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Abstract. In this paper, we investigate the basicity of the eigenfunction system associated with a second-
order differential operator with a discontinuity point and a spectral parameter in the discontinuity con-
dition, within rearrangement-invariant Banach function spaces. The analysis is carried out under certain
assumptions on the Boyd indices of these spaces. As a result, we prove a series of theorems establish-
ing the basicity of the eigenfunctions in appropriate separable subspaces. These results contribute to the
extension of classical spectral theory to wider classes of function spaces.
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1 Introduction

We consider the following spectral problem with a point of discontinuity:

y
′′
(x) + λy (x) = 0, x ∈

(
0,

1

3

)
∪
(
1

3
, 1

)
(1.1)

y′ (0) = y′ (1) = 0

y
(
1
3 − 0

)
= y

(
1
3 + 0

)
y
′ (1

3 − 0
)
− y

′ (1
3 + 0

)
= λmy

(
1
3

)
,

 (1.2)

here, λ is the spectral parameter, and m ̸= 0 is a non-zero complex constant. Spectral
problems of this type naturally arise in the study of vibrations of a loaded string with free
ends, particularly when solved using the Fourier method. The theoretical and practical im-
portance of these problems is noted in several well-known monographs (see, e.g., [1–3]).
The spectral problem formed by the vibration of a loaded string with fixed ends was studied
in works [4-14]. In [15–17], asymptotic formulas for the eigenvalues and eigenfunctions of
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the spectral problem (1.1),(1.2) were derived. Furthermore, theorems concerning complete-
ness and basis properties were proved in the spaces Lp

⊕
C and Lp, as well as in Morrey

spaces. In [18, 19], asymptotic formulas for the eigenvalues and eigenfunctions of the spec-
tral problem (1.1),(1.2) in the summable potential case were obtained, and theorems on the
basis properties of the eigenfunctions in the spaces Lp

⊕
C and Lp, were established. In

[20-25], direct and inverse spectral problems for differential operators with discontinuity
conditions in various functional spaces, were studied. Another class of boundary conditions
are degenerate boundary conditions. For such boundary conditions, the spectrum of the cor-
responding operator is either empty or coincides with the entire complex plane (see [26]
and the bibliography there).

The basicity properties of eigenfunctions corresponding to the Sturm–Liouville problem
with periodic and antiperiodic boundary conditions were studied in [27] within the frame-
work of rearrangement-invariant Banach function spaces. However, the method used in the
article [27] is applicable only to a narrow class of spectral problems, since it is based on the
fact of uniform equiconvergence with the trigonometric system. The basis property of the
classical exponential system in separable subspaces of invariant spaces is established, for
example, in the monographs [28-30]. In [31], the basis property of the trigonometric system
in the weighted Morrey space is proved.

In this paper, we investigate the basis properties of a system of eigenfunctions of the
spectral problem (1.1),(1.2) in Banach function spaces. Under certain conditions imposed
on the Boyd indices (see [28, 32, 33]) of rearrangement-invariant Banach function spaces,
we prove basis properties of the system of eigenfunctions of the spectral problem in suitable
separable subspaces of these spaces. In particular, these spaces include Lebesgue, Grand-
Lebesgue, Orlicz, Marcinkiewicz, and other spaces.

2 Auxiliary Facts

Recall the definitions of the r−bases and r−close systems in Banach space X .

Definition 2.1 The bases {xn}n∈N of Banach space X is called a r−bases, if for any
x ∈ X ( ∞∑

n=1

|⟨x, x∗n⟩|
r

) 1
r

≤ C ∥x∥ ,

where {x∗n}n∈N is a conjugate system of {xn}n∈N .

Definition 2.2 The sequence {xn}n∈N and {yn}n∈N of X is called a r−close if

+∞∑
n=1

∥xn − yn∥rX < +∞.

The following theorem is proved in [34].

