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Abstract. In this article, we introduce new weighted integral operators. We develop a lemma where we
derive a generalized identity using these integral operators. Leveraging this identity, we establish new
generalized Simpson-type inequalities for (h,m)-convex functions.
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1 Introduction

The concept of convexity is fundamental in several scientific disciplines related to math-
ematics, such as optimization theory, numerical analysis, and computational mathematics,
because it is closely associated with estimating the mean value of a function over an inter-
val. Currently, the literature features numerous classes of convexity that extend this concept.
The definition of convexity are given in the literature as follows:

A function f : [v1, vg] — Ris called convex if for any x,y € [v1,v2] and any £ € [0, 1],
the inequality f({z + (1 — §)y) < &f(x) 4+ (1 — £)f(y) holds. If this inequality is flipped,
then the function f is concave on [vq, va].

Many classes of convexity of functions are defined in the literature. In [35], a fairly wide
range of convexity classes and their relations are given.

In the literature, the well-known Simpson-type inequality is presented as follows.

If f < C*w1,v9)and Hf(4)HOO = sup |f(4)(:v)‘ < o0, then

z€(v1,v2
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Uy — U1 [f(vl) + f(v2) L of <v1 + vz)] - /Uz f(x)dx‘ < (vg —v1)? H f(4)H
3 2 2 vy
(1.1)

Several recent studies have focused on refining and generalizing Simpson-type inequal-
ities for different classes of convex functions. For instance, Alomari and Hussain [2] de-
rived Simpson-type inequalities for quasi-convex and differentiable functions. In [3], the
author obtained Hadamard- and Simpson-type parametric integral inequalities for concave
and r—convex functions via special mean applications. The authors in [6] developed new
generalized integral inequalities of Simpson and Hadamard types for convex functions or
those satisfying the Lipschitz or Lagrange conditions. Dragomir et al. [15] and Liu [30]
presented Simpson-type inequalities for continuously differentiable functions and explored
their applications. Erden et al. In [19] provides error estimates for Simpson’s second-type
formula and related inequalities. In [40] Siricharuanun et al. derives new quantum Simp-
son’s and Newton’s type inequalities extending existing results in quantum and classical
analysis.

In [24], Hussain and Qaisar established new Simpson-type inequalities for functions
whose third derivatives are prequasiinvex and preinvex. Park [36] introduced generalized
Simpson- and Hadamard-type integral inequalities for functions whose g—th powers of the
second derivatives are decreasing and («, m)—geometrically convex. Studies such as [14,
22,28] presented new Simpson-type inequalities based on s—convexity. Furthermore, [18,
16,31] investigated new Simpson-type inequalities for extended (s, m)—convex and gener-
alized (s, m)—preinvex functions.

Hsu et al. [23] obtained extended Simpson-type inequalities for differentiable concave
functions in connection with Hadamard’s inequality. Ndpolis and Rabossi [34] established
several Simpson-type inequalities using generalized weighted integral operators for func-
tions whose derivatives are bounded or («, m)—convex. Finally, Ujevi¢ [41] introduced
Simpson-type double integral inequalities and their applications in numerical integration,
while Népoles et al. [33] defined weighted integral operators and, by using them, derived
generalized Simpson-type inequalities for functions whose first derivatives are modified
(h, m)—convex. Benaissa et al. [9] introduced new fractional integral operators and estab-
lished trapezoid, and midpoint inequalities for h—convex functions.

In references [4,7], we introduced the definitions that follow.

Definition 1.1 Let f : X = [0, +00) — [0, +00) and h : [0,1] — (0,1]. If
f (01§ +m(1 = &§)va) <A (E)E(v1) +m(l = h*(£))f(v2) (1.2)

is holds true ¥V vi,vy € X and § € [0, 1], where 0 < m < 1, s € (0, 1]. Then the function £
will be called the (h, m)—convex modification of the first type on X.

