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Abstract. In this paper, we investigate the basicity of the eigenfunction system associated with a second-
order differential operator with a discontinuity point and a spectral parameter in the discontinuity con-
dition, within rearrangement-invariant Banach function spaces. The analysis is carried out under certain
assumptions on the Boyd indices of these spaces. As a result, we prove a series of theorems establish-
ing the basicity of the eigenfunctions in appropriate separable subspaces. These results contribute to the
extension of classical spectral theory to wider classes of function spaces.
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1 Introduction

We consider the following spectral problem with a point of discontinuity:

y (2)+ A y(z) =0, z € (0, ;) U <:1,)1> 1.1)

y(0)=9%(1)=0
y(3-0)=y(3+0) (12)

v (5-0) =y (5+0) =2my(5),
here, A is the spectral parameter, and m # 0 is a non-zero complex constant. Spectral
problems of this type naturally arise in the study of vibrations of a loaded string with free
ends, particularly when solved using the Fourier method. The theoretical and practical im-
portance of these problems is noted in several well-known monographs (see, e.g., [1-3]).
The spectral problem formed by the vibration of a loaded string with fixed ends was studied
in works [4-14]. In [15-17], asymptotic formulas for the eigenvalues and eigenfunctions of
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2 On basicity of eigenfunctions of a spectral problem in ...

the spectral problem (1.1),(1.2) were derived. Furthermore, theorems concerning complete-
ness and basis properties were proved in the spaces L, €@ C and L,, as well as in Morrey
spaces. In [18, 19], asymptotic formulas for the eigenvalues and eigenfunctions of the spec-
tral problem (1.1),(1.2) in the summable potential case were obtained, and theorems on the
basis properties of the eigenfunctions in the spaces L, €@ C and L,,, were established. In
[20-25], direct and inverse spectral problems for differential operators with discontinuity
conditions in various functional spaces, were studied. Another class of boundary conditions
are degenerate boundary conditions. For such boundary conditions, the spectrum of the cor-
responding operator is either empty or coincides with the entire complex plane (see [26]
and the bibliography there).

The basicity properties of eigenfunctions corresponding to the Sturm-Liouville problem
with periodic and antiperiodic boundary conditions were studied in [27] within the frame-
work of rearrangement-invariant Banach function spaces. However, the method used in the
article [27] is applicable only to a narrow class of spectral problems, since it is based on the
fact of uniform equiconvergence with the trigonometric system. The basis property of the
classical exponential system in separable subspaces of invariant spaces is established, for
example, in the monographs [28-30]. In [31], the basis property of the trigonometric system
in the weighted Morrey space is proved.

In this paper, we investigate the basis properties of a system of eigenfunctions of the
spectral problem (1.1),(1.2) in Banach function spaces. Under certain conditions imposed
on the Boyd indices (see [28, 32, 33]) of rearrangement-invariant Banach function spaces,
we prove basis properties of the system of eigenfunctions of the spectral problem in suitable
separable subspaces of these spaces. In particular, these spaces include Lebesgue, Grand-
Lebesgue, Orlicz, Marcinkiewicz, and other spaces.

2 Auxiliary Facts
Recall the definitions of the r—bases and r—close systems in Banach space X.

Definition 2.1 The bases {x,},cy of Banach space X is called a r—bases, if for any
r e X

oo T
<Z [z, $Z>|T> < Ozl
n=1
where {7}, - is a conjugate system of {xn}, c -

Definition 2.2 The sequence {x,}, cn and {yn} of X is called a r—close if

neN
+o0
D len —ynllx < +oc.
n=1

The following theorem is proved in [34].

