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A note on singular integrals along higher dimensional subvarieties
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Abstract. Suppose that Ω ∈ L1(Sn−1 × Sn−1) is a homogeneous function of degree zero in the sense
(1.5) and satisfying the cancellation property (1.4). Under certain convexity assumptions on the mapping
θ : R×R → R, we prove that the singular integral operator

Tθ,Ωf(x, xn+1) = p.v.

∫
Rn+1×Rn+1

f(x− u− v, xn+1 − θ(|u|, |v|))Ω(u′, v′)
|u|n |v|n dudv

is bounded on Lp(Rn ×Rn), 1 < p < ∞ provided the kernel function Ω is in L(logL)2(Sn−1 × Sn−1).

Keywords. Singular integral operators, surfaces of revolution, rough kernels, Lp estimates, maximal
functions, Fourier transform.
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1 Introduction and Statement of Results

For n ≥ 2, let Sn−1 be the unit sphere in the n-dimensional Euclidean space Rn. Let dσ be
the induced normalized Lebesgue measure on Sn−1. For y ̸= 0, let y′ = |y|−1y ∈ Sn−1 and
Ω ∈ L1(Sn−1) be a homogeneous function of degree zero on Rn satisfying∫

Sn−1

Ω(y′)dσ(y′) = 0. (1.1)

Let ϕ : [0,∞) → R be a smooth function. Consider the singular integral operator Sφ,Ω

given by

Sφ,Ωf(x, xn+1) = p.v.
∫

Rn+1

f(x− y, xn+1 − ϕ(|y|))Ω(y′)

|y|n
dy. (1.2)
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If ϕ(t) ≡ 0, then the operator Sφ,Ω is the well known classical Calderón-Zygmund singular
integral operator SΩ given by

SΩf(x) = p.v.
∫
Rn

f(x− y)
Ω(y′)

|y|n
dy. (1.3)

In their fundamental papers [9] and [8], Calderón and Zygmund proved that the operator
SΩ is bounded on Lp (1 < p < ∞) provided that Ω ∈ L(logL)(Sn−1). Moreover, it was
shown in [8] that L(logL)(Sn−1) is the most desirable size condition in the sense that SΩ

can fail to boundedness on Lp if Ω is assumed to be in L(logL)1−ε(Sn−1)\L(logL)(Sn−1)
for some ε > 0. For further results concerning the operator SΩ , we cite, among others, [1],
[2], [6], [7], [10], [11], [12], [15], [16], [17] and references to their in.

In 1996, Kim, Winger, Wright and Ziesler [13] studied the Lp(Rn+1) boundedness
of Sφ,Ω when Ω ∈ C∞(Sn−1) for (1 < p < ∞). In [7], Al-Salman and Pan estab-
lished Lp(Rn+1) (1 < p < ∞) the boundedness of Sφ,Ω under the condition Ω ∈
L(logL)(Sn−1). For more results on this topic, we advise readers to consult [14], [11],
[12], among other.

Let θ : R × R → R be a smooth mapping. Suppose that Ω ∈ L1(Sn−1 × Sn−1) is
satisfied ∫

Sn−1

Ω(u′, .)dσ(u′) =

∫
Sn−1

Ω(., v′)dσ(v′) = 0 (1.4)

and
Ω(tu, sv) = Ω(u, v) (1.5)

for any t, s > 0. Consider the singular integral operator

Tθ,Ωf(x, xn+1) = p.v.

