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1 Introduction

It is known that (see [1, p. 153-155]) the internal and external electric boundary problems,
as well as the internal and external magnetic boundary problems, lead to a system of integral
equations that depend on vector potentials:

(Af) (x) = 2

∫
Ω
Φk (x, y) [n (x) , [n (y) , f (y)]] dΩy, x = (x1, x2, x3) ∈ Ω, (1.1)

and

(Bg) (x) = 2

∫
Ω

[n (x) , rotx {Φk (x, y) g (y)}] dΩy, x = (x1, x2, x3) ∈ Ω, (1.2)

where Ω ⊂ R3 is the Lyapunov surface, n (x) = (n1 (x) , n2 (x) , n3 (x)) is the outer
unit normal at the point x ∈ Ω, vector function f (x) = (f1 (x) , f2 (x) , f3 (x)) belongs
to the class C (Ω)−the space of all continuous functions on the surface Ω with the norm
∥f∥∞ = max

x∈Ω
|f (x) |, the vector function g (x) = (g1 (x) , g2 (x) , g3 (x)) belongs to the

class C⊥ (Ω) = {g ∈ C (Ω) | (g (x) , n (x)) = 0, ∀x ∈ Ω}, the notation [a, b] means the
cross product of the vectors a and b,the notation (a, b)−the dot product,

Φk (x, y) =
exp (ik |x− y|)

4π |x− y|
, x, y ∈ R3, x ̸= y,
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the fundamental solution of the Helmholtz equation ∆u + k2u = 0, ∆ is the Laplace
operator, and k is a wave number with Im k ≥ 0.

Since in many cases it is impossible to find exact solutions to integral equations, the
study of approximate solutions to these integral equations becomes of interest. To find an
approximate solution, it is primarily necessary to construct cubature formulas for the inte-
grals involved in these equations. It should be noted that in work [7], a quadrature formula
for a class of weakly singular curvilinear integrals was constructed; in work [8], a quadra-
ture formula for the normal derivative of the double layer potential was developed; in work
[3], a cubature formula for the normal derivative of the acoustic potential of a simple layer
was presented; and in work [5], using the result of the work [4] a new method for con-
structing a cubature formula for the normal derivative of the acoustic potential of a double
layer was proposed. The present work is dedicated to constructing cubature formulas for
the integrals (1.1) and (1.2).

2 Cubature formula for integral (1.1)

We partition Ω into ”regular” elementary parts: Ω =
N⋃
l=1

Ωl. By a regular elementary part

we mean a set of points subordinate to the following requirements:

(1) for each l ∈ {1, 2, ..., N} the elementary part Ωl is closed and the set
0
Ωl of its

interior points with respect to Ω is not empty; moreover, mes
0
Ωl = mesΩl and

0
Ωl
⋂ 0

Ωj =
∅ for j ∈ {1, 2, ...N} , j ̸= l;

(2) for each l ∈ {1, 2, ..., N} the elementary part Ωl is a connected piece of the surface
Ω and the boundary of the elementary part Ωl is a continuous curve;

(3) for each l ∈ {1, 2, ..., N} there exists a so-called supporting point x (l) =
(
x1 (l) ,

x2 (l) , x3 (l)
)
∈ Ωl such that

(3.1) rl(N) ∼ Rl(N) (the expression rl (N) ∼ Rl (N) means that rl (N) and Rl (N)

are equivalent, i.e., there exist numbers C1 > 0 and C2 < +∞ such that C1 ≤ rl(N)
Rl(N) ≤ C2

for any N ), where rl (N) = min
x∈∂Ωl

|x− x (l)| and Rl (N) = max
x∈∂Ωl

|x− x (l)|;

(3.2) Rl (N) ≤ d
2 , where d is the radius of the standard sphere (see [9, p. 400]);

(3.3) rj (N) ∼ rl (N) for each j ∈ {1, 2, ..., N}.
Obviously, r (N) ∼ R (N) and lim

N→∞
r (N) = lim

N→∞
R (N) = 0, where R (N) =

max
l=1, N

Rl (N), r(N) = min
l=1, N

rl(N).

The following lemmas are true.