Theorem 2.1 Let X be a Banach space with r−basis {xn}n∈N and a system {yn}n∈N is
r
′−close to {xn}n∈N , 1

r +
1
r′

= 1. Then the following properties are equivalent:

1 {yn}n∈N is a complete system in X;
2 {yn}n∈N is a minimal system in X;
3 {yn}n∈N is a ω−linear independent system in X;
4 {yn}n∈N is a basis in X .
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If one of these conditions is satisfied, then the system {yn}n∈N forms a basis of the space
X which is isomorphic to the system {xn}n∈N .

Let us consider that X can be presented as a direct decomposition X = X1
⊕⊕

X2
⊕

· · ·
⊕

Xm, where Xi, i = 1,m are Banach spaces. For convenience, the element
of X are identified, with vectors: x ∈ X ⇔ x = (x1, x2, . . . , xm) , where xk ∈ Xk, k =
1,m. The norm of X is defined by the formula

∥x∥X =

√√√√ m∑
i=1

∥xi∥2Xi
.

It is easy shown that (see [35]) X∗ = X∗
1

⊕
X∗

2

⊕
· · ·
⊕

X∗
m and for all f ∈ X∗ and

x ∈ X it holds

< x; f >=
m∑
i=1

< xi; fi >,

(< · ; · > is the value of functional), where f = (f1, f2, . . . , fm) and fk ∈ X∗
k , k = 1,m.

For the xk ∈ Xk let us denote by x̃k the element from X , which is defined by the formula

x̃k =

0, . . . , 0, xk︸ ︷︷ ︸
k

, . . . , 0

 .

Suppose that a system {uin}i=1,m,n∈N is given in each space Xi, i = 1,m. Consider the
following system in X

ûin =
(
a
(n)
i1 u1n, a

(n)
i2 u2n, . . . , a

(n)
imumn

)
, i = 1,m, n ∈ N (2.1)

where a
(n)
ij are some numbers. Let

An =
(
a
(n)
ij

)
i,j=1,m

; ∆n = detAn.

The following theorem is proved in [12].

Theorem 2.2 If the system {ukn}k=1,m;n∈N forms basis for X and

∆n ̸= 0,∀n ∈ N

then the system {ûkn}k=1,m;n∈N defined by formula (2.1) forms basis with parentheses for
X . If in addition the following conditions

sup
n

{
∥An∥ ,

∥∥A−1
n

∥∥} < ∞, sup
n

{∥ukn∥ , ∥ϑkn∥} < ∞

hold, where {ϑkn}k=1,m;n∈N ⊂ X∗- is biorthogonal to {ukn}k=1,m;n∈N , then the system
{ûkn}k=1,m;n∈N forms a usual basis for X .

Let X0 be a Banach space with the norm ∥·∥X0
. Then X = X0

⊕
Cm is also a Banach

space for û = (u, α1, α2, . . . , αm) ∈ X, where u ∈ X0, αk ∈ C, k = 1,m, the norm is
defined by the formula

∥û∥X =

(
∥u∥2X0

+
m∑
k=1

|αk|2
) 1

2

.
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X∗ = X∗
0

⊕
Cm is a dual space of X and latter means that the each vector (v, β1, . . . , βm) ∈

X∗
0

⊕
Cm defines the element v̂ ∈ X∗ by the formula [35]

<û, v̂> =<u, v>+

m∑
k=1

αkβk,

where v ∈ X∗
0 , βk ∈ C, k = 1,m. In [36] (see also [37]) has been proved.

Theorem 2.3 Let {ûn}n∈N form a basis for X , where ûn = (un, αn1, αn2, . . . , αnm)
and {v̂n}n∈N where v̂n = (vn, βn1, βn2, . . . , βnm) is a biorthogonal conjugate system,
J = {n1, n2, . . . , nm} ⊂ N is the set of m different natural numbers, NJ = N\J . Put

δ = det ∥βnkj∥
n
k,j=1,m .

