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Abstract. This paper presents a cubature formula for a class of vector potentials with weak singularities.
In addition, error estimates for the constructed cubature formulas are provided.
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1 Introduction

It is known that (see [1, p. 153-155]) the internal and external electric boundary problems,
as well as the internal and external magnetic boundary problems, lead to a system of integral
equations that depend on vector potentials:

(Af) (z) =2 /Q i (2, y) [0 (2), [0 (), f 9)]] A2y 2 = (w1, 0,5) € 2, (L)
and

(Bg) () = 2/0 [n(z),roty { Py (x, y) g (y)}] dS2y, x = (x1,22,23) € 2, (1.2)

where {2 C R? is the Lyapunov surface, n (z) = (n1 (z),n2 (x ) ns (z)) is the outer
unit normal at the point x € {2, vector function f (z) = (f1 ( ) 2 (x), f3(z)) belongs
to the class C' (£2) —the space of all continuous functions on the surface {2 with the norm
I fll = = max |f () |, the vector function g () = (g1 (z), g2 (), g3 (x)) belongs to the

)
class CJ_( ) ={geC ()] (g(x),n(x)) =0, Vx € 2}, the notation [a, b] means the
cross product of the vectors a and b,the notation (a b) —the dot product,

exp (ik |z — y|)

¢k<l’,y): 47T‘$—y’

7x7y€R37x#y7

* Corresponding author

E.H. Khalilov
Azerbaijan State Oil and Industry University, Baku, Azerbaijan
E-mail: elnurkhalil@mail.ru

V.O. Safarova
Azerbaijan State Oil and Industry University, Baku, Azerbaijan
E-mail: vefa-seferova-91 @bk.ru



2 Cubature formula for a class of vector potentials...

the fundamental solution of the Helmholtz equation Au + k?u = 0, A is the Laplace
operator, and k is a wave number with Im k& > 0.

Since in many cases it is impossible to find exact solutions to integral equations, the
study of approximate solutions to these integral equations becomes of interest. To find an
approximate solution, it is primarily necessary to construct cubature formulas for the inte-
grals involved in these equations. It should be noted that in work [7], a quadrature formula
for a class of weakly singular curvilinear integrals was constructed; in work [8], a quadra-
ture formula for the normal derivative of the double layer potential was developed; in work
[3], a cubature formula for the normal derivative of the acoustic potential of a simple layer
was presented; and in work [5], using the result of the work [4] a new method for con-
structing a cubature formula for the normal derivative of the acoustic potential of a double
layer was proposed. The present work is dedicated to constructing cubature formulas for
the integrals (1.1) and (1.2).

2 Cubature formula for integral (1.1)

N

We partition {2 into “regular” elementary parts: 2 = |J (2. By a regular elementary part
=1

we mean a set of points subordinate to the following requirements:

0
(1) for each I € {1, 2, ..., N} the elementary part {2; is closed and the set {2; of its
0 0 0
interior points with respect to {2 is not empty; moreover, mes 2, = mes{2; and 2, £2; =

Oforje{l,2, ...N},j#L

(2) foreachl € {1, 2, ..., N} the elementary part {2; is a connected piece of the surface
{2 and the boundary of the elementary part (2, is a continuous curve;

(3) foreach I € {1, 2, ..., N} there exists a so-called supporting point z (1) = (1 (1),
22 (1), z3 (1)) € £2 such that

(3.1) 7 (N) ~ R;(N) (the expression r; (N) ~ R; (N) means that r; (N) and R; (N)

r (N
i < Co

are equivalent, i.e., there exist numbers C'; > 0 and Cs < 400 such that C; <
for any N), where r; (N) = min |z —x ()] and R; (N) = max |z —x (I)];
€I €A

B32)R;(N) < %, where d is the radius of the standard sphere (see [9, p. 400]);

(3.3)rj (N) ~r;(N)foreach j € {1,2,..., N}.

Obviously, 7 (N) ~ R(N) and A}im r(N) = lim R(N) = 0, where R(N) =
—00

N—oo
max R (N),r(N) = min ri(N).
=1,N =1,N

) )

The following lemmas are true.

Lemma 2.1 ([6]). There exist constants Cjy > 0 and C| > 0 not depending on N such that,
foralll,je{1,2,..., N}, j#1, andall y € §2;, the following inequalities hold:

Coly—az) <lz() -2 <0 ly—=z (@)
where the x (1), | € {1, 2, ..., N}, are supporting points.