Lemma 2.1 ([6]). There exist constants C ′
0 > 0 and C ′

1 > 0 not depending on N such that,
for all l, j ∈ {1, 2, ..., N}, j ̸= l, and all y ∈ Ωj , the following inequalities hold:

C ′
0 |y − x (l)| ≤ |x (j)− x (l)| ≤ C ′

1 |y − x (l)| ,

where the x (l), l ∈ {1, 2, ..., N}, are supporting points.

Lemma 2.2 ([6]). For a partition Ω =
N⋃
l=1

Ωl of the surface Ω into regular elementary

parts, the following relation holds: R (N) ∼ 1√
N

.
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Let us introduce the modulus of continuity of the vector function f ∈ C (Ω):

ω (f, δ) = δ sup
τ≥δ

ω̄ (f, τ)

τ
, δ > 0,

where
ω̄ (f, τ) = max

|x−y|≤τ
x, y∈Ω

|f (x)− f (y)| ,

|f (x)− f (y)| =
√

(f1 (x)− f1 (y))
2 + (f2 (x)− f2 (y))

2 + (f3 (x)− f3 (y))
2.

Moreover, let (
ANf

)
(x (l)) = e1

((
AN

11f
)
(x (l)) +

(
AN

12f
)
(x (l))

)
+e2

((
AN

21f
)
(x (l)) +

(
AN

22f
)
(x (l))

)
+ e3

((
AN

31f
)
(x (l)) +

(
AN

32f
)
(x (l))

)
,

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),(
AN

11f
)
(x (l)) = 2n2 (x (l))

×
N∑

j=1,
j ̸=l

Φk (x (l) , x (j)) (n1 (x (j)) f2 (x (j))− n2 (x (j)) f1 (x (j)))mesΩj ,

(
AN

12f
)
(x (l)) = 2n3 (x (l))×

×
N∑

j=1,
j ̸=l

Φk (x (l) , x (j)) (n1 (x (j)) f3 (x (j))− n3 (x (j)) f1 (x (j)))mesΩj ,

(
AN

21f
)
(x (l)) = 2n3 (x (l))

×
N∑

j=1,
j ̸=l

Φk (x (l) , x (j)) (n2 (x (j)) f3 (x (j))− n3 (x (j)) f2 (x (j)))mesΩj ,

(
AN

22f
)
(x (l)) = 2n1 (x (l))

×
N∑

j=1,
j ̸=l

Φk (x (l) , x (j)) (n2 (x (j)) f1 (x (j))− n1 (x (j)) f2 (x (j)))mesΩj ,

(
AN

31f
)
(x (l)) = 2n1 (x (l))

×
N∑

j=1,
j ̸=l

Φk (x (l) , x (j)) (n3 (x (j)) f1 (x (j))− n1 (x (j)) f3 (x (j)))mesΩj

and (
AN

32f
)
(x (l)) = 2n2 (x (l))×

×
N∑

j=1,
j ̸=l

Φk (x (l) , x (j)) (n3 (x (j)) f2 (x (j))− n2 (x (j)) f3 (x (j)))mesΩj .
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Theorem 2.1 Let f ∈ C (Ω) and Ω ⊂ R3 be a Lyapunov surface with exponent 0 < α ≤
1. Then the expression

(
ANf

)
(x (l)) at the support points x (l), l = 1, N , is the cubature

formula for the integral (1.1), and

max
l=1, N

∣∣(Af) (x (l))− (ANf
)
(x (l))

∣∣ ≤ M1
(
∥f∥∞ N−α

2 + ω
(
f,N− 1

2

))
at 0 < α < 1,

max
l=1, N

∣∣(Af) (x (l))− (ANf
)
(x (l))

∣∣ ≤ M
(
∥f∥∞ N− 1

2 lnN + ω
(
f,N− 1

2

))
at α = 1.

