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Abstract. Let M be the multi-sublinear maximal operator. We study the boundedness of the multi-
sublinear maximal operator M on product total Morrey-Guliyev spaces Lp1,λ1,µ1(Rn) × . . .

×Lpm,λm,µm(Rn) to total Morrey-Guliyev spaces Lp,λ,µ(Rn).
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1 Introduction

The classical Morrey spaces were introduced by Morrey [21] for the study of solutions
of some quasi-linear elliptic partial differential equations. For more applications of Morrey
spaces on partial differential equation, the reader is referred to [4,25]. The total Morrey-
Guliyev spaces Lp,λ,µ(Rn), introduced by Guliyev [7], extend the Morrey space Lp,λ(Rn)
by including the second parameter µ, which can be seen as the intermediate spaces between
Lebesgue spaces and Morrey spaces. The norm in these spaces is defined by a combination
of the norms of Lp,λ(Rn) and Lp,µ(Rn), which allows a wider range of behavior. Let 0 <
p < ∞, λ ∈ R, µ ∈ R, [t]1 = min{1, t}, t > 0. The total Morrey-Guliyev spaces
Lp,λ,µ(Rn) are the set of all locally integrable functions f with the finite (quasi-)norm

∥f∥Lp,λ,µ = sup
x∈Rn, t>0

[t]
−λ

p

1 [1/t]
µ
p

1 ∥f∥Lp(B(x,t)),

where B(x, t) denotes the ball centered at x with radius t > 0. Here the norm in the case
µ ≤ λ is equal to the maximum of the norms of Lp,λ(Rn) and Lp,µ(Rn). Total Morrey-
Guliyev spaces can be viewed as generalizations of both classical and modified Morrey
spaces. In particular, the case where λ = µ corresponds to classical Morrey space, and the
case where µ = 0 corresponds to modified Morrey space L̃p,λ(Rn), see [2,3,6,8–12,19,23,
24].

Let (Rn)m = Rn × . . . × Rn be the m-fold product space (m ∈ N). For x ∈ Rn and
r > 0, we denote by B(x, r) the open ball centered at x of radius r, and by

∁
B(x, r) denote

its complement. Let |B(x, r)| be the Lebesgue measure of the ball B(x, r). We denote by
f⃗ the m-tuple (f1, f2, . . . , fm), y⃗ = (y1, . . . , ym) and dy⃗ = dy1 · · · dym.
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In the past twenty years, the multilinear Calderón-Zygmund theory was developed a lot
and studied by many authors. Grafakos and Torres [5] introduced the multilinear Calderón-
Zygmund operator and studied the boundedness of such operators. Later in [18], Lerner et
al. introduced the following multi-sublinear maximal function M(f⃗)(x) defined as (see,
also [16,30–32])

M(f⃗)(x) = sup
B∋x

m∏
i=1

1

|B|

∫
B
|fi(yi)|dyi.

When m = 1, we get M ≡ M1 the classical Hardy-Littlewood maximal operator is given
by

M(f)(x) = sup
B∋x

1

|B|

∫
B
|f(y)|dy,

where f is a locally integrable function. Obviously, it is easy to see M(f⃗)(x)
≤

∏m
j=1M(fj)(x).

In this paper, we obtain the boundedness of the multi-sublinear maximal operator M on
product total Morrey-Guliyev spaces Lp1,λ1,µ1(Rn)×. . .×Lpm,λm,µm(Rn) to total Morrey-
Guliyev spaces Lp,λ,µ(Rn).

This paper is organized as follows: In Section 2, we give some theorems about the
boundedness of multi-sublinear maximal operator M on the product total Morrey-Guliyev
spaces Lp,λ,µ(Rn), see also [13,17,20,22,26–29].

Throughout this paper, we assume the letter C always remains to denote a positive con-
stant that may vary at each occurrence but is independent of the essential variables.

2 Multi-sublinear maximal operator on product total Morrey-Guliyev spaces

In this section, we investigate the boundedness of multi-sublinear maximal operator M
on product total Morrey-Guliyev spaces.

