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Abstract. The discrete Hermite operator and its perturbation are considered. Using the spectral theory
of the discrete Hermite operator has studied asymptotics of a complex error function in the upper half
-plane. The expansionion formulas are obtained in terms of eigenfunctions for the continuous spectrum
of perturbed discrete Hermite operator.
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1 Introduction

The complex complementary error function

z

N
w(z) = e 1+\/—; e dt (1.1)
0

is often called the Faddeeva function or Kramp function. It is related to the Fresnel integral,
to Dawson’s integral, and to the Voigt function (see [1], [8]). The Faddeeva function arises
in various physical problems, typically relating to electromagnetic responses in complicated
media([2], [6]). This includes the problems associated with small-amplitude waves propa-
gating through Maxwellian plasmas (see [6], [7]). This function in appears in the plasmas
permittivity from which dispersion relations are derived, hence it is sometimes referred to
as the plasma dispersion function (see [6], [7], [10], [14]).

This paper is devoted to the study of the asymptotics of function (1.1) in the upper
half-plane. To our knowledge, this issue has not been studied before. In this paper, it is
established that the complex complementary error function coincides in the upper plane
with the Weyl function of the discrete Hermite operator. Therefore, the results obtained are
also of interest from the point of view of the spectral theory of discrete operators.
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2 Asymtotics of the complex error function

Theorem 2.1 When z — oo, 0 < arg z < 7 the following relation holds:
1
w(z)NLf,z%oo. 2.1

N

Proof. Let us consider the operator H generated in the space /s [0, 00) by the difference

expression
n n+1
(ly)n = \/;yn—l + \/Tynﬂ,n =0,1,2,....

and boundary condution

y—1 = 0.

In the work of Yu.M.Berezansky [5] it was established that the operator H is a positive self-

adjoint operator. Moreover, the spectrum of H is purely absolutely continuous and coincides

with (—o0, +00) and the corresponding spectral measure is given by dp (\) = ﬁe"@d)\.

We denote by P, (2) , @, (z) the solutions of the equation

n+1
\/7yn 1+ ——Ynt1 = 2Yn,n=0,1,2, .. 2.2)

with initial data P_1 (2) = Qo (2) = 0, Py(2) = 1, Q1 (2) = v/2 (“sine” and “cosine”
type solutions). It is evident that every solution of this equation is their linear combina-
tion. It should be noted that P, (z),n = 0,1, 2, ... is a polynomial of degree n. Moreover,
P, (z),n=0,1,2,... are normalized Hermite polynomials:

H, (2)
N2k
Ho(2) =1, Hy (2) = 22, Hy (2) = 42° — 2, H3 (2) = 122° — 82

It is known (see, for example, [4], [12]) that for Iz # 0 the equation (2.2) has solution
(the Weyl solution of the operator H):

Wy (2) = Qu (2) +m (2) P (2) ;0 = =1,0,1, ., 2.3)

P, (z) = n=0,1,2,..,

o0
such that > |, (2)]* < co. In this notation mn (z) is the Weyl function of the operator
n=—1
H represented in the form

= dt 2.4
m (2) Nis t—2z 24)
—00
On other hand, the Faddeeva function occurs as (see [7])
o0
1 na
w(z):_/ ¢ dt, Imz > 0.
T t—z
—00
Therefore,
miz
(z) = (2) (2.5)

N
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™

+oo
\ = / A" dp (\) < 00

and sg = 1. Then, according to the Hamburger-Nevanlinna theorem (see [3], theorem 3.2.1)
o

A
for I'mz > 0. Note that the increasing function p (\) = % J e~t"dt foreachn = 0,1, ,,,
oo

satisfies the inequality

namely the function m (z) = %
it is true uniformly in the range of angles § < arg z < 7w — ¢ that

m(z) N—%,z—>oo. (2.6)

Let us consider the Weyl function m (z) , defined by formula (2.4). Let z = x + iy. By
virtue of formula (2.4), we have

1 e / [(t — ) +zy —t?
m(z) = — dt =
=) VT t—w—w \F t—x + 12
—o0
o0

t—x 1 et
dt—l— — /dt:I + 1.
\f/ (t — ) ﬁy (t—x)* + 92 ' ?