Theorem 2.1 Let X be a Banach space with r—basis {xy}, . and a system {y, },c y is
' —close to {Zn}pens % + Ti, = 1. Then the following properties are equivalent:

1 {Yn},cn is a complete system in X ;

2 {Yn}tnen is a minimal system in X,

3 {Yn}nen is a w—linear independent system in X ;
4 {Yn},en is a basis in X.
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If one of these conditions is satisfied, then the system {y, }
X which is isomorphic to the system {x,,}, -

Let us consider that X can be presented as a direct decomposition X = X; &P
PXoP - P X, where X;,i = 1, m are Banach spaces. For convenience, the element
of X are identified, with vectors: © € X < z = (z1,22,...,%y), where xp € Xi, k =
1, m. The norm of X is defined by the formula

m

2
> llill,-
i=1

It is easy shown that (see [35]) X* = X{ P X5P---P X, and for all f € X* and
x € X it holds

nen forms a basis of the space

lzllx =

m
<ai f>= <wifi>,

=1

(< -5 - > is the value of functional), where f = (f1, f2,..., fm) and fi, € X[,k =1,m.
For the x;, € X let us denote by Z;, the element from X, which is defined by the formula

f:k: 0,...,0,$k,...,0
~—_——
k

Suppose that a system {uin };_75 e 1S given in each space X;,i = 1,m. Consider the
following system in X

Wim, = (az(?)um,agg)mn, o ,az(;?umn> , it=1,m, neN 2.1)
where agl) are some numbers. Let
%:@w A, =det A,
ij=1,m

The following theorem is proved in [12].
Theorem 2.2 [f the system {ugp }y,_T77.,e v fOrms basis for X and
A, #0,Vne N

then the system {lyp } ;.7 m.nen defined by formula (2.1) forms basis with parentheses for
X. If in addition the following conditions

sup { || An|
n

AL} <00 sup {llunl [9pnll} < o0

n
hold, where {Oyn }y,_1rmnen C X'~ is biorthogonal to {ukn}_17.nen> then the system
{tkn }—Trmmen forms a usual basis for X.

Let X( be a Banach space with the norm |||y, . Then X = X C™ is also a Banach
space for & = (u, a1, as,...,q,) € X, where u € Xg, o € C,k = 1, m, the norm is
defined by the formula

1
m 3
. 2 2
lallx = (HUIXO+-§ Iak|> :
k=1
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X* = X € C™is adual space of X and latter means that the each vector (v, 51, ..., 3,,) €
X3 € C™ defines the element ¥ € X* by the formula [35]

m
<U, 0> =<u,v>+ Z arB,
k=1

where v € X, B € C, k =1, m. In [36] (see also [37]) has been proved.

Theorem 2.3 Let {un} eN form a basis for X, where U, = (Up,Qn1,n2y-- -, Cnm)
and {On}, oy where Oy = (U, Bu1, Bn2; - - -, Bum) is a biorthogonal conjugate system
J ={n1,ne,...,nn} C Nis the set of m different natural numbers, Nj = N\ J. Put

& = det || Buyjlly j—1m -

Then for the basicity of the system {un}neNJ in the space Xy it is necessary and sufficient
the fulfilment of the condition § # 0. Here the biorthogonal system of {un}neNJ is given by

Up, U,y .ev Un,,

1 Bnl ﬁnll cee ,Bnml

Bum B - Brm

If 6 = 0, then the system {“n}neNJ does not form a basis for Xy, moreover the system
{tn},cn, is not complete and minimal in Xo.

In this part we will give some definition and facts related to Banach function spaces
(see, [28,29,30,38]). Let (R, ®, 1) will denote a measurable space, & is the o —algebra of
measurable subset of R, M will stand for a set of y—measurable functions on R, MT
is the set of non-negative functions from M, My is the set of p — a.e. finite functions from
M. The characteristic function of measurable subset £ of R will be denote by x &.

Definition 2.3 A mapping p : M™ — [0, 00] is called a Banach function norm (or simply
a function norm) if, for all f, g, fn,(n =1,2,...) in M™, for all constants o > 0 and for
all u—measurable subsets E of R, the following properties hold:

(f)=0 e f=0p—ae;plaf)=ap(f), p(f+g)<p(f)+r(9):
g<fu—ae =p(g) <p(f);

fn /fﬂ—a-e- = p(fn) /0 (f);

E) <400 = p(xg) < +o0;

E) < 400 = [ fdu < Cgp(f), for some constant Cg, 0 < Cp < +o0,
depending on E and p but independent of f.

