo-Galerkin approximation (introduced by Lions [14]). Consider a spe-
cial orthonormal basis {w;} on H} : w;(x) = v/2sin(jrx), j € N, formed by the eigen-

. . o2
functions of the Laplacian —A = — 7. Put

k
uP (1) =3 W )y, (3.9)
j=1
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(%)

where the coefficients c,, ; satisfy a system of linear differential equations

{ (iifn) (), 15) + By (1) {ulh () + ik (), w1a) = (Fi (), 05), 1 < 5 < b, (3.10)

in which
U = Z?:l agk)wj — @ig strongly in H? N H&, 3.11)
U1 = Z?:l 5§k)wj — @iy strongly in H2 N H(}. '
System (3.10) can be rewritten in form
(k k
g ()5 g (30 (1) = i (0, G.12)
w0y = ol W) = s 1< j <k,
where
Fng (8 {Fu(t),w)) G.13)
mij = T v 5 A \d'm ,Wi), .
J 14 )\]Bm(t) J
A B (t) . \92 .
mi(t) = L = (1), 1< <k
Hence
(k) CIPC I S
Cmi(t) = a; + B —I-/ d?"/ Jmj(s)ds
0 0
/dr/ P (S s)ds, 1<j<k. (3.14)

Note that by (3.6), it is not difficult to prove that the system (3.14) has a unique solution
c(kj).(t), 1 < j < koninterval [0, 77, so let us omit the details.

m,

Step 2. A priori estimates. Put

SE(t) = pB (1) + ¢ (1) + rP (1), (3.15)
where
0= 0]+ 2o (o + s,
¢ (1) = [l H + By, <HAU H +HAu,Zf)(t)H2>, (3.16)
{20 0f! 2o (o sof).
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Then, it follows from (3.10), (3.15), (3.16) that

bo SR (1) < S (1) = SR (0) + 2 / t(Fm(s), ak) (s))ds (3.17)
0
22 [ Eao) i526s + 2 [ 761,85
1? 2 " 2 2
# [ 8 o] + 2 o] + |au)|
a2 - 2o, afiheon] as
= 51,)(0) + 24:1;',
j=1
where ) ) )

S (1) = Hugﬁ)(t)’ H2NH} + Ha’(ﬁ)(t)‘ H2NH} + Hu,(fj;(t)H ) (3.18)

First, we are going to estimate fﬁf) = Hugi)(O) H2 + B(0) Hufﬁ%(())‘r .
Letting ¢ — 04 in Eq. (3.10)1, multiplying the result by cgfj) (0), we get
[ ) + Bon() [820) [ + Bon(0) (g, #E1(0)) = (Fon(0),820)) . 319
This implies that
&b = | o) (320)
[5.0)| + 1Fm ()] || )

< (Bn(0) llioe | + 1 (0) ) | 5.0)|

< By (0) [|tiop ||

i &
< (Bu(0) [iosal| + 1B O | 55
< gy (B (O el + B ()]

< Xy, forallm,k € N,

where X is a constant depending only on f, @i, @, and B.
By (3.11), (3.15), (3.16) and (3.20), we get

S (0) = B (| Vol |V %) [HﬁOkZH2 + 2@k ||* + || Adior||?
| Adiga||? + [law]? + ||a1kz\|2} +e® <5y, forallmeN, (321
with a constant Sy depending only on f, g, %; and B.

Next, we shall estimate three terms I; on the right - hand side of (3.17) as follows.
First term I,. By the Cauchy-Schwartz inequality, we have

t t
I =2 /0 (Fan(s), 1l (s))ds < TK3,(f) + /O S\ (5)ds. (3.22)
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Second term I5. It is known that

me(t) = le[umfl] + D3f[umfl]vumfl(t) + D4f[um71]Aumfl(t) (3.23)
+Ds flum—1]Vtp, 1 (t) + De fum—1]Aup, 1 (1),

with D; flum—1] = Dif(x,t,um—1(t), Vum—1(t),u,, (), Vu, _(t)),i = 1,---, 6.
Combining (3.4), (3.6) and (3.23), we obtain

| Fona (O] <[ 1+ [Vt 1 (0] + | A1 (1)

[Vt O] + [| Ay ()| | Kne ()
<vmEKum(f), (3.24)

where vy = 1+ 4M, so it implies that
t t
=2 [ (Fntoild6)ds <2 [ )] il a5 G29)
0 0

t
< T3 K3 (f) + / S (s)ds.
0
Third term I3. Similarly, based on the following equality

Fp(t) = D fum-1] + D3 ftm—1]tt,_1(t) + Daflum—1]Vuz, 1(t)  (3.26)
+Ds ftm—1]tp, 1 (t) + Do f [tm—1] Vg, 1 (),

we obtain
IF @] <[1+ [ @] + [ Vet a )]
o+ [Jupa &) + [ Fupa (0] [ Kne()
<y Eum(f). (3.27)
Thus

t t
I =2 / 2(F! (s), i) (s))ds < T2 K3 (f) + / SW(s)ds.  (3.28)