∫
Rn+1×Rn+1

f(x−u−v, xn+1−θ(|u|, |v|))Ω(u′, v′)

|u|n |v|n
dudv. (1.6)

In order to state our results in this paper, we cite the following remarks:

(i) When θ = 0, then the corresponding operator Tθ,Ω reduces to the operator

TΩf(x) = p.v.
∫
Rn×Rn

f(x− u− v)
Ω(u′, v′)

|u|n |v|n
dudv; (1.7)

which was introduced in [3]. In [3], Al-Salman proved that the operator TΩ is bounded on
Lp(Rn), 1 < p < ∞, provided that Ω ∈ L(logL)2(Sn−1 × Sn−1), i.e.,∫

Sn−1×Sn−1

|Ω(u, v)|(log 2 + |Ω(u, v)|)2 dσ(u) dσ(v) < ∞. (1.8)

It is worth pointing that,

L(log+ L)s(Sn−1 × Sn−1) ⊂ L(log+ L)r(Sn−1 × Sn−1) whenever r < s

and
Lq(Sn−1 × Sn−1) ⫋ L(log+ L)r(Sn−1 × Sn−1) ⫋ L1(Sn−1 × Sn−1)

whenever q > 1 and r ≥ 1.In addition, it was pointed out in [3] that the condition Ω ∈
L(logL)2(Sn−1×Sn−1) is nearly optimal. Namely, there exists an Ω in L(logL)2−ε(Sn−1×
Sn−1) for some ε > 0 such that Tγ,Ω is not bounded on Lp(Rn).

(ii) When θ is separable in the sense that θ(s, t) = φ1(s)+φ2(t) and Ω(x, y) = Ω1(x)Ω2(y)
for some Ω1, Ω2 ∈ L1(Sn−1) where φ1 and φ2 are suitable real valued functions, then
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the special operator Tφ1,φ2,Ω = Tθ,Ω is a composition of two singular integral operators.
Namely,

Tφ1,φ2,Ω(f)(x, xn+1) = Sφ1,Ω1 ◦ Sφ2,Ω2(f)(x, xn+1) (1.9)

where Sφ1,Ω1 is the operator given by (1.2) with φ replaced by φ1 and Ω replaced by Ω1.
Similarly, the operator Sφ2,Ω2 .

(iii) By Theorem 1.2 in [7], it follows that if Ω1, Ω2 ∈ L(logL)(Sn−1) and φ1 and φ2

are C2, convex, and increasing functions satisfying φ1(0) = φ2(0) = 0, then the operators
Sφ1,Ω1 and Sφ2,Ω2 are bounded on Lp(Rn+1) for all p ∈ (1,∞). Hence, by this and (1.9),
we deduce that the operator Tφ1,φ2,Ω in (1.9) is bounded on Lp for all 1 < p < ∞.

(iv) For general Ω and θ, it is not visible if the operator Tθ,Ω can be written as a composition
of two operators of convolution type.

In light of above remarks, it is natural to investigate the Lp boundedness of the operator
Tθ,Ω for various functions θ under the condition Ω ∈ L(logL)2(Sn−1 × Sn−1). Our results
are the following:

Theorem 1.1. Suppose that Ω ∈ L(logL)2(Sn−1 × Sn−1) satisfies (1.4)-(1.5). If θ(s, t) =
φ1(s)+φ2(t) where φ1 and φ2 are C2, convex, and increasing functions satisfying φ1(0) =
φ2(0) = 0, then Tθ,Ω is bounded on Lp(Rn+1) for 1 < p < ∞.

Theorem 1.2. Suppose that Ω ∈ L(logL)2(Sn−1 × Sn−1) satisfies (1.4)-(1.5). If θ(s, t) =
φ1(s) + φ2(t) where (i) φ1 is C2, convex, and increasing function with φ1(0) = 0 and
(ii) φ2 is a polynomial mapping with φ2(0) = 0, then Tθ,Ω is bounded on Lp(Rn+1) for
1 < p < ∞. The Lp may depend on the degree of the polynomial φ2 but it is independent
of its coefficients.

Theorem 1.3. Suppose that Ω ∈ L(logL)2(Sn−1 × Sn−1) satisfies (1.4)-(1.5). If θ(s, t) =
φ1(s) + φ2(t) where φ1 and φ2 are polynomial mappings with φ1(0) = φ2(0) = 0, then
Tθ,Ω is bounded on Lp(Rn+1) for 1 < p < ∞. The Lp may depend on the degrees of the
polynomials φ1 and φ2 but it is independent of their coefficients.

