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A note on singular integrals along higher dimensional subvarieties
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Abstract. Suppose that 2 € L'(S"~! x S"71) is a homogeneous function of degree zero in the sense
(1.5) and satisfying the cancellation property (1.4). Under certain convexity assumptions on the mapping
0 : R x R — R, we prove that the singular integral operator

Q /’ !
Ty o f(@,nin) = pov. / F@—u— v,z — 0(ful [o)) 2 g,

Rn+1xRn+1 |u‘n |U|n

is bounded on LP(R™ x R™),1 < p < oo provided the kernel function 2 is in L(log L)(S" ™! x S~ 1).

Keywords. Singular integral operators, surfaces of revolution, rough kernels, L? estimates, maximal
functions, Fourier transform.
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1 Introduction and Statement of Results

For n > 2, let S"~! be the unit sphere in the n-dimensional Euclidean space R™. Let do be
the induced normalized Lebesgue measure on S" 1. Fory # 0, lety’ = |y|~'y € S"~ ! and
2 € L'(S™1) be a homogeneous function of degree zero on R satisfying

/ 2(y")do(y') = 0. (1.1)

S§n—1

Let ¢ : [0,00) — R be a smooth function. Consider the singular integral operator S, o
given by
2y)

S@,Qf($a$n+1) =p-Vv. / f(:E — Y, Tny1 — ¢(|y‘)) |y|n dy (12)

Rn+1
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If ¢(t) = 0, then the operator S, ( is the well known classical Calderén-Zygmund singular
integral operator Sy, given by

Q /
Saf() =p [ £z —y) |y(|yn)dy. (1.3)
R’ﬂ

In their fundamental papers [9] and [8], Calderén and Zygmund proved that the operator
S, is bounded on LP (1 < p < oo) provided that £2 € L(log L)(S™~!). Moreover, it was
shown in [8] that L(log L)(S™!) is the most desirable size condition in the sense that S,
can fail to boundedness on L? if 2 is assumed to be in L(log L)!~¢(S*~ 1)\ L(log L)(S™ 1)
for some € > 0. For further results concerning the operator Sy, we cite, among others, [1],
[2], [6], [7], [10], [11], [12], [15], [16], [17] and references to their in.

In 1996, Kim, Winger, Wright and Ziesler [13] studied the LP(R"*!) boundedness
of S, when 2 € C*®(S"1) for (1 < p < 00). In [7], Al-Salman and Pan estab-
lished LP(R™™!) (1 < p < oo) the boundedness of Sy, under the condition 2 €
L(log L)(S™™1). For more results on this topic, we advise readers to consult [14], [11],
[12], among other.

Let § : R x R — R be a smooth mapping. Suppose that 2 € L'(S"~! x S*~1) is
satisfied

QW )do(u') = (.,v")do(v') =0 (1.4)
Sn—t sn—1
and
Q(tu, sv) = 2(u,v) (1.5)

for any ¢, s > 0. Consider the singular integral operator

Q / /
To.0f(x,2n11) =p.v./ f(:v—u—v,xml—0(Iu\,\v!))M dudv. (1.6)

Rn+1xRn+1 |U|n ‘U|n
In order to state our results in this paper, we cite the following remarks:
(i) When 6 = 0, then the corresponding operator T ¢, reduces to the operator

Tof(x) =p.v./ Flo—u— ) 200)

o o] dudwv; (1.7)

which was introduced in [3]. In [3], Al-Salman proved that the operator T}, is bounded on
LP(R™),1 < p < oo, provided that 2 € L(log L)?(S"~1 x S"71), i.e.,

/ 12(u, v)|(log 2 + [2(u, v)|)2 do(u) do(v) < co. (18)
Sn—lxsn—1

It is worth pointing that,
L(log™ L)*(S"! x §"71) ¢ L(log™ L)"(S"! x S""!) whenever r < s
and
LUS" x §"1) € Llog*t L)"(S" " x §* 1) S LY(S" ! x §™71)

whenever ¢ > 1 and r > 1.In addition, it was pointed out in [3] that the condition {2 €
L(log L)?(S"~1xS"~1) is nearly optimal. Namely, there exists an {2 in L(log L)?~¢(S" 1 x
S"~1) for some & > 0 such that T, ¢, is not bounded on LP(R").