0 0

Fourth term 14. 1t is obviously that

By, (t) = 2D1 Blum—1]{um—1(t), up, 1 (t))
+ 2D2B[um—1] <vum—1(t)7 Vu;n—l(t))? (3~29)

with D; Blum_1] = D; B (||Vum_1(t)||2 ,
Schwartz inequality, and (3.6), we have

Vu;lfl(t)‘f) ,7 =1, 2. Hence, by the Cauchy-

1B, (0] < 2 [tmoa (O] |ty (8)]] + [Vt (8)]] || Va1 (8)]] ] K nr(B) (3.30)
< AM* K (B).
Note that

i) - 20, i) < i) (331)
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hence, from (3.18), (3.30), (3.31), we obtain
I = /Ot By, (s) [Hu&’i&(s)HQ vala®o| + |au )| (3.32)
+auo) - a2 - 2. itk ion] as
< [ 1B [2 [t +2 o + |auo] + |aa | as
<2 [ 3] o)

~ t —
< 8M?Ky(B) / S (s)ds.
0

2

o[

2
H2nH} H2nH}

Finally, from (3.17), (3.21), (3.22), (3.25), (3.28), (3.32), the following inequality is
fulfilled

_ S 14+ 9~2 3+8M2Ky\(B)) t
SP(t) < b—;’ + ( +607M> TE2(f) + ( » ) /0 S (s)ds.  (3.33)

We can choose M > 0 sufficiently large such that

So 1.,
= <-M 3.34
b = 2 (3.34)

next choice to get 7' € (0, 7*] small enough such that

T (3+8M2K (B
BM2+ <1+b%2”) TK?w(f)] exp( ( v ))) < M? = (3.35)

0 bo

and

by = 44 T (K}@(f) ki 1660M4K§4(B)> exp

<1l. (3.36)

It follows from (3.33) - (3.35) that

-7 (3 + SMZKM(B)> (3 + 8M2KM(B)) -
e

SW(t) < M? exp (

bo

By using Gronwall’s Lemma, (3.37) yields

SO0 < 1 ey (T (3 + 8M2I%M(B)) ) - (t (3 + 8M2R'M(B)) ) <

bo

(3.38)
for all ¢ € [0, 77, for all m and k. Therefore

ulf) € W(M,T), forall m and k € N. (3.39)
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Step 3. Limiting process. From (3.38), we deduce the existence of a subsequence of
{uﬁ’i)} denoted by the same symbol, such that

u® 5, in  L>(0,T; H2 N H}) weakly*,

i) = ul, in  L°(0,T; H? N Hy) weakly*, (3.40)
a®) " in  L°(0,T; H}) weakly*,

Um € W(M,T).

Passing to limit in (3.10), (3.11), we have u,, satisfying (3.7), (3.8) in L?(0, T)). On the
other hand, it follows from (3.7); and (3.40)4 that

Au! = Ui~ Fn Au,, € L(0,T; L?). (3.41)
"™ Bpl(t)
Consequently
ull € L°°(0,T; H* N HY), (3.42)

SO Uy, € W1 (M, T) and the proof of Theorem 3.1 is complete. [J
Remark 3.1. It follows from (3.40) and (3.42) that

U, € CH[0,T); H* N HY), v/, € L0, T; H* N HY). (3.43)

We use the result obtained in Theorem 3.1 and the compact imbedding theorems to get
the existence and uniqueness of a weak solution of Prob. (1.1) - (1.3). The main result in
this section as follows.

Theorem 3.2. Let (Hy) — (H3) hold. Then

(¢) Prob. (1.1) - (1.3) has a unique weak solution w € W1 (M, T'), where the constants
M > 0andT > 0 are chosen as in Theorem 3.1.

Furthermore,

(i) The linear recurrent sequence {u,, } defined by (3.7), (3.8) converges to the solution
u of Prob. (1.1) - (1.3) strongly in C*([0,T]; H}).

And we have the estimate

||t — u||Cl([O7T];Hé) < CkT, forallm € N, (3.44)

where the constant k1 € (0,1) is defined as in (3.36) and C' is a constant only depending
onT, f, ug, w1 and kr.

Proof. (a) Existence. First, we note that C*([0, T]; Hg) is a Banach space with respect
to the norm (see Lions [14]).

||U||Cl([O,T];H3) = ||UHC([0,T];H01) + HU’HC([O,T};H&) . (3.45)

We shall prove that {u,,} is a Cauchy sequence in C*([0,T]; H}). Let wy, = i1 —
Um,. Then wy, satisfies the variational problem

(win (), ) + B1 (8) (Wi (1) + Wy, (1), we)
+<Fm+1(t)_Fm t),’UJ>,VU/€H(:)l, '

wim (0) = w),(0) = 0.
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Taking w = w}, in (3.46), after integrating in ¢, we get
b0 Zm( / B, 1(s |wr,m(s)\|2 + Hw;m(s)m ds (3.47)
2 /0 Buns1(5) — Bun(5)] [{ttma(5), g (5)) + (s (5), i (5))] ds

t
+2/ (Frn41(s) — Fi(s),wy,(s)) ds
0
= Jl + JQ + J37

where

Zin(t) = || O + B () (e O + [0 O] (3.48)
Zin () = |[wma ()| + |[whe ()|

We shall estimate three integrals Ji, Jo2, J3 on the right — hand side of (3.47) as follows.
Estimates Ji. By

1Bl (8)] < 2 [llum @) [|ur, )| + I Vum (D] || Vur, (8)]] ] Kar(B) < 4M2KME.§2179)
we have '

D= [ Biuia ) ()| + ()] s (3.50)

§4M2KM(B)/Ot (s ()1 + it (5)] )ds§4M2f(M(B)/O Z(s).