Then for the basicity of the system {un}n∈NJ
in the space X0 it is necessary and sufficient

the fulfilment of the condition δ ̸= 0. Here the biorthogonal system of {un}n∈NJ
is given by

v∗n =
1

δ

∣∣∣∣∣∣∣∣
vn vn1 . . . vnm

βn1 βn11 . . . βnm1
...

...
...

...
βnm βn1m . . . βnmm

∣∣∣∣∣∣∣∣ .
If δ = 0, then the system {un}n∈NJ

does not form a basis for X0, moreover the system
{un}n∈NJ

is not complete and minimal in X0.

In this part we will give some definition and facts related to Banach function spaces
(see, [28,29,30,38]). Let (R,G, µ) will denote a measurable space, G is the σ –algebra of
measurable subset of R , M will stand for a set of µ−measurable functions on R, M+

is the set of non-negative functions from M, M0 is the set of µ−a.e. finite functions from
M. The characteristic function of measurable subset E of R will be denote by χE .

Definition 2.3 A mapping ρ : M+ → [0,∞] is called a Banach function norm (or simply
a function norm) if, for all f, g, fn, (n = 1, 2, . . . ) in M+, for all constants α ≥ 0 and for
all µ−measurable subsets E of R, the following properties hold:

1 ρ (f) = 0 ⇔ f = 0 µ− a.e. ; ρ (αf) = αρ (f) , ρ (f + g) ≤ ρ (f) + ρ (g);
2 0 ≤ g ≤ f µ− a.e. ⇒ ρ (g) ≤ ρ (f) ;
3 0 ≤ fn ↗ f µ− a.e. ⇒ ρ (fn) ↗ ρ (f);
4 µ (E) < +∞ ⇒ ρ (χE) < +∞ ;
5 µ (E) < +∞ ⇒

∫
E fdµ ≤ CEρ (f), for some constant CE , 0 < CE < +∞,

depending on E and ρ but independent of f .

Definition 2.4 Let ρ be a function norm. The collection X = X (ρ) all functions f in M
for which ρ (|f |) < +∞ is called a Banach function space. For each f ∈ X define

∥f∥X = ρ (|f |) . (2.2)

Definition 2.5 (Associated norm) . If ρ is a function norm, its associated norm ρ
′
is defined

on M+ by

ρ
′
(g) =

{∫
R
fgdµ ; f ∈ M+, ρ (f) ≤ 1

}
, g ∈ M+ . (2.3)
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Definition 2.6 Let ρ be a function norm and let X = X (ρ) be a Banach function space
determined by ρ as in definition 4. Let ρ

′
be the associate norm of ρ. The Banach function

space X
(
ρ
′
)

determined by ρ
′

is called the associate space of X and is denoted by X ′.

It follows from (2.2), (2.3) that the norm of a function ρ in the associate space X ′ is
given by

∥g∥
′

X = sup

{∫
R
|fg| dµ : f ∈ X, ∥f∥X ≤ 1

}
.

Definition 2.7 A function f in a Banach function space X is said to have absolutely contin-
uous norm in X if ∥fχEn∥X → 0 for every sequence {En}+∞

n=1 satisfying En → ∅ µ− a.e.
The set of all functions in X of absolutely continuous norm is denoted by Xa. If Xa = X ,
then the space X itself is said to have absolutely continuous norm.

Definition 2.8 Let X be a Banach function space. The closure in X of the set of simple
functions is denoted by Xb.

Proposition 2.1 [38] The subspace Xb is the closure in X of the set of bounded functions
supported in sets of finite measure. In addition, there are continuous embeddings Xa ⊂
Xb ⊂ X . The subspaces Xa and Xb coincide if and only if 1 ∈ Xa.

Definition 2.9 The distribution function µf of a function f ∈ M0 is given by

µf (λ) = µ {x ∈ R : |f (x)| > λ} , λ ≥ 0.