Definition 2.4 Let p be a function norm. The collection X = X (p) all functions f in M
Sor which p (|f|) < +o0 is called a Banach function space. For each f € X define

1fllx =~ (1f1)- 2.2)

Definition 2.5 (Associated norm). If p is a function norm, its associated norm p/ is defined
on M* by

p@Z{/ngdﬂ;fEMﬁp(f)Sl},96/\4*- (2.3)
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Definition 2.6 Let p be a function norm and let X = X (p) be a Banach function space
determined by p as in definition 4. Let pl be the associate norm of p. The Banach function

space X (p’) determined by p/ is called the associate space of X and is denoted by X'.

It follows from (2.2), (2.3) that the norm of a function p in the associate space X' is
given by

HgH’X—sup{/R foldu : feX, \foél}.

Definition 2.7 A function f in a Banach function space X is said to have absolutely contin-
uous norm in X if | fx&, || x — 0 for every sequence {E,}> satisfying E, — 0 u— a.e.
The set of all functions in X of absolutely continuous norm is denoted by X,. If X, = X,
then the space X itself is said to have absolutely continuous norm.

Definition 2.8 Let X be a Banach function space. The closure in X of the set of simple
functions is denoted by Xj.

Proposition 2.1 [38] The subspace Xy, is the closure in X of the set of bounded functions
supported in sets of finite measure. In addition, there are continuous embeddings X, C
Xp C X. The subspaces X, and X coincide if and only if 1 € X,,.

Definition 2.9 The distribution function ji; of a function f € M is given by
) =pfa € R ¢ [ (@) > A}, A= 0.

Two functions f, g € M are called to be equimeasurable if pig (X) = g (X) forall X > 0.
The decreasing rearrangement function of the function f € M is defined as a function

F@t)=inf{A>0: pr(N) <t}, t>0.

Definition 2.10 Let (R, &, ) is totally o —finite measure space. If for every pair equimea-
surable functions f,g € M identity p(|f|) = p(|g|) holds, then the norm p is called
rearrangement-invariant norm. The Banach function space X, generated by rearrangement-
invariant norm p is called rearrangement-invariant Banach function space.

Let X be a rearrangement-invariant Banach function space over (R, &, u), RT = (0, +00)
and m is the Lebesgue measure on R*. From the Luxemburg representation theorem ([28]
Theorem 11.4.10) there is a rearrangement-invariant function norm p over (R™,m) defined
by

)
s =swf{ [T 5 @g 0a (1<)
such that
p(f)=p(f"), VfeMq.
The rearrangement-invariant Banach function space generated by p is denoted by X.
Definition 2.11 Fort > 0, the operator Ey defined by the formula
(Eef)(s) = f(st), 0<s< 400,

Is called a dilation operator. If hx (t) = HEl/tHX_)X , then the Boyd indices ax and Bx
of the space X defined by the formula

o lnhx(t) o lnhx(t)
aX_tgrilO Int ’ ﬁX_tilgloo Int

For the Boyd indices, the conditions 0 < ax < fx < 1 are satisfied, moreover oy =
1-Bx, By =1—ax.
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We need also the following theorems [28,32,33].

Theorem 2.4 (Boyd) Let X be a rearrangement-invariant Banach function space wzth the
Boyd indices ax, Bx : 0 < ax < Bx < 1.Thenforeveryp, q: 1<q< ﬁ—x < @ <
< p < +00, the continuous embeddings L, C X C L, hold.

Theorem 2.5 Let X = X (—m, ) be a rearrangement-invariant Banach function space on
the interval (—m, ). The Fourier series converges in Xy (—m,m) if and only if the Boyd
indices satisfy the condition

0<ax <pBx <1 2.4)

In [15] it was proved that the eigenvalues of the problem (1.1),(1.2) are asymptotically
simple and consist of Ay = 0 and two series: \;, = pf’n, i = 1,2;n € Z*, where

Z*t ={0}UN and p;,, holds the following asymptotically formulas:

Pln :37771“‘3%4'0(%)3
2.5

Also the eigenfunctions yo = 1, y;n(z), i = 1,2; n € Z* of the problem (1.1),(1.2)
corresponding to the eigenvalues Ao \;,, = p%n, hold the following formulas