Estimates Jo. We have

Bt (1) = Bon(1)] (3:51)
= B (lumn @I IVun(®)1?) = B (w1 1), | Vim1 (D))
< Kt (B) [[llum @) = Jm—s 0I] + |1V (@ = V-1 (8)]

< 2M K (B) [[|wm—1()|| + [|Vwm—1(t)|]
< AMKpi(B) [[wm-1ll e (o, ry;m2) -

Hence
Jy= -2 /0 [Burus1(5) = Bun(9)] [(ta(5), W (8)) + (s (5), i (5))] ds3.52)
S 16M2IN{M(B) me_1||c1 [0 T]'Hl / Hw;nx(S)H ds

<16M2KM( ) lwm—1llcn ([0,T];HY) / \/7

< GATM R (B) s B ozt + /O Zom(s)ds.
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Estimates J3. From (Hs3) we obtain from (3.4), (3.6), (3.8), (3.40)4, that

[Fmt1(t) — Fm (1) (3.53)
= || f (@, t, um (), Ve (t), u, (1), Vg, (£) = f (@, 8 1 (), Vitm—1(£), 1 (), Vi, 1 (1)) ]
< K (f) [[lwm-1 (O] + 1Vwm—1 ()] + |Jwi_q (0] + || Vel @) ]
< 2K (f) [IIVwm-1 ()| + [ Vwr 1 (D] | < 2Kar () llwm—1ller oy, -

Hence
t
Js = 2/ (Frn41(s) — F(s),wy,(s)) ds (3.54)
0
t
< 4K () lwnrllororym [ )] ds
t
ARG s oy + [ Zu(o)ds,

Combining (3.47), (3.50), (3.52) and (3.54), we obtain

_ K2,(f)+16M*K?,(B
Zm(t>s4T< D)2 LIS E s By 359

14+ 2M2Ky(B)\ [t -
2< b >/0 Zm(8).

Using Gronwall’s Lemma, we deduce from (3.55) that

lwmllevoryag) < Frllwmlleyoryag ¥m €N, (3.56)
where 0 < kp < 1is defined as in (3.36), which implies that
i = wmsp e o a1y < Mo = wallen o rysmyy (1 = k) ~'RE ¥m,p € N. (3.57)

It follows that {u,,} is a Cauchy sequence in C*([0,T]; H}). Then there exists u €
C*([0,T); H}) such that

Uy, — w strongly in C1 ([0, T); HY). (3.58)
Note that u,, € W1(M,T), then there exists a subsequence {um; } of {u,,} such that
U, — U in  L%(0,T; H? N H}) weakly*,
u%/lj — u;/ %n L*>(0,T; Hi N Hy) weakly*, (3.59)
U, — U in L*>(0,T; Hy) weakly*,
ue W(M,T).
By (3.4), (3.6), (3.8) and (3.59)4, we obtain
[Em(t) = flul (O < 2K0 (f) llum—1 = wllor o,z » (3.60)
| Bun(t) = Blul (t)] < 4M K1 (B) |Jum—1 = ull e oy, -
Hence, from (3.58) and (3.60), we obtain
Fy, — f[u] strongly in L>®(0,T; L?), (3.61)

By, — Blu] strongly in L>°(0,T").
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Finally, passing to limit in (1.8), (3.8) as m = m; — oo, it implies from (3.58),
(3.59)1,3, and (3.61) that there exists u € W (M, T') satisfying the equation

(" (1), w) + Blu] (t) (ua (£) + w5, (1), wa) = (flu](), w), (3.62)
for all w € H{ and the initial conditions
u(0) = 19, u'(0) = 5. (3.63)

On the other hand, from assumptions (H3), (H3) we obtain from (3.59),4, and (3.62)
that

(W' = flu](t)) — Au € L=(0,T; L?). (3.64)

Hence
u” € L™(0,T; H? N HY). (3.65)

sou € Wi (M, T) and the existence follows.

(b) Unigueness. Let uy, uo be two weak solutions of Prob. (1.1) - (1.3), such that u; €
Wi (M,T),i=1,2. Then w = u; — uy verifies

t){wy
)— B
w(0) = w'(0) = 0.