Two functions f, g ∈ M0 are called to be equimeasurable if µf (λ) = µg (λ) for all λ ≥ 0.
The decreasing rearrangement function of the function f ∈ M0 is defined as a function

f∗ (t) = inf {λ ≥ 0 : µf (λ) ≤ t} , t ≥ 0.

Definition 2.10 Let (R,G, µ) is totally σ –finite measure space. If for every pair equimea-
surable functions f, g ∈ M0 identity ρ (|f |) = ρ (|g|) holds, then the norm ρ is called
rearrangement-invariant norm. The Banach function space X , generated by rearrangement-
invariant norm ρ is called rearrangement-invariant Banach function space.

Let X be a rearrangement-invariant Banach function space over (R,G, µ), R+ = (0,+∞)
and m is the Lebesgue measure on R+. From the Luxemburg representation theorem ([28]
Theorem II.4.10) there is a rearrangement-invariant function norm ρ̃ over (R+,m) defined
by

ρ̃ (g) = sup

{ ∫ ∞

0
f∗ (t) g∗ (t) dt : ρ

′
(f) ≤ 1

}
,

such that
ρ (f) = ρ̃ (f∗) , ∀f ∈ M+

0 .

The rearrangement-invariant Banach function space generated by ρ̃ is denoted by X̃ .

Definition 2.11 For t > 0, the operator Et defined by the formula

(Etf) (s) = f (st) , 0 < s < +∞,

Is called a dilation operator. If hX (t) =
∥∥E1/t

∥∥
X̃→X̃

, then the Boyd indices aX and βX
of the space X defined by the formula

αX = lim
t→+0

lnhX (t)

ln t
, βX = lim

t→+∞

lnhX (t)

ln t
.

For the Boyd indices, the conditions 0 ≤ αX ≤ βX ≤ 1 are satisfied, moreover αX′ =
1− βX , βX′ = 1− αX .
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We need also the following theorems [28,32,33].

Theorem 2.4 (Boyd) Let X be a rearrangement-invariant Banach function space with the
Boyd indices αX , βX : 0 < αX ≤ βX < 1. Then for every p, q : 1 ≤ q < 1

βX
≤ 1

αX
<

< p ≤ +∞, the continuous embeddings Lp ⊂ X ⊂ Lq hold.

Theorem 2.5 Let X = X (−π, π) be a rearrangement-invariant Banach function space on
the interval (−π, π). The Fourier series converges in Xb (−π, π) if and only if the Boyd
indices satisfy the condition

0 < αX ≤ βX < 1. (2.4)

In [15] it was proved that the eigenvalues of the problem (1.1),(1.2) are asymptotically
simple and consist of λ0 = 0 and two series: λi,n = ρ2i,n, i = 1, 2; n ∈ Z+, where
Z+ = {0}

⋃
N and ρi,n holds the following asymptotically formulas:ρ1,n = 3πn+ 3π

2 +O
(
1
n

)
,

ρ2,n = 3πn
2 + 3π

4 +O
(
1
n

)
.

(2.5)

Also the eigenfunctions y0 ≡ 1, yi,n(x), i = 1, 2; n ∈ Z+ of the problem (1.1),(1.2)
corresponding to the eigenvalues λ0 λi,n = ρ2i,n, hold the following formulas

yi,n(x) =

{
cos

2ρi,n
3 cosρi,nx,

cos
ρi,n
3 cosρi,n(1− x),

x ∈
[
0, 13
]
,

x ∈
[
1
3 , 1
]
,

i = 1, 2;n ∈ Z+. (2.6)

Considering (2.5) in (2.6), we will get the following system:

y1,n(x) =

 −cos
(
3πn+ 3π

2

)
x+O

(
1
n

)
,

0,

x ∈
[
0, 13
]
,

x ∈
[
1
3 ; 1
]
,

y2,n(x) =

 0,

αncos
(
3πn
2 + 3π

4

)
(1− x) +O

(
1
n

)
,

x ∈
[
0, 13
]
,

x ∈
[
1
3 ; 1
]
,

(2.7)

where αn = cos
(
πn
2 + π

4

)
. If n = 4kand n = 4k + 3, αn = 1√

2
and n = 4k + 1 and

n = 4k + 2, αn = − 1√
2
.