Throughout this paper, the letter C will stand for a constant that may vary at each occur-
rence but it is independent of the essential variables.

2 Preliminary Lemmas

For j ∈ Z and Ω ∈ Lq(Sn−1 × Sn−1) for some q > 1 and satisfying (1.4)-(1.5), let
α(q,Ω) = log2(e + ∥Ω∥q) and let Ij,q be the interval [2α(q,Ω)j , 2α(q,Ω)(j+1)) in R. Let
θ(t, s) = φ1(s) + φ2(t) where φ1, φ2 : R → R are suitable real valued functions. Define
the sequence {Mq,θ,j,k : j, k ∈ Z} of multipliers on Rn+1 by

Mq,θ,j,k(ξ, η) =

∫ ∫
(|u|,|v|)∈Ij,q×Ik,q

e−i((u+v)· ξ+θ(|u|,|v|)η)Ω(u′, v′)

|u|n |v|n
du dv (2.1)

where ξ ∈ Rn and η ∈ R.
For j ∈ Z and Ω ∈ Lq(Sn−1 × Sn−1) for some q > 1, we let ej,q : R → C be the

mapping defined by

ej,q(t) = e−i2α(q,Ω)jt. (2.2)

Now, we have the following lemma:
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Lemma 2.1. Let Mq,φ1,φ2,j,k
be as in (2.1). Let

Cq,Ω = (α(q,Ω))2 ∥Ω∥
2− 2

α(q,Ω)

1

and let θ, φ1, and φ2(t) be as above. Then

∣∣Mq,θ,j,k(ξ, η)
∣∣ ≤ ∣∣∣2α(q,Ω)jξ

∣∣∣− 1
4q′α(q,Ω)

∣∣∣2α(q,Ω)k
ξ
∣∣∣− 1

4q′α(q,Ω)
CCq,Ω, (2.3)

∣∣Mq,θ,j,k(ξ, η)
∣∣ ≤ ∣∣∣2α(q,Ω)jξ

∣∣∣− 1
4α(q,Ω)

∣∣∣2α(q,Ω)(k+1)ξ
∣∣∣ 1
α(q,Ω)

CCq,Ω, (2.4)

∣∣Mq,θ,j,k(ξ, η)
∣∣ ≤ ∣∣∣2α(q,Ω)(j+1)ξ

∣∣∣ 1
α(q,Ω)

∣∣∣2α(q,Ω)k
ξ
∣∣∣− 1

4α(q,Ω)
CCq,Ω, (2.5)∣∣Mq,θ,j,k(ξ, η)

∣∣ ≤ (α(q,Ω))2 ∥Ω∥1
∣∣∣2α(q,Ω)(j+1)ξ

∣∣∣ ∣∣∣2α(q,Ω)(k+1)
ξ
∣∣∣C (2.6)

for all j, k ∈ Z, ξ ∈ Rn, η ∈ R, and mappings φ1 and φ2. The constant C is independent
of the essential variables.

Proof. We start by the proof of (2.3). We write Mq,θ,j,k(ξ, η) as∣∣Mq,θ,j,k(ξ, η)
∣∣2

≤

 2α(q,Ω)∫
1

2α(q,Ω)∫
1

∣∣∣∣∣∣
∫

Sn−1

∫
Sn−1

Ω(u′, v′)ej,q(rξ · u′) ek,q(sξ · v′) dσ(u′)dσ(v′)

∣∣∣∣∣∣ drdsrs


2

≤

 2α(q,Ω)∫
1

2α(q,Ω)∫
1

∣∣∣∣∣∣
∫

Sn−1

∫
Sn−1

Ω(u′, v′)ej,q(rξ · u′) ek,q(sξ · v′) dσ(u′)dσ(v′)