N
Lemma 2.2 ([6]). For a partition 2 = |J (2 of the surface {2 into regular elementary
=1
1

parts, the following relation holds: R (N) ~ TN
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Let us introduce the modulus of continuity of the vector function f € C (£2):

w(f,9) :5supm,5 > 0,
>0 T
where
w(f,7)= max [f(z)—f(y)l,
lz—y|<T
x,yes?

F@) = F W=V @) = @)+ (o (@) — fo )+ (s (2) — f5 (1))

Moreover, let
(ANF) (= (1) = ex ((ATLS) (= (D) + (AS) (2 (1))

+ea (A1 f) (x (1) + (A%f) (@ (1)) +e3 ((A31f) (= (1) + (A%xf) (= (1)),
where e; = (1,0,0), e2 = (0,1,0), e3 = (0,0, 1),

(AN ) (& (1) = 2n2 (x (1))

N

X Z P (z (1), z (7)) (n1 (z (4)) f2 (z (4)) —n2 (x () fr (x (§))) mess2,
g
(ANS) (z (1) = 2n3 (z (1)) X
N
X Z P (x (1), (j)) (n1 (2 (5)) f5 (x (4)) — n3 (2 (4)) fr (x (4))) mes 2,
g
(A1) (2 () = 2n3 (x (1))
N
X Z D (x (1), (5)) (n2 (2 (7)) f3 (x () — n3 (2 (4)) f2 (x (j))) mes 2,
g
(A%f) (2 (1)) = 2ny (z (1))
N
X Z Py (z (1), z (7)) (n2 (z (4)) f1 (x (4)) —n1 (z(4)) f2 (x (4))) mes§;
g
(A1) (2 () = 2ny (2 (1))
N
X Z Qi (z (1), 2 () (n3 (x (5)) f1(z (4)) — n1 (z(4)) f3 (x (5))) mes 2
and
(A1) (z (1) = 2na (z (1)) x
N
X Z P (x (1), 2 (7)) (n3 (z (4)) f2 (z () — n2 (2 (§)) f3 (2 (§))) mes 2.
=1,

i#l
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Theorem 2.1 Let f € C (£2) and 2 C R3 be a Lyapunov surface with exponent 0 < o <
1. Then the expression (A" f) (x (1)) at the support points x (1), | = 1, N, is the cubature
formula for the integral (1.1), and

N 7 4w ~3 a a
max |(4f) (& () = (4Y1) (e @)] £ M (I N5+ (£N75) J at0 < a <,

N -3 n w -3 ata = 1.
pma [(A) (2 (D) = (AN7) (@ ()] < M (Il N3N 0 (£,N72) ) arer =1

Proof. It is easy to calculate that
(Af) (z) = e1 (A1 f) () + (A2 f) (z)) +
+e2 ((A21f) () + (A2 f) (7)) + es ((Asf) (x) + (As2f) (2)) ,

where
(Anf) () =202 ) [ (o, 9) (1 () f2 () = m2 0) i () 42,
(A1af) (@) = 203 &) | D) (01 () Fo () = 3 (0) o ) 42,
(A1) @) = 203 ) [ (o, 9) (2 0) s (o) = m (0) 2 () 42,
() @) =201 ) [ (o, 9) (2 0) i () = 2 (0) 2 () 42,
(A1) @) = 201 ) [ (o 9) (3 0) i () = (0) 3 () 42,
and

(Asaf) (2) = 2n5 (x) / Bi (2, y) (n3 () fo () — m2 (4) f (v)) A2y,

k0]
As can be seen, to prove the theorem, it is sufficient to show that the expression

(A ) (z (1)) at the points z (1) , I = 1, N, is a cubature formula for the integral (A;1 f) (z)
and estimate the errors of this cubature formula. It is obvious that

(Anf) (= (1) = (AN S) (= (1)
_ M (ﬂﬂ(l))/ (n1 (y) f2 (y) —n2(y) fr () exp (ik|z (1) —yl) ()
i

om 20—yl '
ma (2 () o [ ( (1. () fo (9) = 2 (9) i () exp (i |2 (1) — )
= ;/A ()~ 4l
J#l
(e fale ) - eGP A D kle ) =) g
()~ 9] '
no (2 (1)) o 1 1
T j;,/gj@(w—y\ EOREa)
J#l

! From here on we will denote by M positive constants that are different in different inequalities.
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x (n1 (2 (4)) f2 (2 (5)) = n2 (z (7)) f1 (z (7)) exp (ik [z (1) — 2 ()]) di2y.

We denote the terms in the last equality by A3 (z (1)), kY (x (1)) and hYY (x (1)), respec-
tively.