2pin
‘ _ COS=37COSP;nT, T € [07 sl 1,2;n e Z" 2.6
yz,n(x) { COSpZnCOszn(l _ ZL‘), T E [ 1] , ? , 45 . ( . )

Considering (2.5) in (2.6), we will get the following system:

—Cos (37rn+ 37”):1:4-0(%) , T € [0, %]
Yin(z) =
0, T e [%, 1}
2.7
0, z€[0,1],
Yon(T) =
ameos (35 + ) (1= 2) + 0 (3), = € [3:1],

where o, = cos (5 + §) . If n = dkand n = 4k + 3, @, = 5 and n = 4k + 1 and
n=4k+ 2, a, = —%.

The problem (1.1),(1.2) can be transformed into a linear eigenvalue problem in the space
L, (0;1) @ C by introducing the operator L, which is defined as

_J9=L(0,1)PC: y—(y,my()) y € W2 (0,
D(L)‘{ J(0) =y 1) =0y (L 0) =y (L

(o (3-9) 5 (29)-

The eigenvalues of the operator L and problem (1.1),(1.2) coincide and {g; ,}
are eigenvectors of the operator L, where

)OW? (5.1),
0)

1
3
+
and for y € D(L)

i=1,2neZ+

. . 1 )
9o = (Yo (x);m), Yin = (yi,n(ar);my <3>> i=1,2ne Z". (2.8)
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Itis also proved in [17] that the system {yo} U {§i,n};—; 5 ez+ Of the eigenvectors of the
operator L form a basis for the space L, (0;1) @ C,1 < r < 400 and for r = 2 this basis
becomes a Riesz basis. Besides, a biorthogonal system is constructed in [17] for the system
{yO} U {gi,n}izljzyngz%

Let X be a Banach function space. In this part we consider basicity properties of eigen-
functions of the spectral problem (1.1),(1.2) in X @ C, and in X. Here we examine this
properties rearrangement-invariant case for X .

If X = X (I) be a rearrangement-invariant Banach function space on a finite interval /
of thereal axisand 1 € X, then X, = X = @ (I).Inaddition, if [ = [UIy, [1NI; = (),
then each element f € X (I) can be represented as asum f = fxr, +fxr, = f1+f2, where
x1, and xy, are the characteristic functions of the intervals [; and Is, respectively. The
projectors corresponding to this decomposition will be denoted by P; and Ps, i.e. P f =
fl, ng = f2. Denote X (Il) = PlX (I), X (12) = PQX (I) Then X (II) and X (12)
are a rearrangement-invariant Banach function space in which the norms are defined as
follows

”f1HX(Il) = HthHX(I)» ||f2||X(12) - ||fXI2||X(I)'

Thus the space X (I) is represented as a direct sum X (I) = X (I) P X (I2). If we
define a new norm in it as || f1|| x s,y + [ /2l x(z,)- then it will be equivalent to the original.
In addition, there is X, (I) = X (I1) D Xp (12).

Let X = X (—1,1) be rearrangement-invariant Banach function space on the interval
(—1,1) and its Boyd indices a.x, Bx satisfy the conditions (2.3). According to Theorem 5,
the exponential system {e””“” }n cz forms a basis in X}, (—1, 1), and this, in turn, is consis-
tent with the fact that the system of trigonometric functions {1} U {cos mnz ,sinmnz }, .y

forms a basis in X}, (—1, 1). Let us consider the decomposition of the space X} (—1, 1) into
adirect sum X3 (—1,1) = X3 (—1,0) @ X, (0, 1). The following theorem holds .

Theorem 2.6 The system of cosines {cosmnx }, ., forms a basis in each of the spaces
Xy (—1,0) and X3, (0, 1).

The proof of this theorem is carried out analogously to Theorem 3.1 in paper [14],
which concerns the basis property of the system {sinwnz }, ., in the spaces Xj (—1,0)
and X (0,1).

Analogously to the above-mentioned case, the space X}, (0, 1) can be represented as a
direct sum of its subspaces:

X (0,1)=X <0,;)@X (;1)

where X;, (0, 3) and X, (3, 1) are the corresponding separable subspaces. Similarly to [14],
it can be proved that the following statement holds.