∣∣∣∣∣∣ drdsrs


2

≤ ∥Ω∥4q

 ∫
Sn−1

∫
Sn−1

∫
Sn−1

∫
Sn−1

∣∣∣∣∣∣∣
2α(q,Ω)∫
1

2α(q,Ω)∫
1

ej,q(rξ · u′)ek,q(sξ · v′)
drds

rs

∣∣∣∣∣∣∣
q
′

dσ(u′, v′, z′, w′)


1
q′

(2.7)

where
dσ(u′, v′, z′, w′) = dσ(u′)dσ(v′)dσ(z′)dσ(w′).

Now, ∣∣∣∣∣∣∣
2α(q,Ω)∫
1

2α(q,Ω)∫
1

ej,q(rξ · (u′ − w′))ek,q(sξ · (v′ − z′))
drds

rs

∣∣∣∣∣∣∣
q
′

=

∣∣∣∣∣∣∣
2α(q,Ω)∫
1

ej,q(rξ · (u′ − w′))
dr

r

∣∣∣∣∣∣∣
q
′ ∣∣∣∣∣∣∣

2α(q,Ω)∫
1

ek,q(sξ · (v′ − z′))
ds

s

∣∣∣∣∣∣∣
q
′

.
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Thus, by integration by parts, we have∣∣∣∣∣∣∣
2
∥Ω∥q∫
1

2
∥Ω∥q∫
1

ej,q(rξ · (u′ − w′))ek,q(sξ · (v′ − z′))
drds

rs

∣∣∣∣∣∣∣
q
′

≤
∣∣∣2α(q,Ω)j

ξ · (u′ − w′)
∣∣∣−q′ ∣∣∣2α(q,Ω)k

sξ · (v′ − z′)
∣∣∣−q′

. (2.8)

On the other hand, we have∣∣∣∣∣∣∣
2
α(q,Ω)∫
1

2
α(q,Ω)∫
1

ej,q(rξ · (u′ − w′))ek,q(sξ · (v′ − z′))
drds

rs

∣∣∣∣∣∣∣
q
′

≤ α(q,Ω)2q
′
. (2.9)

Thus, by (2.8) and (2.9), we have

∣∣∣∣∣∣∣
2
α(q,Ω)∫
1

2
α(q,Ω)∫
1

ej,q(rξ · (u′ − w′))ek,q(sξ · (v′ − z′))
drds

rs

∣∣∣∣∣∣∣
q
′

≤ α(q,Ω)
2q′(1− 1

2q′ )
∣∣∣2α(q,Ω)j

ξ · (u′ − w′)
∣∣∣− 1

2
∣∣∣2α(q,Ω)k

sξ · (v′ − z′)
∣∣∣− 1

2
. (2.10)

By (2.10), (2.7), and the fact that

sup
ξ∈Sn−1

∫
Sn−1

∫
Sn−1

∣∣ξ · (u′ − v′)
∣∣−δ

dσ(u′)dσ(v′) = Cδ < ∞ (2.11)

for 0 < δ < 1, we have∣∣Mq,φ1,φ2,j,k
(ξ, η)

∣∣ ≤ ∣∣∣2α(q,Ω)j
ξ
∣∣∣− 1

4q′
∣∣∣2α(q,Ω)k

ξ
∣∣∣− 1

4q′
CCq,Ω (2.12)

where C is independent of the essential variables. By (2.12) and the observation that∣∣Mq,φ1,φ2,j,k
(ξ, η)

∣∣ ≤ α(q,Ω)2 ∥Ω∥21 . (2.13)

By (2.12) and (2.13), we get∣∣Mq,φ1,φ2,j,k
(ξ, η)

∣∣
≤ Cq,Ω

(
∥Ω∥2q (α(q,Ω))

2(1− 1
2q′ )C

) 1
α(q,Ω)