(ii) When 0 is separable in the sense that §(s, t) = 1 (s)+p2(t) and 2(x,y) = 21(x) 22(y)
for some 21,2 € L'(S"~!) where @1 and ¢y are suitable real valued functions, then
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the special operator T, ., » = T  is a composition of two singular integral operators.
Namely,

Tigy 00, 02(f) (@ Tnt1) = Sy, © Sy, (f) (@, Tiig1) (1.9)

where S, o, is the operator given by (1.2) with ¢ replaced by o1 and {2 replaced by (2.
Similarly, the operator S, o, .

(iii) By Theorem 1.2 in [7], it follows that if {1, 25 € L(log L)(S"™!) and 1 and ¢
are C2, convex, and increasing functions satisfying ¢1(0) = ¢2(0) = 0, then the operators
Sy, and S, o, are bounded on LP(R™ ") for all p € (1,00). Hence, by this and (1.9),
we deduce that the operator T, ,, » in (1.9) is bounded on L? for all 1 < p < oc.

(iv) For general {2 and 0, it is not visible if the operator Ty (; can be written as a composition
of two operators of convolution type.

In light of above remarks, it is natural to investigate the P boundedness of the operator
Ty.; for various functions 6 under the condition 2 € L(log L)*(S"~! x S"~1). Our results
are the following:

Theorem 1.1. Suppose that 2 € L(log L)?(S*~! x S"~1) satisfies (1.4)-(1.5). If (s, t)
©1(8) +p2(t) where 1 and 3 are C?, convex, and increasing functions satisfying 1 (0)
©2(0) = 0, then Tp,q, is bounded on LP(R™™1) for 1 < p < oo.

Theorem 1.2. Suppose that 2 € L(log L)?(S*~! x S"~1) satisfies (1.4)-(1.5). If 0(s,t) =
©1(8) + @2(t) where (i) p1 is C%, convex, and increasing function with ©1(0) = 0 and
(ii) @2 is a polynomial mapping with ©2(0) = 0, then Ty ¢ is bounded on LP(R™*1) for
1 < p < 0. The LP may depend on the degree of the polynomial @2 but it is independent
of its coefficients.

Theorem 1.3. Suppose that 2 € L(log L)?(S*~! x S"~1) satisfies (1.4)-(1.5). If 0(s,t) =
v1(s) + pa(t) where p1 and o are polynomial mappings with ©1(0) = ¢2(0) = 0, then
Ty, is bounded on LP (R™"*1) for 1 < p < co. The LP may depend on the degrees of the
polynomials @1 and o but it is independent of their coefficients.

Throughout this paper, the letter C' will stand for a constant that may vary at each occur-
rence but it is independent of the essential variables.

2 Preliminary Lemmas

For j € Z and £2 € LI(S"! x S"~1) for some ¢ > 1 and satisfying (1.4)-(1.5), let
a(q, §2) = logy(e + ||92][,) and let I; 4 be the interval [20(@:2)] 9@ (+1)) in R. Let
0(t,s) = ¢i(s) + w2(t) where @1, p2 : R — R are suitable real valued functions. Define
the sequence {M, g ., : j,k € Z} of multipliers on R+ by

20"

Mg, (€,17) = e ) S

du dv 2.1

(luls[o])€4j,q % Ik, q

where £ € R” andn € R.
For j € Z and 2 € LI(S" ! x S"71) for some ¢ > 1, we let ej, : R — C be the
mapping defined by

—320(a,92)5¢

ejqt) =€ (22)

Now, we have the following lemma:
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Lemma 2.1. Let M%‘Plv@&j,k be asin(2.1). Let

29— _2
Co0 = (alq, 2)* 12l =7

and let 0, p1, and @2 (t) be as above. Then

1 1

‘Mqﬂ,j,k (5777)‘ < 2a(q,0)j§’ 4q’ o (q,92) 2a(q,9)k§ 49’ a(q,92) CCq,Q, (2‘3)
1 1

Mg, (&n)] < 2a<%””£\ 2@ |gala kD e *0D o, o (2.4)
1 1

M0, (6,7)] < |20@RGHDe| @D R IR o TN 2.5)

2a(q,(2)(k~+1)

}Mq,e,j,k(fﬂm < (a(q, Q))2 12|, ‘Qa(Q,Q)(j+1)€‘

5) C (2.6)

forall j,k € Z, £ € R", n € R, and mappings p1 and @a. The constant C' is independent
of the essential variables.