() +wi(t),vs) = (Fi(t) t),v)
2(t ), v

t
()] (u2z(t) + uy, (¢ > for all v € HE, (3.66)

where B;(t) = Blug|(t), Fi(x,t) = flu](z,t),i=1,2.
Taking v = w’ = u} — v}, in (3.66); and integrating with respect to ¢, we obtain

o(t) :2/ <F1(5) — Fy(s), w/(s)> ds

+ [ B (el P + o)) s

- 2/0 [Bi(s) — Ba(s)] [(u2z(s), wi(s)) + (us,(s), wh(s))] ds, (3.67)

where () = [l (6)]* + B (t) (llwn (8)]> + (1))
Put Ky = bi [ (1 4v/2) MK (B) + V20K ()], then it follows from (3.67)
0

that
. t
at)gKM/asds
0

By Gronwall’s Lemma, we deduce o(t) = 0, i.e., u1 = ug. Theorem 3.2 is proved
completely. [J
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4 Asymptotic expansion of the solution with respect to p small parameters

In this section, let (H;) — (H3) hold. We also make the following assumptions:
<H4) B; € Cl(R%—)a Bz(y, Z) > 0, for all (y7 Z) € R%—? (IL =1, 7p)a
(H5) fl € Cl([oa 1} X RJr X R4)7 and f’L(Oa t 0,1}, Oa Z) = fi(17t>07v707 Z) = 07
forall (t,v,2) e Ry xR, (i=1,---,p).
We consider the following perturbed problem, where €1, - - - , €, are p small parameters
suchthat,0 <¢; < 1,¢=1,---,p:

uy — Be(|Jull?, ue ) Au = Fo(, t,u, ug, up, ug), 0 <z < 1,0 < t < T,
u(0,t) = u(1,t) =0,

u(x70) = ﬂo(ﬂ?), ut(xa O) = 7:61(.%),

AU = Uy + Uggrt,

(Fe) 2 2 2 2, |, & 2 2
Be(llull™, [lual”) = B([[ull” [ual”) + ,Zlﬁz'Bz'(HUH sz ]),
1=
P
Fs(x,t,u, umautauwt) = f(xatauv Ux,Ut,Uxt) + Z Eifi(l',t,u, uﬂmuhuwt)'
i=1
By theorem 3.2, Prob. (P:) has a unique weak solution v dependingone = (g1, - ,&p) :

ue = u(er, -+ ,ep). When e = (0,---,0), (Pe) is denoted by (Fp). We shall study
the asymptotic expansion of the solution of Prob. (P.) with respect to p small parameters

€1, ", Ep-
We use the following notations. For a multi-index o« = (a1, ,ap) € Z%, and & =
(e1,--+ ,&p) € RP, we put

lal =01+ +ap, ol = q,
lell = \/e3 442, e* =ef' - &7, 4.1
a75€Zp7a§/8<:'>azgﬁl\v/7’:]-avp

First, we shall need the following lemma.
Lemmad4.1. Let m, N € Nand u, € R,a € Z,,1 < || < N. Then

m

S oweet| = Y T ufae”, (4.2)

1<|al<N m<|a<mN

where the coefficients T](Vm) [ua, m < |a| < mN depending on u = (uq), o € ZE,
1 <|a| < N defined by the recurrence formulas

TV U)o = ua, 1< |a| < N,

TV a= X wagTy" Vs, m < o] <mN, m>2,
BeAl™ (N)
ANy ={BeZ: <o, 1<|a—B| <N, m—1<|g| < (m—l)N}.(43)
The proof of Lemma 4.1 can be found in [20].
Now, we assume that
(Hs) BeCNTYR2), B; € CN(R?),
B(ya Z) > bO > 07 Bl(y> Z) > 07 for all (yvz) € R?H (7’ = 1a e 7p)7
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(H7) [ € CN+1([Oa 1] X Ry x R4)7 fi € CN([O> 1] xRy x R4),
and f(O,t,O,v,O,Z) = f(17t707v)072) = fi(O,t,O,U,O,Z) = fi(l,t,O,’U,O,Z) = 07
forall (t,v,2) € Ry xR, (i=1,---,p).
: 1o 2 2
We also use the notations f[u] = f(x,t,u, uz, v, ul), Blu] = B(|ul|”, ||uz|®)-
Let ug be a unique weak solution of Prob. (F) (as in Theorem 3.2) corresponding to
e=(0,---,0),ie.,

uy — BluglAug = flugl, 0 <z <1,0<t < T,
(PO) UO(O7t) = UNO(lat) T 0, ~

’LLQ(.Z',O) = UO(x>7 UO(xa 0) = Ul(l’),

ug € Wl(M,T).

Considering the sequence of weak solutions w,,, v € Z- ;1 < |v| < N, of the following
problems:
ul), — BluglAu, = F,,0 <z <1,0<t<T,
uy(0,t) = uy(1,t) =0,

(£) uy(2,0) = ul,(z,0) =0,
u, € Wi (M, T),
where F,,, v € Z%, 1 < |v| < N, are defined by the recurrence formulas
f[UO] Ef(ﬂ?,t,UO,VUg,ug,vué), |V| =Y
P .
mlf]+ 3 w1
F, = i=1 (4.4)
+ ¥ (palBI+ X o [B]) vy, 1< YIS N,
1<[a] <N,
[v—a|<N
with p,[B] = p,[B;o, 0], p[B] = pV[BioV,0@), m,[f] = m[fi {us}yeil,
71f] = 7l )[f {uy}y<u], [v] < N, defined by the formulas
pv|B] = py|B, o, 0(2)] 4.5)
Bluo], v| =0,
= ¥ GDBul Y LRVLLY 0Pl 1<PI<N,
=] v1<|a|<2mN,
Vo< |v—a|<L272 N
where o(1) = (a&l)) o = ( @ )) a € ZE, 1< |a| < 2N, are defined by
2(ug, Uq), la| =1,
2(ug, uq) + Ug, Uo—g), 2<|al <N,
O'gl) _ (uo > B§a< B 5> ’ ’ (4.6)
> (up, ua—p), N +1<|a] <2N,
BLa
2(Vug, Vug,), la] =1,
2(Vug, Vua) + > (Vug, Vug—g), 2 < |al <N,
o) = f<a
> (Vug, Vuge_g), N+1<|al <2N,
\ B<a
(4) _ py(i—)[B] = pyly...7Vi_17yi_17,/i+1,...7Vp[B], if vy, > 1,
pl/ [B] { plll,"',I/Z'_l,—l,l/i_‘_l,'”,l/p B = 07 lf V’i = 0? (47)