— o0

It is known (see, for example, [9]) existence of the principal value

et
= — 1 dt
f / t— x y—1>r—Ii-10 / t—x

[t—z|>y

is here equivalent almost everywhere to existence of

1 T —t?
lim I; = — lim (t—2)e

— = dt.
y—+0 ﬁ y——+0 (t _ x)Q + y2
— 0o

On other hand [9], at any = (where p’ (x) exists and finite)

lim I, = \/7?67"”2

y——+0

Therefore, if z = x, then

T

—2? _ _ge—u” / Cdt + mie ™. (2.7)

0

t—x

1
)—ﬁ_m

Note that the validity of the last equality is also ensured by formulas (2.4), (2.5) and the fact
that w (z) is an entire function. By virtue of formula (2.7) we get

1
m(z) ~ T +oo. (2.8)
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From these considerations and formula (2.5) it follows that, the function w (z) such that
given any fixed & > 0 however small it is true uniformly in the range of angles § < argz <
m — § that

1
w(z)wﬁg,z%oo. (2.9)
Moreover,
1
w(x)wﬁ;,x%:l:oo. (2.10)

Now let us set z = re’?. From formula (1.1) it follows that for » — oothe relation

2w (z) =0 <€3T2>

is satisfied uniformly in the entire upper half-plane. Since relation (2.9) is valid for suf-
ficiently small §, then by applying the Phragmen and Lindelof [13] theorem to angles
0<argz <dand 7 —J < arg z < 7 we obtain relation (2.1).

The theorem is proved.

3 Weyl-Titchmarsh theory for discrete Hermite operator
From the above reasoning it follows that for real values of Athe equation
y—1+ \/g@h = Ao, 3.0
\/gyn_l + ”Tﬂynﬂ =Ayp,m=1,2,....
has solutions in the form
Un (A) = Q@n(A) +m (A) P (),

Clearly ¥, () is an analytic function in the upper half-plane and is continuous up to the
real axis. As is known [4], for &, () the following integral representation is valid:

1R () et
o) = — [ nlber g
) \/%/ DY

On other hand [11], at any ¢

P, (t) = Z\/f?r(;;i [cos (\/mt — n77r) +0 (n_l) +0 (n_i \t\%)} ,T — 00

Using the last two relations it is established that for each A € (—o0, +00) the sequence
¥, (A) is bounded. Further, for each A € (—o0, +00) the solution of equation (3.1) is also

These solutions ¥,, (\) and ¥,, (\) are linearly independent, since their Wronskian

W [0 (), B0 O] =2 (70 ) Tt ) = s () T ()
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is equal to
m(\) —m(\) = 2y/mie

It follows that the identity holds

Potd) _ G0 + 80 () 0 ()0 = —1,0, ...
ap ()\)
where o
_ L _ a0 _
CL(](>\) 2ﬁe ) SO()\)_(I(]()\)_ 1
The expansion formula holds
2W / e Re Ty (V) + So (V) &, (A)) ,, ()\)} d\ = S, (3.2)

where 0,,,,, 1s the Kronecker delta. The last formula is a modification of the well-known [5]
expansion formula

1 e
—\2
ﬁ/e (A) Py (\) dA = &

Now we consider the equation

y—1+ boyo + (\/ng ao) Y1 = Ao,

(3.3)

(\/g‘i‘ an—l) Yn—1 + bpyn + ( HTH + an) Ynt+1 = AYn,n=1,2,....
where the sequences ay,, by, tend to zero fairly quickly. The operatorH generated by equa-
tion (3.3) and the boundary condition y_; = 0 is a compact perturbation of the operator
H. Therefore, the continuous spectrum of the operator H also fills the entire real axis
(=00, +00). It can be proven that equation (3.3) for ImA > 0 has a solution with the
asymptotics

Ja V) = T (W) [1+0(1)],n = oo,

Let us denote by ¢,, (A) the solution of equation (3.3) with initial conditions p_; (A) =
0, ¢o (\) = 1. Then on the real axis the identity

on (A) o
oy N FSA N, 1,0, ..
holds, wherede
_ ? e)\z - f—l (
a(\) = 2\/Ef—l A et S (N Oy

The formula expansion in terms of eigenfunctions for the continuous spectrum of the oper-
ator H will take the form

: W /  Re { (70 + S ) fu ) fn )} A = 6. (3.4)

Formulas (3.2), (3.4) can be used to solve the inverse scattering problem for equation (3.3).
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