∣∣∣2α(q,Ω)(j+k) |ξ|2
∣∣∣− 1

4q′α(q,Ω)
. (2.14)

By (2.14) and the observation

Cq,Ω

(
∥Ω∥2q (α(q,Ω))

2(1− 1
2q′ )C

) 1
α(q,Ω) ≤ (α(q,Ω))2 ∥Ω∥

2− 2
α(q,Ω)

1 CCq,Ω, (2.15)

we obtain (2.3).
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Nest, we verify (2.4). Notice that by the cancellation property (1.4), we have∫ ∫
(|u|,|v|)∈Ij,q×Ik,q

e−i((u·ξ+θ(|u|,|v|)η)Ω(u′, v′)

|u|n |v|n
du dv = 0.

Thus,∣∣Mq,θ,j,k(ξ, η)
∣∣

=

∣∣∣∣∣∣∣Mq,θ,j,k(ξ, η)−
∫ ∫

(|u|,|v|)∈Ij,q×Ik,q

e−i((u·ξ+θ(|u|,|v|) η)Ω(u′, v′)

|u|n |v|n
du dv

∣∣∣∣∣∣∣
≤

2α(q,Ω)∫
1

2α(q,Ω)∫
1

∫
Sn−1

∣∣(ek,q(sξ · v′)− 1
)∣∣ ∣∣∣∣∣∣

∫
Sn−1

Ω(u′, v′)ej,q(rξ · u′) dσ(u′)

∣∣∣∣∣∣ dσ(v′)drdsrs

≤ Cq,Ω

∣∣∣2α(q,Ω)(k+1)ξ
∣∣∣ 2α(q,Ω)∫

1

∫
Sn−1

∣∣∣∣∣∣
∫

Sn−1

Ω(u′, v′)ej,q(rξ · u′)dσ(u′)

∣∣∣∣∣∣ dσ(v′)drr . (2.16)

Now,

2α(q,Ω)∫
1

∫
Sn−1

∣∣∣∣∣∣
∫

Sn−1

Ω(u′, v′)ej,q(rξ · u′)dσ(u′)

∣∣∣∣∣∣ dσ(v′)drr
≤

2α(q,Ω)∫
1

∣∣Sn−1
∣∣ ∫
Sn−1

∣∣∣∣∣∣
∫

Sn−1

Ω(u′, v′)ej,q(rξ · u′)dσ(u′)

∣∣∣∣∣∣
2

dσ(v′)


1
2

dr

r

≤ (α(q,Ω))
1
2

 2α(q,Ω)∫
1

∣∣Sn−1
∣∣ ∫
Sn−1

∣∣∣∣∣∣
∫

Sn−1

Ω(u′, v′)ej,q(rξ · u′)dσ(u′)

∣∣∣∣∣∣
2

dσ(v′)
dr

r


1
2

≤
(∣∣Sn−1

∣∣α(q,Ω)
) 1

2

 ∫
Sn−1

∫
Sn−1

∫
Sn−1

∫
Sn−1

∣∣Ij,q,Ω(u′, w′)
∣∣ dσ(u′, v′, z′, w′)

 1
2

(2.17)

where

Ij,q,Ω(u
′, w′) = Ω(u′, v′)Ω(w′, v′)

∣∣∣∣∣∣∣
2α(q,Ω)∫
1

ej,q(rξ · (u′ − w
′
))
dr

r

∣∣∣∣∣∣∣ .
By integration by parts, we have∣∣∣∣∣∣∣

2α(q,Ω)∫
1

ej,q(rξ · (u′ − w
′
))

dr

r

∣∣∣∣∣∣∣ ≤ α(q,Ω)
∣∣∣2α(q,Ω)jξ · (u′ − w′)