_ P i—) __ s .
V_(V17"' 7Vp)€Z+7 V( )_(Vla"' 7Viflvyi_1vyi+17"' ayp)v Z_lv"' , D3
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fluol, lv| =0,
S AD ] Y Tl
m[f] = 1<|m|<|v| (a,B,7,0)€A(m,N)
m=(m1, ,mq)€LL a+B+y+d=v
KT (V) T[], T8 [V ), 1< |v| <N,
4.8)
in which m = (mq,--- ,my) € Z%, |m| = mqy + -+ +my, m! = my!---my!, D™ f =

DI DY2DIE DI A(m, N) = {(on, 8,7,0) € (Z2)" = my < |a| < miN, my <
18] < maN, m3 < |y| <maN, my <|6] < myN},

(4)

v [f] = T,3—-) [f] = Ty, i1, =1L Vi1, 0p [f]: 1=1,---,p,
771(}) [f] = Moy i1, = Lvig1, ,vp {f] =0,ifv; =0, (4.9)
v=(n, - ,1p) €L, ) = (v, v v — Lvig, - - Up).

Then, we have the following lemma.
Lemma 4.2. Let p,[B] = p,[B, oM, 0], m,[f], |[v| < N, be the functions are defined
by formulas (4.5) and (4.8). Put h = ZIVISN u~€7, then we have

Bt = 3 plBle" + e By (B.e], (4.10)
lv|<N
=3 mlfle + el ¥ RY[f. ¢, (4.11)
lv[<N
Ll 30) ~(1) < . .
with HRN [B, r-:]HLOO(O’T) + HRN [f. €] HLOO(O,T;B) < C, where C'is a constant depending

onlyon N, T, f, B, u,, |7| < N.

Proof of Lemma 4.2. (1) In the case of N = 1, the proof of (4.10) is easy, hence we omit
the details. We only prove it with N > 2. Put h = ug + Zl<|a\<N UEY = ug + hy, we
rewrite as below

B[h] = B(|lug + ||, | Vuo + Vhn|*) = B(lluol* + &1, [ Vuol* + &), (4.12)

where & = [lu + hu||* = [[uol|*, & = [ Vuo + VA |* — [|Vuo|*.
By using Taylor’s expansion of the function B(||ug||® + &1, || Vuo||® 4 &) around the
point (|Jug||?, |[Vuol/) up to order N + 1, we obtain

Blh) = B(||luo|® + &, | Vuo|* + &) (4.13)
1
= B(|luol®, [Vuol) + DY D" B(lluoll*, [Vuol|*)& 63 + Rn[B, uo, &1, &)
1<ly|<N ¥
1
= Bluol+ Y —D7Bluolé"¢* + Rn[B, uo, &1, &),
1<ly|<N ¥
where
RN [Bv ug, 517 52] (4 14)
N+1 [t Npv 2 2 Y1 ¢2
= > —— | A=0ND B(||uo|® + 0¢1, [ Vuo|* + 652)&]" £32d6
=N+ 0

= el ¥ RV (B, uo, &1, &)



V.T.T. Mai, N.A. Triet, L.T.P. Ngoc, N.T. Long 17

On the other hand, we have

& = lluo + hal” = [Juoll? = 2(uo, ) + [P = Y olle?, (4.15)
1<|a|<2N

with 0§, 1 < |a| < 2N are defined by (4.6),.
By the formula (4.2), it follows from (4.15) that

71

= Y oWer ] = Y TV eWlee, (4.16)

1<|al|<2N 1 <lal<2 N

where o(1) = (0&1)), aeZh,1<|al <2N.
Similarly, we have
72

2= Y @) = Y TP 0®.e (4.17)

1<]a]<2N Y2 <o <272 N

where o(2) = (a((f)), a € Zh,1 < |a] < 2N, are defined by (4.6)s.
Therefore, it follows from (4.16), (4.17) that

rer =y 3 T W), T2 [0, | e (4.18)

[VISIVIS2YIN | 4 <|al<271 N,
Yo<|v—a|<2v2 N

= Z @V[Na 0(1)70(2)7717’72704]51/

[I<v|<2|v|N
— Z QV[Na 0(1)70(2)771572aa]€l/+ Z ¢V[N70-(1)7O-(2)7717’725a]sl/
[v[<[v|<N N+1<|v|<2|y|N
= Z QSI/[N7 0(1)70(2)7717’72705]611"’_ HEHN—H RN[N7 0'(1)70'(2)7'7177270576]7
[vI<|vI<N
where
@V [Na 0(1)7 0(2) » V15725 Oé] = Z TQ(JAG) [0—(1)]04T2(7V2) [0(2)]y—a7
7 <|a|<271 N,
Yo<|v—a|<2v2 N
H€|’N+1 RN[Nv0(1)70(2)7717'727a7€] = Z ¢V[N70-(1)70(2)7’71772704]5”'