Proof. It is easy to calculate that

(Af) (x) = e1 ((A11f) (x) + (A12f) (x))+

+e2 ((A21f) (x) + (A22f) (x)) + e3 ((A31f) (x) + (A32f) (x)) ,

where

(A11f) (x) = 2n2 (x)

∫
Ω
Φk (x, y) (n1 (y) f2 (y)− n2 (y) f1 (y)) dΩy,

(A12f) (x) = 2n3 (x)

∫
Ω
Φk (x, y) (n1 (y) f3 (y)− n3 (y) f1 (y)) dΩy,

(A21f) (x) = 2n3 (x)

∫
Ω
Φk (x, y) (n2 (y) f3 (y)− n3 (y) f2 (y)) dΩy,

(A22f) (x) = 2n1 (x)

∫
Ω
Φk (x, y) (n2 (y) f1 (y)− n1 (y) f2 (y)) dΩy,

(A31f) (x) = 2n1 (x)

∫
Ω
Φk (x, y) (n3 (y) f1 (y)− n1 (y) f3 (y)) dΩy,

and
(A32f) (x) = 2n2 (x)

∫
Ω
Φk (x, y) (n3 (y) f2 (y)− n2 (y) f3 (y)) dΩy.

As can be seen, to prove the theorem, it is sufficient to show that the expression(
AN

11f
)
(x (l)) at the points x (l) , l = 1, N , is a cubature formula for the integral (A11f) (x)

and estimate the errors of this cubature formula. It is obvious that

(A11f) (x (l))−
(
AN

11f
)
(x (l))

=
n2 (x (l))

2π

∫
Ωl

(n1 (y) f2 (y)− n2 (y) f1 (y)) exp (ik |x (l)− y|)
|x (l)− y|

dΩy

+
n2 (x (l))

2π

N∑
j=1,
j ̸=l

∫
Ωj

(
(n1 (y) f2 (y)− n2 (y) f1 (y)) exp (ik |x (l)− y|)

|x (l)− y|

−(n1 (x (j)) f2 (x (j))− n2 (x (j)) f1 (x (j))) exp (ik |x (l)− x (j)|)
|x (l)− y|

)
dΩy

+
n2 (x (l))

2π

N∑
j=1,
j ̸=l

∫
Ωj

(
1

|x (l)− y|
− 1

|x (l)− x (j)|

)

1 From here on we will denote by M positive constants that are different in different inequalities.
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× (n1 (x (j)) f2 (x (j))− n2 (x (j)) f1 (x (j))) exp (ik |x (l)− x (j)|) dΩy.

We denote the terms in the last equality by hN1 (x (l)), hN2 (x (l)) and hN3 (x (l)), respec-
tively.

Applying the formula for reducing a surface integral to a double integral (see [2, p. 276])
and taking into account Lemmas 2.1 and 2.2, we obtain:

∣∣hN1 (x (l))
∣∣ ≤ M ∥f∥∞

∫
Ωl

dΩy

|x (l)− y|
≤ M ∥f∥∞

∫ R(N)

0
dt ≤ M ∥f∥∞

1√
N

.

Let y ∈ Ωj and j ̸= l. Since

(n1 (y) f2 (y)− n2 (y) f1 (y)) exp (ik |x (l)− y|)

− (n1 (x (j)) f2 (x (j))− n2 (x (j)) f1 (x (j))) exp (ik |x (l)− x (j)|)

= (n1 (y) f2 (y)− n2 (y) f1 (y)) (exp (ik |x (l)− y|)− exp (ik |x (l)− x (j)|))

+ ((n1 (y)− n1 (x (j))) f2 (y) + n1 (x (j)) (f2 (y)− f2 (x (j)))) exp (ik |x (l)− x (j)|)

+ ((n2 (x (j))− n2 (y)) f1 (x (j)) + n2 (y) (f1 (x (j))− f1 (y))) exp (ik |x (l)− x (j)|) ,
then taking into account the inequalities

|exp (ik |x− y|)− exp (ik |x− z|)| ≤ M |y − z| , ∀x, y, z ∈ Ω, (2.1)

and
|n (y)− n (x)| ≤ M |y − x|α ,∀x, y ∈ Ω, (2.2)

we have

∣∣hN2 (x (l))
∣∣ ≤ M

N∑
j=1,
j ̸=l

∫
Ωj

∥f∥∞ (R (N))α + ω (f,R (N))

|x (l)− y|
dΩy

≤ M (∥f∥∞ (R (N))α + ω (f,R (N)))

∫
Ω

1

|x (l)− y|
dΩy

≤ M

(
∥f∥∞√
Nα

+ ω

(
f,

1√
N

))
.