Definition 1.2 Ler f : X = [0, +00) — [0, +00) and h:[0,1] — (0,1]. If
f (01§ +m(1 = §ua) < B> (OF(v1) +m(l = h(£))F(v2) (1.3)

is holds true Yui,vy € X and § € [0, 1], where s € [—1,1],0 < m < 1. Then the function
f will be called the (h, m)—convex modification of the second type on X.

Remark 1.1 Based on the definitions given above, the sets of (h,m)—convex modified
functions of the first and second type, identified by the triple (h(&),m, s), are represented

by N. ,‘:7171 [v1,v9] and N, 23,1 [v1, Lo, respectively. References [7] provide examples of convex
classes derived from specific instances of this triple.

Remark 1.2 If the direction of the inequality (1.3) changes, it we have concave function.
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The emergence of fractional calculus, involving integrals and derivatives of arbitrary
order, was inevitable ([32,38]). Owing to its applicability in many fields of science and
engineering ([17,10,42,11]), this area has gained significant prominence. A key feature of
this subject is that researchers seeking more efficient solutions to physical phenomena have
gradually adapted to new operators with dominant kernels.

Numerous studies in recent years have investigated Simpson-type integral inequali-
ties for various fractional integral operators (see [1,4,5,7,12,14,21,31,43] and references
therein). Several recent works have also focused on integral inequalities involving weighted
integrals of different types (see [5,8,26,28,29,33,34]).

To facilitate a better understanding of the research topic, we first present the definition
of the Riemann-Liouville fractional integral (where 0 < vl < & < v2 < 00).

Definition 1.3 Let f € L1[v1, v2]. Then the Riemann—Liouville fractional integrals of order
a € C, R(«a) > 0 are defined by (right and left respectively):

I 8w) = g [ @ 0rR@ e @
I £() = 7oy | €-ar e w <

Here I’ is the Euler gamma function (see [37]).
Now we present the integral operators what we will use in our work.

Definition 1.4 Let « > 0, and £ € Li[v1,v2], and w : [0, +00) — [0, +00). The right and
left—hand sided Weighted Riemann—Liouville integral are defined as follows:

T34 = i [ -t - Or@den > o,

1

T = F [ o ue - on@ass <

Remark 1.3 Readers can check, without much difficulty, that weighted operators defined
above contain, as particular cases, many of the well-known integral operators, for example,
if w =1 and o > 0 we obtain the Riemann—Liouville fractional integrals, if additionally
a = 1 we obtain the Riemann classic integral. With o = 0 and under certain conditions for
the function w(§), we obtain the generalized fractional integral introduced by Sarikaya and
Ertugral in [39].

The aim of this article is to develop and investigate various forms of Simpson-type in-
equalities for modified (h, m)—convex functions using the generalized weighted integral
operators defined in Definition 1.4, thereby extending and generalizing the classical Simp-
son’s inequality and unifying existing results reported in the literature. These findings are
derived through the convexity property, the classical Holder inequality, and its variant, the
power mean inequality. Our results are broadly applicable due to two main factors: the type
of integral operator and the concept of convexity. The integral operator’s “weight” enables
us to include many known operators, such as the classic Riemann and Riemann-Liouville.
Furthermore, with suitable parameter choices, our concept of convexity incorporates several
established convexity notions. This allows us to demonstrate that many existing results in
the literature are special cases of our findings.
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2 Main results

First we define the following auxiliary functions M (§) = foé H, .(s)ds with H, .(§) =

foE u®~w(zu)du and for brevity of writing some mathematical expressions, we will accept
the following notation:

8(0,€) == M(1) = M(§) = 2H, s (1)(1— )
and
G(ﬂaﬂw::f@g4wﬁ(2;W)+f@g
- 3;;}5:2%(1) {Jﬁﬂf <U1 ;m) + Jo 4 f <U1 ;w)] :
So we have:

Lemma 2.1 Letf be a real function defined on some interval [v1,v3] C Rand f € C?(vy,v2).
If £ € Ly1(v1,v2) and w(§) is a integrable function on [v1, vs|, then we have the following
equality:

(v2 — v1)?
SH, 170y (1) @D

1 _ _
X /0 g(a,¢) [f” (1 5 gvl + ! ;—gvz) + £ <1;€U1 + ! 5 57}2)] dg.