The problem (1.1),(1.2) can be transformed into a linear eigenvalue problem in the space
Lr (0; 1)

⊕
C by introducing the operator L, which is defined as

D(L) =

{
ŷ = Lr (0, 1)

⊕
C : ŷ =

(
y,my

(
1
3

))
, y ∈ W 2

r

(
0, 13
)⊕

W 2
r

(
1
3 , 1
)
,

y
′
(0) = y

′
(1) = 0, y

(
1
3 − 0

)
= y

(
1
3 + 0

)
and for ŷ ∈ D(L)

Lŷ =

(
−y

′′
; y

′
(
1

3
− 0

)
− y

′
(
1

3
+ 0

))
.

The eigenvalues of the operator L and problem (1.1),(1.2) coincide and {ŷi,n}i=1,2,n∈Z+

are eigenvectors of the operator L, where

ŷ0 = (y0 (x) ;m) , ŷi,n =

(
yi,n(x);my

(
1

3

))
, i = 1, 2;n ∈ Z+. (2.8)
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It is also proved in [17] that the system {y0} ∪ {ŷi,n}i=1,2,n∈Z+ of the eigenvectors of the
operator L form a basis for the space Lr (0; 1)

⊕
C, 1 < r < +∞ and for r = 2 this basis

becomes a Riesz basis. Besides, a biorthogonal system is constructed in [17] for the system
{y0} ∪ {ŷi,n}i=1,2,n∈Z+ .

Let X be a Banach function space. In this part we consider basicity properties of eigen-
functions of the spectral problem (1.1),(1.2) in X

⊕
C, and in X . Here we examine this

properties rearrangement-invariant case for X .
If X = X (I) be a rearrangement-invariant Banach function space on a finite interval I

of the real axis and 1 ∈ Xa then Xa = Xb = C∞
0 (I). In addition, if I = I1∪I2, I1∩I2 = ∅,

then each element f ∈ X (I) can be represented as a sum f = fχI1+fχI2 = f1+f2, where
χI1 and χI2 are the characteristic functions of the intervals I1 and I2, respectively. The
projectors corresponding to this decomposition will be denoted by P1 and P2, i.e. P1f =
f1, P2f = f2. Denote X (I1) = P1X (I) , X (I2) = P2X (I). Then X (I1) and X (I2)
are a rearrangement-invariant Banach function space in which the norms are defined as
follows

∥f1∥X(I1)
= ∥fχI1∥X(I), ∥f2∥X(I2)

= ∥fχI2∥X(I).

Thus the space X (I) is represented as a direct sum X (I) = X (I1)
⊕

X (I2) . If we
define a new norm in it as ∥f1∥X(I1)

+ ∥f2∥X(I2)
, then it will be equivalent to the original.

In addition, there is Xb (I) = Xb (I1)
⊕

Xb (I2).
Let X = X (−1, 1) be rearrangement-invariant Banach function space on the interval

(−1, 1) and its Boyd indices αX , βX satisfy the conditions (2.3). According to Theorem 5,
the exponential system

{
eiπnx

}
n∈Z forms a basis in Xb (−1, 1), and this, in turn, is consis-

tent with the fact that the system of trigonometric functions {1}∪{cosπnx , sinπnx }n∈N
forms a basis in Xb (−1, 1). Let us consider the decomposition of the space Xb (−1, 1) into
a direct sum Xb (−1, 1) = Xb (−1, 0)

⊕
Xb (0, 1). The following theorem holds .