∣∣∣−1
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which when combined with the estimate∣∣∣∣∣∣∣
2α(q,Ω)∫
1

ej,q(rξ · (u′ − w
′
))
dr

r

∣∣∣∣∣∣∣ ≤ α(q,Ω) (2.18)

implies that∣∣∣∣∣∣∣
2α(q,Ω)∫
1

ej,q(rξ · (u′ − w
′
))

dr

r

∣∣∣∣∣∣∣ ≤ α(q,Ω)
∣∣∣2α(q,Ω)jξ · (u′ − w′)

∣∣∣− 1
2q′

. (2.19)

By (2.16), (2.17), (2.19), (2.11), and Hölder’s inequality, we have

∣∣Mq,θ,j,k(ξ, η)
∣∣ ≤ (α(q,Ω))2

∣∣Sn−1
∣∣ 12 ∥Ω∥q

∣∣∣2α(q,Ω)(k+1)ξ
∣∣∣ ∣∣∣2α(q,Ω)jξ

∣∣∣− 1
4
. (2.20)

By (2.13) and (2.20), we obtain (2.4). By symmetry, we can obtain (2.5). To see (2.6), we
make use of the observation∫ ∫

(|u|,|v|)∈Ij,q×Ik,q

e−iθ(|u|,|v|)ηΩ(u′, v′)

|u|n |v|n
du dv = 0.

In fact,∣∣Mq,θ,j,k(ξ, η)
∣∣

=

∣∣∣∣∣∣∣Mq,θ,j,k(ξ, η)−
∫ ∫

(|u|,|v|)∈Ij,q×Ik,q

e−iθ(|u|,|v|) ηΩ(u′, v′)

|u|n |v|n
du dv

∣∣∣∣∣∣∣
≤

2α(q,Ω)∫
1

2α(q,Ω)∫
1

∫
Sn−1

∫
Sn−1

∣∣Ω(u′, v′)
∣∣ ∣∣ek,q(sξ · v′)− 1

∣∣ ∣∣ej,q(rξ · u′)− 1
∣∣ dσ(u′)dσ(v′)drds

rs

≤ (α(q,Ω))2 ∥Ω∥1
∣∣∣e−i2α(q,Ω)(j+1)

ξ
∣∣∣ ∣∣∣e−i2α(q,Ω)(k+1)

ξ
∣∣∣ .

This completes the proof of Lemma 2.1.

Now, let µ(φ1,φ2)
Ω be the maximal function given by

µ
(φ1,φ2)
Ω,q (f)(x, xn+1) = sup

j,k

∣∣∣∣∣∣∣
∫

|u|∈Ij,q

∫
|v|∈Ik,q

|f(x− u− v, xn+1 − θ(|u| , |v|))| |Ω(u′, v′)|
|u|n |v|n

∣∣∣∣∣∣∣ .
(2.21)

Lemma 2.2. Suppose that Ω ∈ Lq(Sn−1 × Sn−1) for some q > 1. Let φ1 and φ2 be as in
Theorem 1.1 or Theorem 1.2 or Theorem 1.3. Then

∥µ(φ1,φ2)
Ω,q (f)∥Lp(Rn+1) ≤ C (α(q,Ω))2 ∥Ω∥L1∥f∥Lp(Rn+1) (2.22)

for all 1 < p < ∞ and C is a constant independent of of the essential variables.
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Proof. Notice that

µ
(φ1,φ2)
Ω,q (f)(x, xn+1) ≤ (α(q,Ω))2 ∥Ω∥1M

(φ1,φ2)
Ω,q (f)(x, xn+1) (2.23)

where

M(θ)
(f)(x, xn+1) = sup

j,k∈Z

2j+1∫
2j

2k+1∫
2k

∣∣f(x− ru′ − sv′, xn+1 − θ(r, s))
∣∣ drds

rs
. (2.24)