Moreover, from Lemma 2.1 and 2.2, we obtain that for anyy ∈ Ωj , j ̸= l,∣∣∣∣ 1

|x (l)− y|
− 1

|x (l)− x (j)|

∣∣∣∣ ≤ M
|y − x (j)|

|x (l)− y| |x (l)− x (j)|

≤ M
R (n)

|x (l)− y|2
≤ M

|x (l)− y|2
√
N

.

Then ∣∣hN3 (x (l))
∣∣ ≤ M ∥f∥∞

1√
N

∫
Ω\Ωl

1

|x (l)− y|2
dΩy

≤ M ∥f∥∞
1√
N

∫ diamΩ

r(N)

dt

t
dt ≤ M ∥f∥∞

lnN√
N

.
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As a result, summing up the obtained estimates for the expressions hN1 (x (l)), hN2 (x (l))
and hN3 (x (l)), we obtain that the expression

(
AN

11f
)
(x (l)) at the pointsx (l) , l = 1, N ,

is a cubature formula for the integral (A11f) (x), and

max
l=1, N

∣∣(A11f) (x (l))−
(
AN

11f
)
(x (l))

∣∣
≤ M

(
∥f∥∞

1√
Nα

+ ∥f∥∞
lnN√
N

+ ω

(
f,

1√
N

))
.

The theorem is proven.

3 Cubature formula for integral (1.2)

Since, (g (x) , n (x)) = 0, ∀x ∈ Ω, it is obvious that

[n (x) , rotx {Φk (x, y) g (y)}]

= (n (x)− n (y) , g (y)) gradxΦk (x, y)− g (y)
∂Φk (x, y)

∂n (x)
.

Then the integral (1.2) can be represented as

(Bg) (x) = e1 (B1g) (x) + e2 (B2g) (x) + e3 (B3g) (x) ,

where

(B1g) (x) = 2

∫
Ω

(
(n (x)− n (y) , g (y))

∂Φk (x, y)

∂x1
− g1 (y)

∂Φk (x, y)

∂n (x)

)
dΩy,

(B2g) (x) = 2

∫
Ω

(
(n (x)− n (y) , g (y))

∂Φk (x, y)

∂x2
− g2 (y)

∂Φk (x, y)

∂n (x)

)
dΩy,

and

(B3g) (x) = 2

∫
Ω

(
(n (x)− n (y) , g (y))

∂Φk (x, y)

∂x3
− g3 (y)

∂Φk (x, y)

∂n (x)

)
dΩy.

Let us divide the surface Ω into ”regular” elementary parts Ω =
N⋃
l=1

Ωl and let

(
BNg

)
(x) = e1

(
BN

1 g
)
(x) + e2

(
BN

2 g
)
(x) + e3

(
BN

3 g
)
(x) ,

where

(
BN

1 g
)
(x) = 2

N∑
j=1,
j ̸=l

(
(n (x (l))− n (x (j)) , g (x (j)))

∂Φk (x (l) , x (j))

∂x1 (l)

−g1 (x (j))
∂Φk (x (l) , x (j))

∂n (x (l))

)
mesΩj ,

(
BN

2 g
)
(x) = 2

N∑
j=1,
j ̸=l

(
(n (x (l))− n (x (j)) , g (x (j)))

∂Φk (x (l) , x (j))

∂x2 (l)
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−g2 (x (j))
∂Φk (x (l) , x (j))

∂n (x (l))

)
mesΩj ,

(
BN

3 g
)
(x) = 2

N∑
j=1,
j ̸=l

(
(n (x (l))− n (x (j)) , g (x (j)))

∂Φk (x (l) , x (j))

∂x3 (l)

−g3 (x (j))
∂Φk (x (l) , x (j))

∂n (x (l))

)
mesΩj

and x (l) = (x1 (l) , x2 (l) , x3 (l)) ∈ Ωl are supporting points.

Theorem 3.1 Let g ∈ C⊥ (Ω) and Ω ⊂ R3 be a Lyapunov surface with exponent 0 < α ≤
1. Then the expression

(
BNg

)
(x (l)) at the support points x (l), l = 1, N , is the cubature

formula for the integral (1.2), and

max
l=1, N

∣∣(Bg) (x (l))−
(
BNg

)
(x (l))

∣∣ ≤ M
(
∥g∥∞ N− α

2 lnN + ω
(
g,N− 1

2

))
.