Theorem 2.6 The system of cosines {cosπnx }n∈Z+ forms a basis in each of the spaces
Xb (−1, 0) and Xb (0, 1).

The proof of this theorem is carried out analogously to Theorem 3.1 in paper [14],
which concerns the basis property of the system {sinπnx }n∈Z+ in the spaces Xb (−1, 0)
and Xb (0, 1).

Analogously to the above-mentioned case, the space Xb (0, 1) can be represented as a
direct sum of its subspaces:

X (0, 1) = X

(
0,

1

3

)⊕
X

(
1

3
, 1

)
,

where Xb

(
0, 13
)

and Xb

(
1
3 , 1
)

are the corresponding separable subspaces. Similarly to [14],
it can be proved that the following statement holds.

Theorem 2.7 The system of
{
cos
(
n+ 1

2

)
πx
}
n∈Z+ forms a basis in the spaces Xb (0, 1).

From this theorem, by means of a change of variable, the following is obtained in particular.

Corollary 2.1 The systems of functions
{
cos
(
3πn+ 3π

2

)
x
}
n∈Z+ and{

cos
(
3πn
2 + 3π

4

)
(1− x)

}
form bases in the spaces X

(
0, 13
)

and X
(
1
3 , 1
)
.
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3 Main results

The main result of the work is the following theorem.

Theorem 3.1 Let, X is a rearrangement-invariant Banach function space whose Boyd in-
dices aX , βX satisfy 0 < aX ≤ βX < 1. Then the system {ŷ0} ∪ {ŷin}i=1,2, n∈n∈Z+ of
eigenfunctions corresponding to the spectral problem (1.1), (1.2) forms a basis in the space
Xb (0, 1)

⊕
C.

Proof. Consider the direct sum Xb (0, 1) = Xb

(
0, 13
)⊕

Xb

(
1
3 , 1
)

and represent its ele-
ments as vectors f̃ = (f1; f2), where f1 ∈ Xb

(
0, 13
)
, f2 ∈ Xb

(
1
3 , 1
)

Denote 
e1,n (x) =

{
cos
(
3πn+ 3π

2

)
x , x ∈

[
0, 13
]
,

0, x ∈
[
1
3 , 1
]
,

e2,n (x) =

{
0, x ∈

[
0, 13
]
,

cos
(
3πn
2 + 3π

4

)
(1− x) , x ∈

[
1
3 , 1
]
.

By Theorem 2.6, the systems {e1,n}n∈Z+ and {e2,n}n∈Z+ form bases in the spaces Xb

(
0, 13
)

and Xb

(
1
3 , 1
)
respectively.Define

ẽ1,n = (e1,n; 0) , ẽ2,n = (0; e2,n) .

It then follows immediately that the combined system {ẽi,n}i=1,2; n∈Z+ is a basis of the
space Xb (0, 1). Consider the system {ũi,n}i=1,2;n∈Z+ defined by

ũi,n = bi,1ẽ1,n + bi,2ẽ2,n, i = 1, 2; n ∈ Z+ (3.1)

where bi1 and bi,2, i = 1, 2 are the entries of the matrix

Bn =

(
−6 0
0 6αn

)
.

Since the determinant of Bn is nonzero, it follows from Theorem 2.2 that the system
{ũi,n}i=1,2; n∈Z+ also forms a basis in Xb (0, 1), which is equivalent to the system
{ẽi,n}i=1,2; n∈Z+ .

By Theorem 2.4, there exist numbers p and q satisfying

1 < q <
1

βX
≤ 1

αX
< p < +∞,

such that the continuous embeddings

Lp (0, 1) ⊂ Xb (0, 1) ⊂ Lq (0, 1)

hold.
Let us show that system {ẽi,n}i=1,2;n∈Z+ is an q̃-basis in Xb (0, 1) , where q̃ = max

{
q, q

′
}
.