Definition 2.1 Let 0 < p < ∞, λ ∈ R, µ ∈ R, [t]1 = min{1, t}, t > 0. We denote by
Lp,λ(Rn) the classical Morrey space , by L̃p,λ(Rn) the modified Morrey space [6], and by
Lp,λ,µ(Rn) the total Morrey space the set of all classes of locally integrable functions f
with the finite quasi-norms

∥f∥Lp,λ = sup
x∈Rn, t>0

t
−λ

p ∥f∥Lp(B(x,t)), ∥f∥L̃p,λ = sup
x∈Rn, t>0

[t]
−λ

p

1 ∥f∥Lp(B(x,t)),

∥f∥Lp,λ,µ = sup
x∈Rn, t>0

[t]
−λ

p

1 [1/t]
µ
p

1 ∥f∥Lp(B(x,t)),

respectively.

Definition 2.2 Let 0 < p < ∞, λ ∈ R and µ ∈ R. We define the weak Morrey space
WLp,λ(Rn), the weak modified Morrey space WL̃p,λ(Rn) [6] and the weak total Morrey
space WLp,λ,µ(Rn) as the set of all locally integrable functions f with finite quasi-norms

∥f∥WLp,λ = sup
x∈Rn, t>0

t
−λ

p ∥f∥WLp(B(x,t)), ∥f∥WL̃p,λ = sup
x∈Rn, t>0

[t]
−λ

p

1 ∥f∥WLp(B(x,t)),

∥f∥WLp,λ,µ = sup
x∈Rn, t>0

[t]
−λ

p

1 [1/t]
µ
p

1 ∥f∥WLp(B(x,t)),

respectively.
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Lemma 2.1 [7,9] If 0 < p < ∞, 0 ≤ µ ≤ λ ≤ n, then

Lp,λ,µ(Rn) = Lp,λ(Rn) ∩ Lp,µ(Rn),

WLp,λ,µ(Rn) = WLp,λ(Rn) ∩WLp,µ(Rn)

and

∥f∥Lp,λ,µ(Rn) = max {∥f∥Lp,λ , ∥f∥Lp,µ} ,
∥f∥WLp,λ,µ(Rn) = max {∥f∥WLp,λ , ∥f∥WLp,µ} ,

respectively.

The following local estimate is valid.

Lemma 2.2 [1, Lemma 3.3] Let 1 ≤ p < ∞ and B(x, r) be any ball in Rn. Then, for
p > 1 the inequality

∥Mf∥Lp(B(x,r)) ≲ r
n
p sup

t>2r
t
−n

p ∥f∥Lp(B(x,t)) (2.1)

holds for all B(x, r) and for all f ∈ Lp
loc(R

n).
Moreover if p = 1, then the inequality

∥Mf∥WL1(B(x,r)) ≲ rn sup
t>2r

t−n∥f∥L1(B(x,t))

holds for all B(x, r) and for all f ∈ L1
loc(Rn).

Theorem 2.1 [7] 1. If f ∈ L1,λ,µ(Rn), 0 ≤ λ < n and 0 ≤ µ < n, then Mf ∈
WL1,λ,µ(Rn) and

∥Mf∥WL1,λ,µ ≤ C1,λ,µ ∥f∥L1,λ,µ , (2.2)

where C1,λ,µ is independent of f .
2. If f ∈ Lp,λ,µ(Rn), 1 < p < ∞, 0 ≤ λ < n and 0 ≤ µ < n, then Mf ∈ Lp,λ,µ(Rn)

and
∥Mf∥Lp,λ,µ ≤ Cp,λ,µ ∥f∥Lp,λ,µ , (2.3)

where Cp,λ,µ depends only on p,λ,µ and n.

Lemma 2.3 [15] Let p be the harmonic mean of p1, . . . , pm > 1 and f⃗ ∈ L1
loc(Rn)× . . .×

L1
loc(Rn). Then there exists a constant C > 0 such that for any x ∈ Rn

Mf⃗(x) ≤
m∏
j=1

[
M

(
f

pj
p

j

)
(x)

] p
pj , (2.4)

When m ≥ 2, we find out M also have the same properties by providing the following
multi-version of the Theorem 2.1.