It can be shown that

M(θ)
(f)(x, xn+1)(f)(x, xn+1) ≤ Mφ1 ◦Mφ2(f)(x, xn+1) (2.25)

where

Mφ1(f)(x, xn+1) = sup
j∈Z

2j+1∫
2j

∣∣f(x− ru′, xn+1 − φ1( r))
∣∣ dr
r

(2.26)

and

Mφ2(f)(x, xn+1) = sup
k∈Z

2k+1∫
2k

∣∣f(x−−sv′, xn+1 − φ2(s))
∣∣ ds
s
. (2.27)

Under the given assumptions on φ1 and φ2, it follows by Theorem 2.4 in [4] that

∥Mφ1(f)∥Lp(Rn+1) ≤ C ∥f∥Lp(Rn+1) (2.28)

and
∥Mφ2∥Lp(Rn+1) ≤ C ∥f∥Lp(Rn+1) (2.29)

for all 1 < p < ∞ with constant C independent of u′ and v′. Hence, by (2.23), (2.28), and
(2.29), we obtain (2.22).This completes the proof of Lemma 2.2.

3 Proof of Main result

Proof of Theorem 1.1. We start by choosing a sequence {Am : m ∈ N} of functions on
Sn−1 × Sn−1 and a sequence {λm : m ∈ N} ⊂ R such that∫

Sn−1

Am(u′, .)dσ(u′) =

∫
Sn−1

Am(., v′)dσ(v′) = 0, (3.1)

Am(ru′, sv
′
) = Am(u′, v

′
), r, s > 0, (3.2)

∥Am∥1 ≤ 4, ∥Am∥2 ≤ 22m+2, (3.3)

Ω(x, y) =

∞∑
m=1

λmAm(x, y), (3.4)

∞∑
m=1

(m+ 2)2 λm ≤ ∥Ω∥L(logL)2(Sn−1×Sn−1). (3.5)
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By (3.4), it follows that

Tθ,Ω(f)(x, xn+1) =
∞∑

m=1

λmTθ,Am(f)(x, xn+1), (3.6)

where Tθ,Am is given by (1.6) with Ω is replaced by Am. Let {σm,j,k : j, k ∈ Z} be the
sequence of measures such that

σ̂m,j,k(ξ, η) = M2,θ,j,k(ξ, η) (3.7)

where M2,θ,j,k is given by (2.1) with q = 2 and α(q,Am) = log2(e + ∥Am∥2). Thus, the
operator Tθ,Am is decomposed as follows:

Tθ,Am(f)(x, xn+1) =
∑
j,k∈Z

σm,j,k ∗ f(x, xn+1). (3.8)

Thus, by (3.6), (3.8), and Minkowski’s inequality, it suffices to prove that

∥Tθ,Am∥Lp(Rn+1) ≤ (m+ 2)2C∥f∥Lp(Rn+1) (3.9)

where C is a constant independent of m. Now, by an argument similar to that used in [7],
we let {ϖj

1}∞−∞ and {ϖk
2}∞−∞ be smooth partitions of unity on (0,∞) in the sense that

supp(ϖ
(1)
j ) ⊆

{
t : 2−2α(2,Am)(j+1) < t < 2−2α(2,Am)(j−1)

}
, (3.10)

supp(ϖ
(2)
k ) ⊆

{
t : 2−2α(2,Am)(k+1) < t < 2−2α(2,Am)(k−1)

}
, (3.11)

0 ≤ ϖ
(1)
j , ϖ

(2)
k ≤ 1; (3.12)∑

j∈Z
ϖ

(1)
j )(t) =

∑
k∈Z

ϖ
(2)
k )(t) = 1; (3.13)

∣∣∣∣∣drϖ
(1)
j

dtr
(t)

∣∣∣∣∣ ,
∣∣∣∣∣drϖ

(2)
k

dtr
(u)

∣∣∣∣∣ ≤ Cr

tr
(3.14)

where Cr is independent of m. Defined the multiplier operator F (m)
j,k in Rn+1 by

(F̂ (m)
j,k f)(ξ, η) = ϖ

(1)
j (|2α(2,Am)jξ|)ϖ(2)

k (|2α(2,Am)kξ|) f̂(ξ, η).