Assume that 1 < q ≤ 2, then q
′ ≥ 2 and q̃ = q

′
. For any f ∈ Xb (0, 1) , represented as

f = (f1, f2) , with f1 ∈ Xb

(
0, 13
)

and f2 ∈ Xb

(
1
3 , 1
)

it follows from the Hausdorff–Young
inequality and the embeddings

Xb

(
0,

1

3

)
⊂ Lq

(
0,

1

3

)
, Xb

(
1

3
, 1

)
⊂ Lq

(
1

3
, 1

)
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that ( ∞∑
n=0

|< f1, e1,n >|q
′
) 1

q
′

≤ C∥f1∥Lq(0, 13)
≤ C∥f1∥Xb(0, 13)

,

( ∞∑
n=0

|< f2, e2,n >|q
′
) 1

q
′

≤ C∥f2∥Lq( 1
3
,1) ≤ C∥f2∥Xb( 1

3
,1).

Here and in what follows, C will denote a constant that has different values in different
places. From here we get (

2∑
i=1

∞∑
n=0

|< f, ẽi,n >|q
′
) 1

q
′

≤

( ∞∑
n=0

|< f1, e1,n >|q
′
) 1

q
′

+

( ∞∑
n=0

|< f2, e2,n >|q
′
) 1

q
′

≤ C∥f∥Xb(0,1)
.

This implies that the system {ẽi,n}i=1,2,n∈Z+ forms a q
′− basis for Xb (0, 1) .

Let q > 2, then 1 < q
′
< 2 and q̃ = q. By the Hausdorff–Young inequality, for all

f ∈ Xb (0, 1) and using the embeddings

Xb (0, 1) ⊂ Lq (0, 1) ⊂ Lq′ (0, 1)

we have (
2∑

i=1

∞∑
n=0

|< f, ẽi,n >|q
) 1

q

≤

( ∞∑
n=0

|< f1, e1,n >|q
) 1

q

+

( ∞∑
n=0

|< f2, e2,n >|q
) 1

q

≤ C∥f∥L
q
′ (0,1) ≤ C∥f∥Xb(0,1)

.

This means that the system {ẽi,n}i=1,2;n∈Z+ forms q−basis for Xb (0, 1). Consequently, the
system {ẽi,n}i=1,2;n∈Z+ forms q̃− basis for Xb (0, 1). It follows from formulas (3.1) that the
system {ũi,n}i=1,2,n∈Z+ is also a q̃-basis in Xb (0, 1) . Then the system {û0} ∪ {ûi,n}i=1,2,n∈Z+ ,
where , û0 = (0; 1) , û1,n = (ũ1,n; 0) , û2,n = (ũ2,n; 0) , also forms a q̃-basis in the space
Xb (0, 1)

⊕
C.

Then from the formulas (2.7),(2.8) implies that, the following relations are true:
ŷ1,n (x) = û1,n (x) +O

(
1
n

)
,

ŷ2,n (x) = û2,n (x) +O
(
1
n

)
.

(3.2)

Let’s point

ŷi,n =

(
yi,n (x) ,myi,n

(
1

3

))
, i = 1, 2; n ∈ Z+,
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According to formulas (2.6),(2.7) since yi,n
(
1
3

)
= O

(
1
n

)
, it follows from (3.2) that for the

systems {ŷ0}∪{ŷi,n}i=1,2; n∈Z+ and {û0}∪{ûi,n}i=1,2; n∈Z+ the following relation holds:

2∑
i=1

∞∑
n=1

∥ŷi,n − ûi,n∥rXb
⊕

C < +∞ (3.3)

for all r ∈ (1,+∞) .
According to the results of [16], the system {ŷ0} ∪ {ŷi,n}i=1,2,n∈Z+ forms a basis of

the space Lr (0, 1)
⊕

C for every r ∈ (1,+∞). Hence, it is complete and minimal in this
space. Taking into account the embeddings

Lp (0, 1)
⊕

C ⊂ Xb (0, 1)
⊕

C ⊂ Lq (0, 1)
⊕

C

we conclude that the system {ŷ0} ∪ {ŷi,n}i=1,2; n∈Z+ is also complete and minimal in
Xb (0, 1)

⊕
C.