Theorem 2.2 Let p be the harmonic mean of p1, . . . , pm > 1 and

λ

p
=

m∑
j=1

λj

pj
for 0 ≤ λj < n,

µ

p
=

m∑
j=1

µj

pj
for 0 ≤ µj < n. (2.5)
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(i) If p > 1, then the operator M is bounded from product total Morrey space Lp1,λ1,µ1(Rn)×
. . .×Lpm,λm,µm(Rn) to total Morrey space Lp,λ,µ(Rn). Moreover, there exists a positive
constant C such that the following inequality is valid for all f⃗ ∈ Lp1,λ1,µ1(Rn)× . . .×
Lpm,λm,µm(Rn)

∥Mf⃗∥Lp,λ,µ ≤ C
m∏
j=1

∥fj∥Lpj,λj ,µj .

(ii) If p = 1, then the operator M is bounded from product total Morrey space Lp1,λ1,µ1(Rn)×
. . .×Lpm,λm,µm(Rn) to weak total Morrey space WLp,λ,µ(Rn). Moreover, there exists a
positive constant C such that the following inequality is valid for all f⃗ ∈ Lp1,λ1,µ1(Rn)×
. . .× Lpm,λm,µm(Rn)

∥Mf⃗∥WLp,λ,µ ≤ C

m∏
j=1

∥fj∥Lpj,λj ,µj .

Proof. (i) If p > 1, by (2.4) and the Hölder inequality, we get(
[t]−λ

1 [1/t]µ1

∫
B(x,t)

|Mf⃗(y)|pdy
) 1

p

≤
(
[t]−λ

1 [1/t]µ1

∫
B(x,t)

( m∏
j=1

[
M(f

pj
p

j )(y)
] p

pj

)p
dy

) 1
p

≤
m∏
j=1

(
[t]

−λj

1 [1/t]
µj

1

∫
B(x,t)

[
M(f

pj
p

j )(y)
]p
dy

) 1
pj .

Taking the p-th root of both sides and applying Theorem 2.1 with p > 1 and
∣∣fj∣∣ pjp ∈

Lp,λj ,µj (Rn), we get

∥Mf⃗∥Lp,λ,µ = sup
x∈Rn, t>0

(
[t]−λ

1 [1/t]µ1

∫
B(x,t)

|Mf⃗(y)|pdy
) 1

p

=
m∏
j=1

∥∥∥M(
f

pj
p

j

)∥∥∥
Lp,λj,µj

≤
m∏
j=1

∥∥∥f pj
p

j

∥∥∥
Lp,λj,µj

=
m∏
j=1

∥fj∥Lpj,λj ,µj ,

which is the desired inequality.
(ii) If p = 1, for any τ > 0, let ε0 = τ , εm = 1 and ε1, ε2, ..., εm−1 > 0 be arbitrary which

will be chosen later. From the pointwise estimate (2.4), we get

{y ∈ B(x, t) : Mf⃗(y) > τ}

⊂
m⋃
j=1

{
y ∈ B(x, t) :

[
M(f

pj
p

j )(y)
] p

pj >
εj−1

εj [t]

λ−λj
pj

1 [1/t]
−

µ−µj
pj

1

}
.

Let us now take ε1, ε2, ..., εm−1 > 0 such that

εj
εj=1

=

[∏m
j=1 ∥fj∥Lpj,λj ,µj

]s′/pj
τ s

′/pj∥fj∥Lpj,λj ,µj

, j = 1, 2, ...,m.
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Then, applying Theorem 2.1 with p = 1 and the fact
∣∣fj∣∣pj ∈ L1,λj ,µj (Rn), we get∣∣∣{y ∈ B(x, t) : Mf⃗(y)

∣∣ > τ
}

≲
m∑
j=1

∣∣∣{y ∈ B(x, t) : M(f
pj
j )(y) >

( εj−1

εj [t]