Applying the formula for reducing a surface integral to a double integral (see [2, p. 276])
and taking into account Lemmas 2.1 and 2.2, we obtain:

1y, R(N)
WY ()| < M [1f] / Y M / dt < M | f]|
0

2 | (1) =yl
Lety € 2; and j # [. Since
(n1 (y) f2 (y) — n2 (y) f1 (y) exp (ik [z (1) — yl)
= (n1 (2 (4)) f2 (x () = n2 (z (7)) f1 (z (4))) exp (ik | (1) — = (§)])
= (n1(y) f2(y) = n2 (y) f1 (y)) (exp (ik [z (I) — y|) — exp (ik | (1) — 2 (5)]))
+ ((n1 (y) = na (z (4))) f2 (y) + 11 (2 (7)) (f2 () — f2 (2 (5)))) exp (ik |z (1) — = (5)])
+ ((n2 (z (7)) —n2 (y) f1 ( (7)) + n2 () (f1 (2 (7)) = fr (¥)) exp (ik | (1) — = (§)])

then taking into account the inequalities

1

lexp (ik |z — y|) — exp (ik [v — 2|)| < M |y — 2| ,Va,y,2 € L2, 2.1

and
In(y) —n(z)] < My —z|*,Va,y € 2, (2.2)

we have

1/l (R (N))® +w (f, R(N))

N
N
|h2<xa»\5fw;§3 . () —y| o
il
gﬂ4mmmuﬂNﬁa+wUJ“N”\émw&—w“%

(Y s (o )

Moreover, from Lemma 2.1 and 2.2, we obtain that for anyy € (2;, j # [,

[ 1 ly — (5)]
z () =yl [z () —w(j)!’ MO0 -20)

R (n) M
M0 ROV

N 1 1
W @) MUl g [ iy

1 [ham® gt In N
<M — —dt < M —_—
<Ml g [ S ML

Then



6 Cubature formula for a class of vector potentials...

As aresult, summing up the obtained estimates for the expressions h{ (z (1)), b3’ (= (1))
and hlY (z (1)), we obtain that the expression (A% f) (z (1)) at the pointsz (1), !
is a cubature formula for the integral (411 f) (z), and

e (A1 f) (= (D) = (ANLS) (@ ()]

<M (I 3 + Ul e 0 (12 )

The theorem is proven.

3 Cubature formula for integral (1.2)
Since, (g (x),n (z)) = 0, Vz € £2, it is obvious that

[n(x) ,rot: {Pr (x, y) g () }]

= (n(z) —n(y),9(y)) grad, Py (z, y) — g (y) ad;;;((za;)y) '

Then the integral (1.2) can be represented as

(Bg) (x) = e1 (B1g) (x) + ez (B2g) (z) + e3 (Bsg) (2) ,

where
(Big) () =2 /Q <(" (@) =n ()9 () 8@%2’ g 8%2((2)‘1’) ) i,
(Bag) () = /!2 ((” (@) =n(y),9(y) a@%i’ Y _ g y) 8(‘2;2(2;’)”) i,
and
(Bag) (@) =2 | ((n (@) = n(0) g () P gy ) O ((”;)y)> 10,
N

Let us divide the surface {2 into “regular” elementary parts 2 = (J (2 and let

=1
(BYg) (x) = e1 (B{'g) (2) + €2 (BYg) («) + e3 (B3'g) («

where

- . s 0P (2 (), x (5
(BY9) @) =23 (0 (1) = n (e ()0 (2 () 220D
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N O z(l),x(j
(B9) @) =23 (0 0) =0 (e () (o ) 225 020D

R I

and z (1) = (z1 (1), 2 (1), z3(I)) € £2; are supporting points.

)mest

Theorem 3.1 Let g € C| (§2) and 2 C R3 be a Lyapunov surface with exponent 0 < o <
1. Then the expression (B g) ( (1)) at the support points x (1), | = 1, N, is the cubature
formula for the integral (1.2), and

max |(Bg) (« (1)) ~ (BY) (= ()] < M (llgle N~ FmN +w (g, N7 2)).

Proof. First, we show that the expression (B{'g) (z (1)) at the points z (1), [ =1, N,isa
cubature formula for the integral (B1g) () and estimate the errors of this cubature formula.