Proof. From property of integrals we have

1 _ _
=/ g(a,§) [f” (1 §U1+ 1;%2) + £ <1J2r€v1 ;1 5 gw” d¢
0

2
1 o 1 _
= /0 g(a, " <1 5 gUl + ! ;§U2> d§+/0 g(a, " (1—56111 + ! 5 f’U2> d§

G (f,a,w) =

=1 + L.

For I; we have after integrating by parts:

_Qg(a,O) f/ vl + U2
V2 — U1 2

2 1 2 1-¢ 1+¢
_H vy —vU 7H vy —vU 1 f/ d
U2—U1/o ( @ 2271(5)—1—3 a2t 1 )> < 2 ot 2 ve )
2 U1 + U2 4 U1 + U2
= — O f/ H vy —v 1 2f f
v — U1g(a’ ) ( 2 ) " 3(v2 —v1)? O"%( ) < ( 2 ) i (U2)>

4 1 a— Vg — V1 1-¢ 14+¢
_(vg—v1)2/0£ 1w<2 §>f< 5t — vz)dé.

I, =
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By changing the variables u = %Ul + 1%5112 in the last integral we have

2g(a, 0) , [ U1+ U2 4 U1 + U2
I = — f H vy —v 1 2f f
! vy — U1 2 * 3(vg — vp)? av%( ) 2 +£(ve)

-1
Y e R ST ST
(U2 — Ul)3 UIJQFUQ UQ;Ul 2 UQEUI ’
Result that can be written, after a simple algebraic work, in this way:
2g(a,0) , (V1 + v2 4 v1 + U2
I = — f H U v 2f f
! V2 — U1 2 * 3(1}2 — U1)2 0‘7%( ) 2 * (U2)

9 2+« V] + Uy
— Da)JXvf | ——=1).
<U2 —U1> (@) oy~ < 2 >

Similarly for I» we have:

2g (a,0) ., (V1 + V2 4 v + U9
I = f H vy —v 1 2f f
ST 2 + 3(vg — v1)? O‘v%( ) 2 +v)

— r N .
(UQ _'Ul) (Q)Jvﬁ— < 9 )

So
S0y — o o2z (1) [f(vz) +4f (”l ;“2> + f(m)]

2 24a V1 + U2 U1 + U2
_ F Oé'Ll)f O{'Ll)f .
(Uz - Ul) (@) [J” < 2 > T < 2 ﬂ

(va—v1)?

Multiplying this last result by m we obtain the required equality. This ends
vg—v]
-2

I=1,+1, =

the proof.

Remark 2.1 For h(§) = { and s = m = 1 we have
DIf w(z€) = e % and a > 0, then this Lemma becomes Lemma 2.1 of [12];

2)Ifa=0and 0 < Hp.(§) = 05 (=) gy, < o0, then we get Lemma 2 from [43];

u

3) If we take w = 1, then we obtain Lemma 1 of [21]

Theorem 2.1 Let 0 < m < 1,0 < vy < v9 and f real function defined on the interval
[ur,v2], and £ € C?(vy,v9). If £ € Li[vy,v0] and |f"] € N}f’fn[vl,vg] for some fixed
s € (0, 1], then the inequality

(v2 —v1)?
8H, 1 (1)

{7 ] + 1 w2 /mw( ) ae
m (e (2] + [ ( /|ga§ (1_ <5>>Sd§}

holds Yo > 0. Here Hmvggv1 (1) = 01 o1 (%u) du.

|IG(f, o, w)| < (2.2)
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Proof. By using the properties of the module from (2.1), we can write

(v2 —v1)?
S, 2 (1)