Theorem 2.7 The system of {cos (n + %) Wx}neZJr forms a basis in the spaces Xj (0, 1).
From this theorem, by means of a change of variable, the following is obtained in particular.

Corollary 2.1 The systems of functions {cos (37Tn + 37”) x}n ezt and
{cos (2332 + 3%) (1 — ) } form bases in the spaces X (0, %) and X (%, 1).
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3 Main results

The main result of the work is the following theorem.

Theorem 3.1 Let, X is a rearrangement-invariant Banach function space whose Boyd in-
dices ax,fBx satisfy 0 < ax < Bx < 1. Then the system {{o} U {g)m}i:LZ nenczt of
eigenfunctions corresponding to the spectral problem (1.1), (1.2) forms a basis in the space

X, (0,1) @ C.

Proof. Consider the direct sum Xj (0,1) = X, (0, %) P X, (%, 1) and represent its ele-

ments as vectors f = (f1; fo), where f1 € X, (0,3), f2 € Xy (3,1)
Denote

cos (3mn + 3X) x| T E
el’n(x):{ ( 0 ) T €
e () = 0, z€0,%],
2T cos (32 4 3T) (1 —a) z € |[3,1].
By Theorem 2.6, the systems {e1,5,}, 4 and {€2,,,}, .+ form bases in the spaces X, (0, 1)
and X, (% , 1)respectively.Deﬁne
él,n = (61,n§ 0) 7é2,n = (07 e?,n) .

It then follows immediately that the combined system {€;n},_; 5. o+ 18 a basis of the

space X, (0,1). Consider the system {@; n},_; o.,c+ defined by

Ui = ;1615 + bi2bon, i=1,2n€Z" 3.1

where b;1 and b; 2, 7 = 1, 2 are the entries of the matrix

—6 0
Bn = < 0 6%) :
Since the determinant of B, is nonzero, it follows from Theorem 2.2 that the system
{@in};—q 9 ney+ also forms a basis in Xj (0,1), which is equivalent to the system
{éiW}i:l,Z; nezZ+:
By Theorem 2.4, there exist numbers p and ¢ satisfying
1 1
I1<g< —<— <p<+o0,
Bx ~ ax
such that the continuous embeddings
L,(0,1) C X3 (0,1) C Ly (0,1)
hold.
Let us show that system {€; n},_; 5., ,+ i an g-basis in Xj (0, 1) , where § = max {q, q } .

Assume that 1 < g < 2, then q/ >2and g = q/. For any f € X, (0, 1), represented as
f=(f1,f2),with f; € X (07 %) and fy € X, (%, 1) it follows from the Hausdorff—Young
inequality and the embeddings

1 1 1 1
X, (0,2) cLy(0,5), X5 (5.1) CLy(31
(rg) ene0) 0 (5) e ma3)
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that

1
<Z 1< fi,ern > ) < C||f1”Lq(0%) < CHfl”Xb(o%)»

n=0

1
(o) , 7
(Z < fa, e2,n > ) < Clifallp, 2.0y = Cllf2llx, (1.0)-

n=0

Here and in what follows, C' will denote a constant that has different values in different
places. From here we get

=1 n=0

2 o , qil
(zzw,ém o )

»Q\‘,_.

1
oo A\ 7 0o ,
< (Z < fi,e1n >|? > + (Z < f2,e25 >|7 > < Cllfllx, 0,1

n=0 n=0
This implies that the system {€; .}, _; 5 ,c,+ forms a ¢ — basis for X3 (0,1).
Letq > 2,then1 < ¢ < 2and § = q. By the Hausdorff—Young inequality, for all
f € X4 (0,1) and using the embeddings
Xy (0,1) € Lg (0,1) € Ly (0,1)

we have

2 oo é
(zz|< o >|q)