Thus, for r, s ∈ Z, we have

(
̂F (m)

j+r,k+sF
(m)
j+r,k+s f)(ξ, η) = f̂(ξ, η)

(
ϖ

(1)
j+r(|2

α(2,Am)jξ|)
)2 (

ϖ
(2)
k+s(|2

α(2,Am)kξ|)
)2

.

Therefore, by (3.13), we get∑
r,s∈Z

(F (m)
j+r,k+sF

(m)
j+r,k+s f)(x, xn+1) = f(x, xn+1). (3.15)

By (3.15), we decompose the operator Tθ,Am as follows

Tθ,Amf(x, xn+1) =
∑
j,k∈Z

σm,j,k∗f(x, xn+1) =
∑
j,k∈Z

σm,j,k∗

∑
r,s∈Z

F (m)
j+r,k+sF

(m)
j+r,k+s f

 .
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Now, let

N (m)
r,s (f) =

∑
j,k∈Z

F (m)
j+r,k+s

(
σm,j,k ∗ F

(m)
j+r,k+sf

)
. (3.16)

Hence, by (3.16), Tθ,Am reduces to

Tθ,Amf(x, xn+1) =
∑
r,s∈Z

N (m)
r,s (f)(x, xn+1). (3.17)

Now, for p > 2, we have

∥N (m)
r,s f∥p ≤ Cp

∥∥∥∥∥∥∥
 ∑

j,k∈Z

∣∣∣σm,j,k ∗ F
(m)
j+r,k+sf

∣∣∣2
 1

2

∥∥∥∥∥∥∥
p

≤ Cp (α(2, Am))2 ∥Am∥1

∥∥∥∥∥∥∥
 ∑

j,k∈Z

∣∣∣F (m)
j+r,k+sf

∣∣∣2
 1

2

∥∥∥∥∥∥∥
p

≤ Cp (α(2, Am))2 ∥Am∥1 ∥f∥p (3.18)

for all r, s ∈ Z and Cp is a constant independent of m. Here, the first and the last inequalities
follow by Littlewood-Paley theory while the second inequality follows by (2.22)
Next, we consider the L2- norm. Notice that by Plancherel’s theorem and the properties of
the portions {ϖj

1}∞−∞ and {ϖk
2}∞−∞, we have

∥N (m)
r,s f∥2L2 ≤

∑
j,k∈Z

∫
Λj+r,k+s

|f(ξ, η)|2 |M2,θ,j,k(ξ, η)|2 dξ dη, (3.19)

where
Λj+r,k+s = Λ

(m)
j+r ∩ Λ

(m)
k+s,

Λ
(m)
j+r =

{
ξ : 2−2α(2,Am)(j+r+1) < |2α(2,Am)j ξ| < 2−2α(2,Am)(j+r+1)

}
,

and

Λ
(m)
k+s =

{
ξ : 2−2α(2,Am)(k+s+1) < |2α(2,Am)k ξ| < 2−2α(2,Am)(k+s+1)

}
.

By Lemma 2.1, (2.13), and the fact that ∥Am∥1 ≤ 4, we get

∥N (m)
r,s f∥L2 ≤ (α(2, Am))2C 2−α̃l|r| 2−β̃l|s| ∥f∥L2 (3.20)

for some real α̃l > 0 and β̃l > 0. Hence, by interpolation between (3.18) and (3.20) along
with the fact that α(2, Am) ≤ 2(m + 2), we get (3.9) for p ≥ 2. The case for 1 < p < 2
follows by duality. This completes the proof of Theorem 1.1.

Proof of Theorems 1.2 and 1.3. The proofs follows by similar argument as that for the
proof of Theorem 1.1 with minor modifications. We omit the details.
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