1 . _
/0 g(a, §) [f” (1 5 §vl—l— 1;€v2> + £ (1;€vl+ L 5 6112)] d{‘

< (v2 — v1)?
SH,, aur (1)

|G (f, a,w)| < (2.3)

X

(x| + 12)

and the fact that |[f”| belongs to the class N [vl, v9| for the |I;|,we obtain

1 _
ml < [ et ol (S5 e ) e
/ga& o (15 fo (1—?)”)]%
m
< [Tson [l el (155) +m (1-0(159))
—a m/ |ga£|h5< _f)dg
1_ S
+mf” 52 /O|g(a,£)|<1—h<2§>) d.
Proceeding similarly, for the |I5|, we can obtain
L] <[ (v2) /|ga§\h5< )
11 1 1-¢ °
rmler (2)] [igeor (10 (155)) ae

Thus, for the |I;| + |I2|, we get

(02)J o

M

0|+ [T < (€7 (o) + £ <v2>|)/1 g0, )| h° (1‘f)d§
—|—m<f”<%>‘ f” /ga,§< h<1;5>>sd5.

Finally, multiplying both sides of the last inequality by ¢ (v2—v1)?

m we obtain the required

inequality (2.2).

Remark 2.2 For h(¢§) = £ and s = m = 1, from (2.2) we have
DIf w(z€) = e **, a > 0, then we obtain Theorem 3.1 of [12];
2) If we take w = 1, then for a > 0 we obtain Theorem 3 of [21];

3)Fora=0and 0< Hp,(§) = fo vz gy, < 00, we get Theorem 4 from [43].

u
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Corollary 2.1 Ifwe take w =1 and h(§) = |1 — 2£| with « > 0, then from Theorem 2.1,
for the (s, m)—convex function, we get

|G (f, o, w)| < M {(\f” (v1)] + |£” (v2)]) /O1 g™ (@, €)| £2d¢ 2.4)
w7 ()] + e (2)]) [l @0l e e}

where
g (a, &) = =362 L 2(a+ 1) €+ (1 —2a).

Proof. When w = 1 for auxiliary functions, we get:

= B « Iy B 13 Sad B §a+1
a,z(ﬁ)—? and M () = o S—M
and
a+1
B0, €) = M(1) = M(§) = 3o (D1 =€) = s = e = L 1-6)

=3t 1 2(a+ 1)+ (1 - 20)
B 3a(a+1)

If h(€§) = |1 —2¢|, then h (1—;5) = ¢ and taken account for auxiliary functions, inequality
(2.4) obviously follows from (2.2). End of proof.

Corollary 2.2 For the o = 1 from (2.4), we get

—uy (f f v
ve —vr (f(v1) +£(va) o0 (01 F 02 / £(z)da 25)
3 2 2 o
C e [IF )l + I ()] (2-8% 4(2-3)  3(2-3")
- 48 3s+2 s+3 542 s+1

m (1§ % £ 1;72 9 2+s
el ghEn ... (2)"))

Proof. When oo = 1 for the integrals of right side of (2.4), we obtain
Lo 1-¢ Lo Lo
[t (155 ae= [eaoled = [ e - ag | ea
1

3 1

_ / (3{24-5 _ 4£1+s + gs) d¢ +/ (_3§2+s + 4§1+5 _ 55) d¢

: :
1 4 1

- 32Fs(s+3)  35t2(s+2) - 351 (s + 1)
_33+s +1 N 4 (32+s _ 1) 3l+s _q
s (3+s) I (2+s) 3Hs(1+9)
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Thus for the first integral from (2.4) we obtain

1 1_
[ e (F55) ac 26)
0
_ 1 9 _ 33+s 4 (2 _ 32+s) 3 (2 _ 31+s)
- 3s+2 s+3  s+2 + s+1 ’

For the second integral, we have
1 . s 1
[eeen(1-n(55)) ae= [waoin-ga
0 0
1 1
=/ |352—45+1|<1—5>3d5=/ (€~ 1) (3¢ — 1) (1— &) de
0 0
% 1
~ [MFa-gree-n)aes [a-om ee-nae
0 3

Let’s calculate each of the integrals.