Proof. First, we show that the expression
(
BN

1 g
)
(x (l)) at the points x (l) , l = 1, N , is a

cubature formula for the integral (B1g) (x) and estimate the errors of this cubature formula.
It is obvious that

(B1g) (x (l))−
(
BN

1 g
)
(x)

= 2

∫
Ωl

(
(n (x (l))− n (y) , g (y))

∂Φk (x (l) , y)

∂x1 (l)
− g1 (y)

∂Φk (x (l) , y)

∂n (x (l))

)
dΩy

+2

N∑
j=1,
j ̸=l

∫
Ωj

(n (x (l))− n (x (j)) , g (y)− g (x (j)))
∂Φk (x (l) , y)

∂x1 (l)
dΩy

+2

N∑
j=1,
j ̸=l

∫
Ωj

(n (x (j))− n (y) , g (y))
∂Φk (x (l) , y)

∂x1 (l)
dΩy

+2

N∑
j=1,
j ̸=l

∫
Ωj

(n (x (l))− n (x (j)) , g (x (j)))

×
(
∂Φk (x (l) , y)

∂x1 (l)
− ∂Φk (x (l) , x (j))

∂x1 (l)

)
dΩy

+2
N∑

j=1,
j ̸=l

∫
Ωj

g1 (y)

(
∂Φk (x (l) , x (j))

∂n (x (l))
− ∂Φk (x (l) , y)

∂n (x (l))

)
dΩy

+2
N∑

j=1,
j ̸=l

∫
Ωj

(g1 (x (j))− g1 (y))
∂Φk (x (l) , x (j))

∂n (x (l))
dΩy.

We denote the terms in the last equality by δN1 (x (l)), δN2 (x (l)), δN3 (x (l)), δN4 (x (l)),
δN5 (x (l)) and δN6 (x (l)), respectively.
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It is not difficult to calculate that

∂Φk (x, y)

∂x1
=

(ik |x− y| − 1) (x1 − y1) exp (ik |x− y|)
4π |x− y|3

and
∂Φk (x, y)

∂n (x)
=

(ik |x− y| − 1) (x− y, n (x)) exp (ik |x− y|)
4π |x− y|3

.

Then, taking into account inequalities (2.2) and

|(x− y, n (x))| ≤ M |x− y|1+α , ∀x, y ∈ Ω, (3.1)

we get that ∣∣δN1 (x (l))
∣∣ ≤ M ∥g∥∞

∫
Ωl

dΩy

|y − x (l)|2−α

≤ M ∥g∥∞
∫ R(N)

0

dt

t1−α
≤ M ∥g∥∞ (R (N))α .

Moreover, taking into account Lemma 2.1, we have∣∣δN2 (x (l))
∣∣ ≤ M

∫
Ω\Ωl

ω (g,R (N))

|y − x (l)|2−αdΩy

≤ Mω (g,R (N))

∫
Ω

dΩy

|y − x (l)|2−α ≤ Mω (g,R (N))

and ∣∣δN3 (x (l))
∣∣ ≤ M ∥g∥∞

∫
Ω\Ωl

|y − x (j)|α

|y − x (l)|2
dΩy ≤ M ∥g∥∞ (R (N))α

∫ diamΩ

r(N)

dt

t

≤ M ∥g∥∞ (R (N))α |lnR (N)| .
Since

∂Φk (x (l) , y)

∂x1 (l)
− ∂Φk (x (l) , x (j))

∂x1 (l)

=
ik ( |x (l)− y| − |x (l)− x (j)|) (x1 (l)− y1) exp (ik |x (l)− y|)

4π |x (l)− y|3

+
( ik |x (l)− x (j)| − 1) (x1 (j)− y1) exp (ik |x (l)− y|)

4π |x (l)− y|3

+
( ik |x (l)− x (j)| − 1) (x1 (l)− x1 (j))

4π |x (l)− y|3

× (exp (ik |x (l)− y|)− exp (ik |x (l)− x (j)|))
+ ( ik |x (l)− x (j)| − 1) (x1 (l)− x1 (j))