λ−λj
pj

1 [1/t]
−

µ−µj
pj

1

)pj}∣∣∣

≤
m∑
j=1

[t]
λj

1 [1/t]
−µj

1

(εj [t]λ−λj
pj

1 [1/t]
−

µ−µj
pj

1

εj−1

)pj
∥fpj

j ∥
L1,λj ,µj

=

m∑
j=1

[t]λ1 [1/t]
−µ
1

( εj
εj−1

)pj
∥fj∥

pj

Lpj,λj ,µj
=

m∑
j=1

[t]λ1 [1/t]
−µ
1

[( εj
εj−1

)
∥fj∥Lpj,λj ,µj

]pj
=

m∑
j=1

[t]λ1 [1/t]
−µ
1

(1
τ

m∏
j=1

∥fj∥Lpj,λj ,µj

)s′

= [t]λ1 [1/t]
−µ
1

(1
τ

m∏
j=1

∥fj∥Lpj,λj ,µj

)p
.

Hence, we obtain the following inequality

∥Mf⃗∥WLp,λ,µ

= sup
τ>0

τ sup
x∈Rn,t>0

(
[t]−λ

1 [1/t]µ1

∣∣∣{y ∈ B(x, t) : Mf⃗(y) > τ
}∣∣∣) 1

p

≲
m∏
j=1

∥fj∥Lpj,λj ,µj .

This is the conclusion (ii) of Theorem 2.2.

In the case λ = µ, λj = µj , j = 1, . . . ,m from Theorem 2.2 we get the following corollary

Corollary 2.1 [14, Theorem 2] Let p be the harmonic mean of p1, . . . , pm > 1 and

λ

p
=

m∑
j=1

λj

pj
for 0 ≤ λj < n. (2.6)

(i) If p > 1, then the operator M is bounded from product Morrey space Lp1,λ1(Rn) ×
. . .×Lpm,λm(Rn) to Morrey space Lp,λ(Rn). Moreover, there exists a positive constant
C such that the following inequality is valid for all f⃗ ∈ Lp1,λ1(Rn)× . . .×Lpm,λm(Rn)

∥Mf⃗∥Lp,λ ≤ C

m∏
j=1

∥fj∥Lpj,λj .

(ii) If p = 1, then the operator M is bounded from product Morrey space Lp1,λ1(Rn) ×
. . .× Lpm,λm(Rn) to weak Morrey space WLp,λ(Rn). Moreover, there exists a positive
constant C such that the following inequality is valid for all f⃗ ∈ Lp1,λ1(Rn) × . . . ×
Lpm,λm(Rn)

∥Mf⃗∥WLp,λ ≤ C
m∏
j=1

∥fj∥Lpj,λj .
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In the case µ = µj = 0, j = 1, . . . ,m from Theorem 2.2 we get the following corollary

Corollary 2.2 [14, Theorem 4] Let p be the harmonic mean of p1, . . . , pm > 1 and satisfy
(2.6).

(i) If p > 1, then the operator M is bounded from product modified Morrey space L̃p1,λ1(Rn)×
. . .× L̃pm,λm(Rn) to modified Morrey space L̃p,λ(Rn). Moreover, there exists a positive
constant C such that the following inequality is valid for all f⃗ ∈ L̃p1,λ1(Rn) × . . . ×
L̃pm,λm(Rn)

∥Mf⃗∥
L̃p,λ ≤ C

m∏
j=1

∥fj∥L̃pj,λj .

(ii) If p = 1, then the operator M is bounded from product modified Morrey space L̃p1,λ1(Rn)×
. . .× L̃pm,λm(Rn) to weak modified Morrey space WL̃p,λ(Rn). Moreover, there exists a
positive constant C such that the following inequality is valid for all f⃗ ∈ L̃p1,λ1(Rn)×
. . .× L̃pm,λm(Rn)

∥Mf⃗∥
WL̃p,λ ≤ C

m∏
j=1

∥fj∥L̃pj,λj .
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