/Oé [— (1—¢)*" (3¢ - 1)} dé = —3/0% (1 =€) ede + /03 (1—¢*de @7

1 s+2
o (1_Z>Zs+1dg+2;9(1_(§> )

3

(7))

1 1 1
/1(1—05“(35—1)%:3 / (1— &)+ ede — / 1-etde, @8

and

1
3

2 2 2 2
:3/3$S+1 (1—:1:)d$—/3 5t dy = —3/3 x5+2dx+2/3 25t dy
0 0 0 0

=2 <z23>2+5 [_3is + 241rs] B (2+s)2(3+s)' (§>2+8

By adding the results of integration’s from (2.7) and (2.8), we obtain

/ g (0, 6)] (1 - )" de 2.9)
2 (-0 )= 0-0) ) e ()
“ETI6T (”4 @))

Inequality (2.5) follows from (2.6) and (2.9). End of proof.
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Remark 2.3 For the m = s = 1 from (2.5), we get

vy — vy |[f(vr) + £(v2) 1 of <U1+U2> - /UU2 f(x)dx

3 2 2 1
. 3 f// f/l
L (o 81U1) |7 ()] -2H (v2)| (2.10)

This estimate is available in the literature (see, for example, [21] or Remark 3.1 to [12]).
Theorem 2.2 Let 0 < m < 1,0 < vy < vg and £ real functlon defined on the interval

[1,v9], and £ € C*(v1,v2). If £ € Li[v1,v9) and |f"|? € Ny [’Ul,Ug] with ¢ > 1 and
a > 0 for some fixed s € (0,1], then the inequality

|G<f,a,w>|<8H P (/ lgaélpd€> ()7 +E)7) @1

holds Yo > 0, ;1) + % = 1. Here Ha71)2;1,1 (1) = fol w1y (112;2111”) du,

=3¢t 1 2(a+1) €+ (1 - 2a)
3a(a+1)

e [ (5ol G [ (a(5) s
ot [ (5 G [ (05 s

Proof. By using Holder inequality and the fact that |f”|? belongs to the class N [Ul, V9],

for the |I;], from (2.3), we obtain
1 1 a .
— q
£ ( 5 §U1 + ;51}2) df)

([ rg<a,f>rpd§)’l’ ([
G (59

g(,§) =

)

1 :
< ([ rora)
[f” \/;f( — )d§+
Similarly, for the |I5|, we can obtain
: :
< ([ o)
[]f” \/h8< R >d§+

-

G0 (59)
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Thus, for the

, we get

n+ml< ([ rg<a,s>rpd§)’l’
(e [ (5o
(o [ (5o

Finally, multiplying both sides of the last inequality by g

G (-4 (59) 9
L (059}

(v2—v1)?
H

m and taking into ac-
U2 v1

count the adopted notation we obtain the required mequahty (2. 11).

Remark 2.4 For h(§) = § and s = m = 1, from (2.11) we have
DIf w(z€) = e **, a > 0, then we obtain Theorem 3.2 of [12];
2) If we take w = 1, then for a > 0 we obtain Theorem 4 of [21];

3)Fora=0and 0 < Ho.(§) = J; v gy < 00, we get Theorem 5 from [43].

u

Corollary 2.3 If we take h(§) = |1 — 2£| and w = 1, then from Theorem 2.2, we get
1. for the (s, m)—convex function:

G (£, 0,w)| < (22_”1 (/ (0, €) \pd£> (|7 +m)e), @12
where

g (,6) = -3 1 2(a + 1) + (1 - 2a),

£ q £ (Y2 q £ q N q

L R G | e L ]
s+1 s+1

2. For the o = 1 from (2.12):

Hj =

)

vy — vy |f(v1) + £(v2) v1 + v v
3 5 + 2f <2> — /U1 f(x)dx (2.13)
(vg —v1)3 ! 2 p )’1’ )1 £\ 1
< (/0 [3¢2 — ag + 1" de ) (D)7 + (Hy)1),
3. Forthe m = s = 1 from (2.13):
vg — vy |f(v1) + f(v2) v1 + U2 v