× exp (ik |x (l)− x (j)|)
(

1

4π |x (l)− y|3
− 1

4π |x (l)− x (j)|3

)
,

then, taking into account inequality (2.1) and Lemma 2.1, we find∣∣∣∣∂Φk (x (l) , y)

∂x1 (l)
− ∂Φk (x (l) , x (j))

∂x1 (l)

∣∣∣∣ ≤ M
R (N)

|x (l)− y|3
, ∀y ∈ Ωj , j ̸= l.
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As a result, taking into account inequality (2.2), we obtain that if 0 < α < 1, then∣∣δN4 (x (l))
∣∣ ≤ M ∥g∥∞R (N)

∫
Ω\Ωl

dΩy

|y − x (l)|3−α

≤ M ∥g∥∞R (N)

∫ diamΩ

r(N)

dt

t2−α
≤ M ∥g∥∞ (R (N))α ,

and if α = 1, then ∣∣δN4 (x (l))
∣∣ ≤ M ∥g∥∞R (N) |lnR (N)| .

Let y ∈ Ωj and j ̸= l. It is obvious that

∂Φk (x (l) , y)

∂n (x (l))
− ∂Φk (x (l) , x (j))

∂n (x (l))

=
ik ( |x (l)− y| − |x (l)− x (j)|) (x (l)− y, n (x (l))) exp (ik |x (l)− y|)

4π |x (l)− y|3

+
( ik |x (l)− x (j)| − 1) (x (j)− y, n (x (l))) exp (ik |x (l)− y|)

4π |x (l)− y|3

+
( ik |x (l)− x (j)| − 1) (x (l)− x (j) , n (x (l)))

4π |x (l)− y|3

× (exp (ik |x (l)− y|)− exp (ik |x (l)− x (j)|))
+ ( ik |x (l)− x (j)| − 1) (x (l)− x (j) , n (x (l)))

× exp (ik |x (l)− x (j)|)
(

1

4π |x (l)− y|3
− 1

4π |x (l)− x (j)|3

)
.

Moreover, taking into account inequalities (2.2) and (3.1), we find

|(x (j)− y, n (x (l)))| = |(x (j)− y, n (x (l))− n (y)) + (x (j)− y, n (y))|

≤ |(x (j)− y, n (x (l))− n (y))|+ |(x (j)− y, n (y))|

≤ R (N) |x (l)− y|α + (R (N))1+α .

Then, taking into account inequalities (2.1) and (3.1) and Lemma 2.1, we obtain that

∣∣δN5 (x (l))
∣∣ ≤ M ∥g∥∞

∫
Ω\Ωl

(
R (N)

|x (l)− y|3−α +
(R (N))1+α

|x (l)− y|3

)
dΩy

≤ M ∥g∥∞ (R (N))α .

Taking into account inequality (3.1), we have∣∣δN6 (x (l))
∣∣ ≤ Mω (g,R (N))

∫
Ω\Ωl

1

|y − x (l)|2−αdΩy ≤ Mω (g,R (N)) .

As a result, summing up the obtained estimates for the expressions δN1 (x (l)), δN2 (x (l)),
δN3 (x (l)), δN4 (x (l)), δN5 (x (l)) and δN6 (x (l)), and taking into account Lemma 2.2, we
obtain that∣∣(B1g) (x (l))−

(
BN

1 g
)
(x)
∣∣ ≤ M

(
∥g∥∞ N− α

2 lnN + ω
(
g,N− 1

2

))
.
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Similarly, it can be shown that the expressions
(
BN

2 g
)
(x (l)) and

(
BN

3 g
)
(x (l)) at the

points x (l) , l = 1, N , is a cubature formula for the integrals (B2g) (x) and (B3g) (x),
respectively, and∣∣(B2g) (x (l))−

(
BN

2 g
)
(x)
∣∣ ≤ M

(
∥g∥∞ N− α

2 lnN + ω
(
g,N− 1

2

))
,∣∣(B3g) (x (l))−

(
BN

3 g
)
(x)
∣∣ ≤ M

(
∥g∥∞ N− α

2 lnN + ω
(
g,N− 1

2

))
.

The theorem is proven.
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