=1 n=0

00 7 o i
< <Z < fi,ein >\q> + (Z |< f2,€2m >|q>

n=0 n=0
< CHfHLq/ ©01) < Cllfllx,0.1)-

This means that the system {€;n},_; o.,,c 7+ forms g—basis for X, (0, 1). Consequently, the
system {€in};_ o.,c 7+ fOorms g— basis for X, (0, 1). It follows from formulas (3.1) that the
system {@in};_; 5 e 7+ is also ag-basisin X, (0, 1) . Then the system {do} U {din}t;_; o e 7+
where , 4g = (0;1), 41y = (U1,n;0), U2y = (U2,; 0), also forms a g-basis in the space

X3 (0,1) @ C.
Then from the formulas (2.7),(2.8) implies that, the following relations are true:

J1n (2) =10 (2) + O (L),

o (@) = iz (2) + O (). (32)

Let’s point

. 1 .
Yin = (yl,n (l‘) , MYin <3>> U= 172a ne Z+7
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According to formulas (2.6),(2.7) since y;, (3) = O (1), it follows from (3.2) that for the
systems {30} U{Tin};—1 9. peyr and {0} U{din},_ o e+ the following relation holds:

2 o
DD ldin — tinly, g < +00 3.3)

i=1 n=1

forall r € (1,400).
According to the results of [16], the system {90} U {@in};_1 9 e+ fOrms a basis of

the space L, (0,1) € C for every r € (1, +00). Hence, it is complete and minimal in this
space. Taking into account the embeddings

L,0,)@Ccc X, 0,1)PCccL,01)PcC

we conclude that the system {go} U {Jin};_1 9. pey+ 18 also complete and minimal in
Xy (0,1)pC.
Now, choosing r = c’jl = min {q, q/} in (3.3), we see that all the assumptions of Theo-

rem 2.1 are satisfied. Therefore, by Theorem 2.1, the system {go} U {Ji,n};—; 5 ,c 7+ fOrms
abasis of the space X}, (0, 1) €D C which is equivalent to the system {tio }U{@in},_; 5 e 7+
and thus also equivalent to the system {0} U{€in},_; o, 7+» Where é = do.

Now let us consider the basicity of the system {yo} U {yi»} with a re-

mote function in space Xj (0,1).

0o
i=1,2;neZt n#ng

Theorem 3.2 In order for the system
{yo} U {yi,n};‘)iLQ;neZ"r’n;éno

of eigenfunctions and associated functions of problem (1.1),(1.2) to form a basis in X, (0, 1),
after eliminating any function y; n, (), it is necessary and sufficient that the corresponding
function z; ,, () of the biorthogonal system satisfy the condition

1

Zimno (3) # 0.
1

Zi,no <3> = 07

then after eliminating the function y; , (x) from the system, the resulting system does not
form a basis in Xy, (0,1). Moreover, in this case it is neither complete nor minimal in this
space.

If

Proof. As we know from [16], the system {0 }U{%in};_; o ,c+ has a biorthogonal conju-

gate vector system {20}U{2i7n}i:172’nez+, Zo = (20 (), M), Zim () = (Zi,n (), Mzim (%))
inL,(0,1)@C C X;(0,1) P C, where the functions z;, () are the eigenfunctions of
the corresponding conjugate spectral problem

2 () + Az (x) =0, z€ (0, ;) U (; 1> , (3.4)
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2(3-0)=2z(3+0) : 3.5)

and have the form

20 (IL‘) = 17
cmcosz'oé’" coSpin T, T € [0, %] )
Zin (T) = | i=1,2neZ" (3.6)
cimcosplT’” cospin (1—z), z€ [%, 1] ,
with the normalized numbers cy, ¢; ,, satisfying
1 1
co=—"—5, Cin=06+0 <> i=1,2:neZ".

1+ |m| n

From the formulas (3.6) for the eigenfunctions {20} U {Zin},_; 5.,,c 4+ Of the conjugate

problem (3.4),(3.5), it follows that z; (%) = 0. On the other hand, the eigenvectors of the
adjoint operator L* have the form 2y = (1,m), Zin = (2in (2), M2y (1)) . Applying
Theorem 2.3 to the system {0} U {Zin},_1 5 e+ We see that § = Mz, (3) # Oor

0 = Mz (%) =m # 0 forany n € Z™, and all statement of the theorem follow from the
corresponding statements of the Theorem 2.3.
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