Q=

vy — U
S ( 2 1 </ ‘352 4£+1‘pd§> (‘f// }Q_i_‘f// ‘ )
Proof. 1. For w = 1, from Corollary 2.1, we have auxiliary functions:

ool =S MO = g

gotl =3¢ 1 2(a+1)E+ (1 —2a)

and g(a, &) = 3a(a+1)
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Taking into account these functions with h(§) =
follows from (2.11);

2. For o = 1 we get g*(1,&) = —3¢2 + 4¢ — 1 and hence (2.13);

3. When m = s = 1 since H} = H3, then for right-side (2.13), we get

e 02 ([ s g+ 1)’ ((H*f)% + (%)

S (e e apa) (o e )

End of proof.

Q=

Theorem 2.3 Let 0 < m < 1,0 < vy < vg and £ real functlon defined on the interval
[v1,v2], and £ € C?*(v1,v2). If £ € Li[v1,v9) and |f"|? € Ny [’Ul,Ug] with ¢ > 1 and
a > 0 for some fixed s € (0,1], then the inequality

1-1
G (Ff, 0, w)| < 2~ 8H - </ g(a,€) yd§> ((H3)%+(H4)%) (2.15)

holds Yo > 0, % + % = 1. Here H vy, (1) = 01 utw (5% ) du,

H; f”vl\/gagyiﬁ( 5>dg
Fmler (2] /@(a@ﬂ(l—h(lf))sda
= |£" (v2)|* / gafW( _§>d€
+mf" % ) / ]g(a,f)|<l—h<1;§)>8d§.

Proof. By using power mean inequality and the fact that |f”|? belongs to the class N [vl, va],
for the |I;], from (2.3), we obtain
1
q q
d¢ )

mi<(f |g<a,s>|d5)l_; ([ st
S(/Ollg(a,§>\d§> [f" \/\ga51h3< )s
e ()] [t (1 (59)) ]

Similarly, for the |Iz|, we can obtain

i< ([ gl df)l_é el [ st oin (155 d
+m £ (=) \q/ol 8(, ) <1 —h (1;’5))%]

1- 1
f//< €U1+ ;—§U2>
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Thus, for the

, we get

|11|+|12|§(/Olrg<a,§>|de>1{[}f” ol [ st (15 ac
e (2), q/ |g<a,§>\<1—h<12_5)> df}
{187 w2 /\gawﬁ( )

g (f;)]q/O |g<a,5>\(1—h(f)) dgr}.

And, by multiplying both sides of the last inequality by 8}1(7&7”1)(1)’
’U2—U
2

Q=

and taking into

account the adopted notation we obtain the required inequality (2.15).
Remark 2.5 For h(§) = { and s = m = 1, from (2.15) we have

DIf w(z€) = e %, a > 0, then we obtain Theorem 3.3 of [12];
2) If we take w = 1, then for a > 0 we obtain Theorem 5 of [21];

3)Fora=0 and 0 < Hp(§) = 05 wE) gy, < 00, we get Theorem 6 from [43].
Corollary 2.4 If we take h(§) = |1 —2¢| and w = 1, then from Theorem 2.3 for the

(s, m)—convex function, we get

yG(f,a,w)ys(”;fl (/ g* a£|d§> Hmpe @i, ee

where

g'(@,§) = =3¢ +2(a+ 1)+ (1 - 2a),

1
Hj = [ (01)° /0 " (0 €)| €56 +m

() /0 g (0,0 (1 - &) .
(2 /0 g (0,0l (1 - &) e

Proof. When w =1 for auxiliary functions from Corollary 2.1 we have:

1
H = £ (10)]f /O " (0 €)| €56 +m

£a+1
a(a+1)

=3¢+ 2(a+1) €+ (1 - 2a)
3a(a+1)

Ha,z(f) = ;7 M(f) = and g<a7€) -
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If h(§) = |1 — 2¢|, then h (12;5) = ¢ and taken account for auxiliary functions, for the
right side of (2.15), we get

Hy = |7 (07) /!gasw( 5)«%&
s (2 / |g(a,5>|(1—h<1;5>>sdf

// ‘g 045 s 11 U2 1|g (a,8)] s
’f ‘/30& Oé+1§d€+ m |t ‘/3(1 a—l—l)(l_g) de

- m [’fﬂ( ol /01 g™ (v, &) £°dE +m f” % ) /O g (a, 6)| (1 —£)Sd£:|
L w
and
Hi= 3(1(;+1) Df" (w)\q/ol 8" (0, )| €°dE + m |f” (2)’61/01 (0.6 1 _f)sdg}
= 3a(‘j+1) -Hj.
Thus 1
((H?’)% * (H‘*)%) - [m(iﬂ)] a ((H§)5 + (H;;)%) .
End of proof.

Corollary 2.5 For the o = 1 from (2.16), we obtain

Bon) +£(v2) | o <“1‘2“J2> _/Uz f(a)da

gﬁ&&;ﬂgci>1;«H9 a%ﬁ)

U2 — U1

2.17)

where

2+s)B+s)

1" q
HZ _ |f (U2)|

233 4(2-3%5)  3(2-3F)
3s+2 s+3  s+2 + s+1
2+s
+m |f” Ul)‘q (8+4(%)+)

2+s)B+s)
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Proof. Indeed, for « = 1 we have

1-1 1-1 _1
a) (fo lg7(@.)ld) " = (Jo |-3 + e —1]ag) " = ()7,

b) The integrals below were calculated above in Corollary 2.1:

1 _ 1
D [ (155 = [ e - ag | eas

1 1
= /0 (3¢ —4€ +1) &°dE + ﬁ (=362 +4¢ — 1) £°d¢

1 (2 —gis 4(2-3%0) 3(2- 31+S)>

32 513 T sv2 T st

1 1
2)/0 |g*(a,£>|(1—f)5d5=/0 1362 —ag + 1] (1 ) de

1

_/03 (352—4§+1)(1—§)5d§+/1 (—3§2+4§—1)(1—§)5d§

:WG”@)M)'

With the above in mind, the proof is complete.
Remark 2.6 For the m = s = 1 from (2.17), we get

f(v1) ;f(w) 1 of <U1;U2> - /:2 f(x)dx

V2 — U1
3

(2.18)

(UQ _U1)3 PN *\ *
< 2 (H5)7 o+ (HY) ),
162 - 8«
where
/! q /! q /! q /! q
H$:37|f (V)T + 59 |f7 (v9)| and H§:37]f (v2)|* + 59 |f" (v1)| '

12
Remark 2.7 For ¢ = 1, from (2.18) we have (2.10).

12

3 Conclusions

In this paper, various extensions and generalizations of the classical Simpson’s inequality
have been established, in the context of weighted integral operators. Throughout our work,
we have seen how various results reported in the literature are particular cases of ours,
which shows the breadth of strength of these. However, we did not want to conclude without
pointing out two more aspects regarding the breadth of our results. Firstly, referring to the
integral operator used, given that the weight function can include several known cases, we
can add that if w(z¢) = e ** and a > 0, then Lemma 2.1 becomes Lemma 2.1 of

[12]. ffa = 0and 0 < Hy,(§) = fog @du < o0, then we get Lemma 2 from [43].
If we take w = 1, then we obtain Lemma 1 of [21]. Evidently, a significant portion of the
conclusions from their research can similarly be derived from ours, taking into consideration
convex functions. Another important point is the concept of convexity used, which includes
a number of well-known convexity classes. This means that our results cover most of the
results published so far.
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