Now, choosing r = q̃
′
= min

{
q, q

′
}

in (3.3), we see that all the assumptions of Theo-
rem 2.1 are satisfied. Therefore, by Theorem 2.1, the system {ŷ0} ∪ {ŷi,n}i=1,2,n∈Z+ forms
a basis of the space Xb (0, 1)

⊕
C which is equivalent to the system {û0}∪{ûi,n}i=1,2,n∈Z+ ,

and thus also equivalent to the system {ê0} ∪ {êi,n}i=1,2,n∈Z+ , where ê0 = û0.

Now let us consider the basicity of the system {y0} ∪ {yi,n}∞i=1,2;n∈Z+,n ̸=n0
with a re-

mote function in space Xb (0, 1).

Theorem 3.2 In order for the system

{y0} ∪ {yi,n}∞i=1,2;n∈Z+,n̸=n0

of eigenfunctions and associated functions of problem (1.1),(1.2) to form a basis in Xb (0, 1),
after eliminating any function yi,n0 (x), it is necessary and sufficient that the corresponding
function zi,n0 (x) of the biorthogonal system satisfy the condition

zi,n0

(
1

3

)
̸= 0.

If

zi,n0

(
1

3

)
= 0,

then after eliminating the function yi,n0 (x) from the system, the resulting system does not
form a basis in Xb (0, 1). Moreover, in this case it is neither complete nor minimal in this
space.

Proof. As we know from [16], the system {ŷ0}∪{ŷi,n}i=1,2,n∈Z+ has a biorthogonal conju-
gate vector system {ẑ0}∪{ẑi,n}i=1,2,n∈Z+ , ẑ0 = (z0 (x) ,m) , ẑi,n (x) =

(
zi,n (x) ,mzi,n

(
1
3

))
in Lp′ (0, 1)

⊕
C ⊂ X⋆

b (0, 1)
⊕

C, where the functions zi,n (x) are the eigenfunctions of
the corresponding conjugate spectral problem

z
′′
(x) + λz (x) = 0, x ∈

(
0,

1

3

)⋃(
1

3
, 1

)
, (3.4)
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z′ (0) = z′ (1) = 0

z
(
1
3 − 0

)
= z

(
1
3 + 0

)
z′
(
1
3 − 0

)
− z′

(
1
3 + 0

)
= λmz

(
1
3

)
 , (3.5)

and have the form
z0 (x) ≡ 1,

zi,n (x) =

 ci,ncos
2ρi,n
3 cosρi,n x, x ∈

[
0, 13
]
,

ci,ncos
ρi,n
3 cosρi,n (1− x) , x ∈

[
1
3 , 1
]
,
i = 1, 2;n ∈ Z+ (3.6)

with the normalized numbers c0, ci,n satisfying

c0 =
1

1 + |m|2
, ci,n = 6 +O

(
1

n

)
i = 1, 2;n ∈ Z+.

From the formulas (3.6) for the eigenfunctions {z0} ∪ {zi,n}i=1,2;n∈Z+ of the conjugate
problem (3.4),(3.5), it follows that zi,n

(
1
3

)
̸= 0. On the other hand, the eigenvectors of the

adjoint operator L∗ have the form ẑ0 = (1,m) , ẑi,n =
(
zi,n (x) ,mzi,n

(
1
3

))
. Applying

Theorem 2.3 to the system {ŷ0} ∪ {ŷi,n}i=1,2,n∈Z+ we see that δ = mzi,n
(
1
3

)
̸= 0 or

δ = mz0
(
1
3

)
= m ̸= 0 for any n ∈ Z+, and all statement of the theorem follow from the

corresponding statements of the Theorem 2.3.
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