It is obvious that
(Big) (z (1)) = (B1'g) (x)

_ iz () —n 0Py (x (1), y) 0 (x (1), y)
=2 [ (e @) =n .00 PG g1 ) T de

125 [ ) -n66) 0 - 966 YD,

o0, (x (). y) OB (x(1). z(5))
( o n() )d”y

We denote the terms in the last equality by 52 (z (1)), 62 (x (1)), 65 (= (1)), 62 (z (1)),
6 (z (1)) and 6} (z (1)), respectively.
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It is not difficult to calculate that

0P (z,y) _ (ik [z —y|—1) (21 — 1) exp (ik |z —y|)
dzy Ar |z —yl?

and

0Py (z,y) _ (ik |z —yl—1) (x —y,n(x)) exp (ik [z — y])
In () 4 |a —y|?
Then, taking into account inequalities (2.2) and
|($_y7n(x))|§M|$_y|1+a7V$7y€“Qv (31)
we get that

07 (z (1))] < M||9||oo/9 w_if(%g_a

R(N) - q¢ N
<M |9l Ta S Mgl (R(N)".
0 t
Moreover, taking into account Lemma 2.1, we have

o @y <m [ L@RN) 40

e ly—zOP
< Mw (g,R(N))/Q’y_ZZC!(ZZJNz_a < Mw (g, R(N))
and

165 (= ()] < M |lg]l o /\Q |’?;_9;(Jl§

|cx diam{?2 dt
0]
< M ||gllo (R(N))" [InR(N)|.

rdf, < Mgl RO [
r(N)

Since
0Py (x (1), y) 9Pk (xz(1), x(4))
oz (1) Oy (1)
_ ik (e () =yl =z () == (G)]) (z1 () —y1) exp (ik |z (1) — yl)
Ar |z (1) =yl
LGikle ) =2 () = 1) (21.() = o) exp (k] (1) ~ y)
am [z () —yf°
LGkl () =2 ()= 1) (@1 ()~ 21 ()
4l (l) - yf’

x (exp (ik [ (1) — y]) — exp (ik [z (1) — 2 (4)]))
+ ikl () =2z ()] =1) (21 (1) = 21 (5))
1

) . 1
w000 (o ~ p o)

then, taking into account inequality (2.1) and Lemma 2.1, we find

0Py (x (), y) 0P (x (1), = (5)) R(N)
dx1 (1) dx1 (1) ’ : M\x(l) —y

3,Vy€(2j,j7él.
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As a result, taking into account inequality (2.2), we obtain that if 0 < @ < 1, then

o )] < 21 gl ROV) [ iy

e |y — = (1)

diam{?2 dt N
<MIgl ROV [ G < Mgl (R OO

r

and if « = 1, then
68 (z ()] < M [|g]lo, R (N) [In R (N)].

Lety € 2; and j # [. It is obvious that
0Py (x (1) ,y) 0Pk (x (1), (4))

on (z (1)) on (z (1))
_ ik (e () =yl =z () == (G)) (=) —y,n(x 1)) exp (ik |z (1) — yl)
dr [z (1) =y’
LUkl @) 2 () —1) (@ () —y,n (@ @) exp (ik|z (D) - y))
dr fa (1) = yP
LUkl @) =z () =1) (@0 —z(),n (1)

3

Am |z (1) -yl

x (exp (ik [ (1) = y]) — exp (ik [z (1) — 2 (7))
+ (ke () =z (@) =1 @) -z (), n(z1)

. > 1 1
x exp (ik |z (1) — z (5)]) <4ﬂ_ () — g CAn |z (1) —x(j)|3) .

Moreover, taking into account inequalities (2.2) and (3.1), we find
(@ () —y,n (D)) =z () —y,n(@d) —ny) + (@ G) —yn(y))
<@ (@) —yn(z) —n@)+ () —yn )l
< R(N) |z (l) = y|* + (R(N))",
Then, taking into account inequalities (2.1) and (3.1) and Lemma 2.1, we obtain that

1+«
1687 (2 (1))] < MHgHOO/Q\Ql (x(ifzsa + ﬁf((l])v)_)mg ) e,

< M gl (R(N))".
Taking into account inequality (3.1), we have
1

163 (& (1)] < Mw (g, R()) / -

————df2y, < Mw(g,R(N)).
ey — (1)

As aresult, summing up the obtained estimates for the expressions 81V (x (1)), 65" (z (1)),
SV (x (1), 6 (z (1)), 62 (z (1)) and 6% (x (1)), and taking into account Lemma 2.2, we
obtain that

|(Big) (2 (1) = (BYg) @)] < M (gle N"EmN +w (9,N73)).
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Similarly, it can be shown that the expressions (B2 g) (z (1)) and (B4 g) (z (1)) at the
d

points z (I), [ =1, N, is a cubature formula for the integrals (B2g) (x) and (Bsg) (x),
respectively, and

|(B2g) (& (1) = (BY'g) @) < M (gl N™F InN +w (9.N72)).

|(Bag) (& (1) = (B'g) @) < M (gl N"F N +w (g.N73)).

The theorem is proven.
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