N+1<|y|<2|y|N
(4.19)
Hence, we deduce from (4.13), (4.18), (4.19) that

Blh = Y p[B,0cW,0Pe” + [|e| N RY (B, uo, 0V, 0P, &1, 6], (4.20)
lv|<N

where p,[B] = p,[B;c), 0@, v e 7, |v| < N, are defined by (4.5) and
ﬁg\lf) [B7’U,0, 0(1)7 0-(2)761752] (421)

1
- Z *'DVB[UQ]RN[N, 0-(1)70-(2)7’7177270476] +R§\P[Bau07£17§2]‘
I<p|<N Y
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By the boundedness of the functions u., u’, [y| < N in the function space L>(0,T; HiN

H?), we obtain from (4.14), (4.19), (4.21) that ‘R 1B, ug, 0™, 0@ ¢, )] HLOO on =0

where C' is a constant depending only on N, T, B, [[u,||; (0.T:12) \|Vu7||Lo<> 0.T512)

|| < N. Hence, the part 1 of Lemma 4.2 is proved.
(ii)) We only prove (4.11) with N > 2. By using Taylor’s expansion of the function
f[uo + hq] around the point ug up to order N + 1, we obtain from (4.2), that

fluo + ha] = fluo] + D3 fluo)h1 + Daflug|Vhi + Ds fluglh + Dg fuo] VR (4.22)
S %Dmf[ OB (Vhy)™ (W)™ (VH)™ + R[S, ha]

2<|m|<N
m=(my,-,ma) €LY

= fluo] + D3 fluo)h1 + Dafuo)Vhy + Dsflug)hy + Dgfuo] V)
+ Z %Dmf[uo] Z isu [m, N, f,u, Vu, u/, Vu/]el’

2<|m|<N Im|<|v|<N
meZi
1 - v
Y DMl Y BN fou Va, o Ve’ + RY[f ],
2<|m|<N N+1<|v|<|m|N
mGZi
where
N+ 1 ! m m m m m
RYUm = S S [0 D fun o (V)™ ()" (V1) db
Im|=N+1 ©Jo
m=(mq, - ,m4)€Zi
&, [m, N, f,u, Vu,u', V'] (4.23)
= > T VT W T [V s, ) < ] < | .
(a,B,7,0)EA(mM,N)
a+pB+vy+o=vr

We note that
f[UO] + D3f[UO]h1 + D4f[U0]Vh1 + D5f[u0] ,1 + D6f[uO]Vh/1 4.24)
+ > %D”‘f [wo] > Bum, N, f,u, Vu,u!, Vu'le”

2<|m|<N Im|<|v|<N
mEZi

= Z|V|§N TrV[f]Euv

where 7, [f], 1 < |v| < N are defined by (4.8).
Similarly,

1 .
> DMl YD Bm N fou Vud, Ve’ + RY [, k25
2<|m|<N N+1<y|<|m|N
mEZi

— el R (1 €],
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with HR [f,e HLOO 0T S < C, C'is a constant depending only on N, T, f, u., |y| < N.

Then (4.11) holds Lemma 4.2 is proved.

Remark 4.1. Lemma 4.2 is a generalization of a formula contained in ([17], p.262,
formula (4.38)) and it is useful to obtain the following Lemma 4.3. These Lemmas are the
key to the asymptotic expansion of a weak solution ue = u (e1,--- ,&p) of order N + 1 in
p small parameters €1, - - - , €, as it will be said below.

Let ue = u(eq,---,ep) € Wi(M,T) be a unique weak solution of the problem (F).
Then v = ue — Z| <N u€" = ue — h satisfies the problem

v" — Be[v + h|Av = F¢[v + h] — F:[h] + (Be[v + h] — Belh]) Ah
+ Ee(x,t), 0<zx<1,0<t<T,
v(0,t) =v(1,t) =0,
v(z,0) = v'(2,0) =0,
Av = Av + Avtt,

(4.26)
Be| +Zsz i B(Jlol?, [lvz]*) +Zez (ol floz)1?),
+ Zngz l‘ t (% /UCIH 71}:/5) + Zgifi(J:)tavuvxav/aU:/);)’
=1
where
p
Ee(x,t) = f[h] — fluo) + ) _ eifilh] (4.27)
p
+ (B[h] — Blug] + ZsiBi[h]> Ah— > Fe”.
i=1 1<|v|<N

Then, we have the following lemma.
Lemma 4.3. Let (H,), (Hg), and (Hy) hold. Then there exists a constant C, such that

~ N+1
1 Bell oo o.r:22y < Ce llell ™ (4.28)

where C. is a constant depending only on N, T, f, fi, B, Bi, uy, || < N, 1 <i <p.
Proof of Lemma 4.3. In the case of N = 1, the proof of Lemma 4.3 is easy, hence we
omit the details. We only consider N > 2.
By using formulas (4.10), (4.11) for the functions B;[h] and f;[h], we obtain

Bilhl = Y po[Bile’ +|le|¥ RV, [Bi.€l,
lv|<N-1

i , (4.29)
filkl = ¥ wlfile + Nl RGL [fiel 1< <p.
v|<N-1
By (4.7), (4.29)1, we rewrite €; B;[h] as follows
eBilhl = > s i Ly | BilE” (4.30)

1<[V|<N, v, >1
+ & ”EH [Bme]

= S POIBile” + i |lelY RS, [Bisel.
1<|v|<N
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Similarly, with f;[h], 1 < i < p, we also obtain

sfilhl= > mlfilee” +eilel™ RG [fiel @31)

V|<N-1

N (1
= Y T vt 1€+ el RY [ fiv €]

1<|v|<N, v;>1

= Y aD[file” +eillel™ RY. el

1<|y|<N

First, we deduce from (4.11) and (4.31), that

fluol + " eifilh (4.32)
- 2 [meZf:lw&)[f]}e R I )
1<y|<N
whereR [f fi,-  fpel =R 1)[f el+ >0, & _N 1Lfi, €] is bounded in the func-

el
tion space L>°(0,T; L?) by a constant depending only on N, T, f, fi, uy, |y| < N,
1< <p.
On the other hand, we deduce from (4.10) and (??) that

(B[h] — B[UO] + Zp:EiBi[h]> Ah (4.33)
= Z Z (pa + ZPQ i ) Auy,_e”

1<[v|<2N 1<[0]<N,
lv—al<N
=(1
+elMRY(B, By, , By, e,

where

E%)[BvBla 7Bp7 ]

€| Ah. (4.34)

(1) 51 (
B 1B +Z|| ||

We decompose the sum } 7, |, <oy into the sum of two the sums >~ |, <y and 3 x|y <o -
Therefore, we deduce from (4.33), (4.34) that

<B[h] — B[UO] + i Esz[h]> Ah (4.35)
> > (mm EDIAE ]) Aty

1<|v|<N 1<[a|<N,
v—al<N

+ M RY (B, By, , By,el,
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in which
e RO B, By, , Bpe] (4.36)
— |el¥ T RY(B, By, -+, By, el

+ > > <pa +Zp )Auyae

N+1<[p|<2N 1<[al<N,
v—al<N

Combining (4.4), (4.5), (4.8), (4.27), (4.32) and (4.35), we then obtain

Be = el BV fi o Sl + BYIB. By Byel| . (437
By the functions u,, € W1 (M, T), |v| < N, we obtain from (4.32) and (4.36), that

| Ee ||L°° 0,T;L2) (4.38)

= lell™™ HR fofrees s dpeel + BB, B, BP’E]HLOO(O,T;LQ)
< Oy [lelI™,

where C, is a constant depending only on N, T, f, fi, B, Bi, uy, |[y| < N, 1 <i < p.
The proof of Lemma 4.3 is complete.
Now, we consider the sequence of functions {v,, } defined by

Vo = 0,
— B2 [vm—1 + hlAvy, = Fe[vm—1 + h] — Felh] 4+ (Belvm—1 + h] — Be[h]) Ah
+Ec(z,t),0 <2 <1,0<t <T,

(4.39)
With m = 1, we have the problem

v — Be[h]Avy = Ee(2,t),0 <2 < 1,0 <t < T,
{ v1(0,t) = v1(1,t) =0, (4.40)
v1(z,0) = vj(z,0) = 0.

By multiplying the two sides of (4.40) by v}, we verify without difficulty from (4.28)
that

LI + Bre(®) (o) + o1, 0)]) (4.41)
/ B, me( N+ [viz ()] )ds+2/ (E<(s),v(s))ds
STC?EHeH?N“+/O \\vi(s)\\2d3+/o 1B1.e()] (llona () + [[o ()] |*) ds

where Bi¢(t) = Be[h](t) = Be([lh(1)]*, [|VA(1)]*). B
B} o(t) = 2Dy B[R] (h(t), B (£)) + 2Dy B [B](Vh(t), VE (£), (442

we have

p
|BLe(1)] < 4M (KM*(B> + ZKMABQ) = (1, forall e <1, (4.43)
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with M, = N1M, and Ny = card{y € Z_: |y| < N}. It follows from (4.41), (4.43) that
2
94+ bo (a1 + [, 0)]) (4.44)
t
<TCE e + (1 +c1)/0 (|]v1x(5)||2 + Hvix(s)‘f) ds.

By Gronwall’s lemma we obtain from (4.44) that

1
o1 ()] + Hvix(t)Hz < %ch el*V % exp [(1+ ¢1) T1. (4.45)
Hence
2 = N+1 1
v1llor o, my < ﬁﬁc* el ™" exp [2 (1+ C1)T] : (4.46)

We shall prove that there exists a constant C7, independent of m and e, such that
lomlles o,y < O e[V, with ||e|| < 1, for all mn. (4.47)

By multiplying the two sides of (4.39) with v/,, and after integrating in ¢, we obtain from
(4.28) that

05O + B ®) (J[ome 01 + [[o1s (8)]F) (4.48)
52 | g2V +2 tv’325
<TC2 el + [ (o) a
D/ 2 / 2
+ [ Bes) (Iome )+ [eas)]) s
+2/ (Falom1 + h] — Fulh], o/, (s))ds
0
+2/ (Be[vm—1 + h] — Be[h]) (Ah(s),v],(s))ds
0
ETC:E\|5||2N+2+/ [0, (5)|* ds + Ty + Tz + T,
0

with By, (t) = Be[vm—1 + h](t) = Be([[om-1(t) + h(t)[*), [ Vom—1(¢) + VA(t)[|*).
We now estimate the integrals on the right - hand side of (4.48) as follows.
Estimating J,. We have

B, (t) = 2D1 Be[vgm—1 + h](t) (vm—1 + h, v,y + }') (4.49)
+2D9Be[vm—1 + h|(t)(Vvm—1 + Vh, V., _4 + Vh'),
hence
— — ~ p ~ —
| By, ()] < 4M? <KM*(B) + ZKM*(Bi)> =, forall ||| <1, (4.50)
=1

with M, = (1 + N;)M.
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It follows from (4.50), that
Ti= [ Buelo) (Joms ) + e ()] s 51)
0

<& [ (Iomels) 1P+ a0 s

Estimating jQ Note that

1f (wm—1 4+ h) = fIR]l| < 2Ky, () llom—1ller o, m2)
[ fi(m—-1 + h) = filh]| < 2K, (fd) llom-1ll e 0,052

hence, we have

|Felomr + A = ElBl] < G lom1llcr gozym) - (4.52)

where (o = G(M, f, f1,-+ , fp) = 2Ky (f) + 230 Ky (f;). Therefore, we deduce
from (4.52) that

J2—2/ | Felvm—1 4+ h] — Fo[R]|| ||v},,(s)]| ds (4.53)
_ t
< TG Nlom-1l121 qo,r7,m2) +/0 o7 (s)||” ds.

Estimating Js. First, we need an estimation of | Be[vp_1 + h] — Be[h]| .
From the inequalities
|Blvm1 + ] - BIR]| < ANL K g1, (B) [0mtll s o.1700)
| Bilom—1 + h] = By[h]| < 4M.Kyz, (Bi) [lom—1llcrorpamy» 1= 1o+ 5,

it follows that

| Be[vm—1 + h] — Be[h]| < 4M. ( ) + ZKM* > [[vm— 1H01 ([0,T};HY) -
(4.54)
We remark that
ARG < D0 [Aua(s)|[ [e* < D lAua(s)| < 2N1M = 2M,.  (4.55)
1<|a|<N I<]a|<N

Hence, we deduce from (4.54) and (4.55) that
t
J3 = 2/ (Be[vm—1 + h] — Be[h]) (Ah(s),v),(s))ds (4.56)
0
<TG [vm-1llgn ([0,7):H, / [E ‘ ds,

in which Gs = C3(M, B, By, -+ , B,) = SM, M, (f(M*(B) +YP Ky (BZ-)> .
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Combining (4.48), (4.51), (4.53), (4.56), we then obtain

D, 2
12 + Brne (8) ([loma ()1 + [[v1e (8] (4.57)
<TCE el 2 + T (G + &) llvm—11E1 (o212

#3+G) [ (Iomalo) P+ haa(07) s

By using Gronwall’s lemma we deduce from (4.57) that

lomllcr o,y < o7 lom—tllcr o,y gy + 0, forallm > 1, (4.58)

. — _ T 1 _
with op = 07y /GG + (3, 0 = nrCi eV e = \/% exp <2b0T (3+ C1)> '

Assuming that
o1 < 1, with the suitable constant 7" > 0. 4.59)

We can prove the following lemma easily.
Lemma 4.4. Let the sequence {z,,} satisfy

Zm < 0zZm_1+ 0 forallm > 1, zyp =0, (4.60)
where 0 < o < 1,8 > 0 are the given constants. Then

z2m <0/(1—0) forallm > 1.0 (4.61)

Applying Lemma 4.4 with z,, = ||Um||c1([07T];H&), o =or =G+ <1,
6 = nrC, ||le||N T, it follows from (4.61), that

lomllero,rp;m2) < /(1 —o1) = Cr (R (4.62)

where Cr = ﬁ On the other hand, the linear recurrent sequence {v,, } defined

by (4.39) converges strongly in the space C1([0,T]; H}) to the solution v of Prob. (4.26).
Hence, as m — +o00 in (4.62), it gives ||vy|cl([07T};H5) < Crp ||EHN+1 .or

g
Ue — g UE
‘ RIS

Thus, we have the following theorem.

Theorem 4.5. Let (H,), (Hg) and (Hy) hold. Then there exist constants M > 0 and
T > 0 such that, for every €, with ||g|| < 1, Prob. (P:) has a unique weak solution us €
W1 (M, T) satisfying an asymptotic estimation up to order N + 1 as in (4.63), where the

functions u,, |v| < N are weak solutions of Prob. (P,), |v| < N, respectively. O

< Cr eV (4.63)
C([0,TT;HY)

Remark 4.2. Typical examples about asymptotic expansion of solutions in a small pa-
rameter can be found in the researches of many authors, such as [16] - [18], [28]. In the case
of many small parameters, there is only partial results, for example, we refer to [19], [20],
[29], - - - for the asymptotic expansion of solutions in two or three small parameters.
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