Proof. We start by the proof of (2.3). We write M4 ., (£, 7) as

Mo (&)

2a(q,2) 9a(q,2) 2
: / / / / Qu',v")ej (1€ - ') eg g (s - v') do(u')do (v') d:js
! 1 gn-1gn-1
20(q,2) 9a(q,02) 2
- / / / / 2, v)ejq(ré ) exq(s§ - v') do(u')do(v') d:js
1 1 Sn—1§n—1

’

Qa(q,ﬂ) Qa(q,.Q) q

it [ [ [ ciatre et ) T2 ottt )
1 1

§n—1§n—-1g§n—1g§n—-1

IN

2.7)
where
do(u', v, 2, w') = do(u)do(v')do (2 )do(w').

Now,

90(0,2) 90(0,2) q

[ ittt = wen(st - (0 - )5

1 1

20(2,92) ¢ 9a(g,92) q

| [ et @ —anT| | [ e/ - )T

1 1
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Thus, by integration by parts, we have

’

9l 2llg 9ll2lg q
drds
[ ciatre = wentsg @ - )
1 1
< 2" — )| 2 e (o = )] (2.8)
On the other hand, we have
L@ ?) Jala.?) q
drds
[ eiatre = wengtsg - (0 - )
1 1
< a(q, 2)%. (2.9)
Thus, by (2.8) and (2.9), we have
L2 (@) Jaa.?) q
drds
[ et = weng s (0 - )
1 1
. _1 _1
< a(q, Q)2q (1=3q7) 2a(q’m]£ (=) : 2a(q’mksf (=2 ., (2.10)
By (2.10), (2.7), and the fact that
sup / / & (v — v/)’_(S do(u')do(v') = Cs < 00 (2.11)
€€Sn_IS'nfl S§n—1
for 0 < § < 1, we have
1 1
a(q,2)j |~ 24’ a(g,2)k |7 247
[Mgr,p0,0Em)] < [27777€] 27| 7 CCh0 (2.12)

where C' is independent of the essential variables. By (2.12) and the observation that

[Mg,p100,5. (6,1)] < ala, 2)% 27 . (2.13)
By (2.12) and (2.13), we get

‘M(I)W174P2,j,k (&, 77)|

_ 1
< Cyo (1212 (ala, )23 €)

1

1
a(q,2 a(q,2)(j+k T 4da
(q,92) ) (a,92)(+k) |£|2 4q’a(q,92) ] (214)

By (2.14) and the observation

2

2
< (a(q, D)2} @7 CCha,  (2.15)

1
a(q,$2)

__1
Caa (1212 (alq, 2" 727 C)

we obtain (2.3).
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Nest, we verify (2.4). Notice that by the cancellation property (1.4), we have

pil(weroiiul oy LWLV L

Ju|™ o[
(lul,[v])E€Lj,g % Ik q
Thus,
}Mq,a’j’k(gvrl)‘
e Qu',v")
_ Mq,97j7k(£,n)— i ((u-E+6(|ul, M)"ﬂwd u dv

(lul|v))€dj,g %1k q
9a(q,92) 9a(q,92)

) / / / (Ctalot ) =) / 2, v")ejq(ré o) do(u) da(vl)d:js
n—1
20(q,92)
S Cq,Q 20{((],.(2)(’{«‘,»1)6) / / / Q(u/7vl)ej7q(r§ ’U,/)do'(u/) da(v/)ﬁ (216)
r
1 §n—1 gn-1
Now,
22(q,92)
dr
/ / / (u',v")ejq(r€ - u')do(u')| do(v )r
22(q,92) , ,

d
< [ ] [ ] ] ot o] aow)) ¢
1 S§n—1 n—1

2a(q,92) 2

< (a(g, 2))} / s 1\/ / (1 )esq(r - Yo (w)| do(v) 2

r

SIS

N[

< (|s" ! alq, Q))% / / / / L., w")| do(u v, 2/ w') (2.17)

n—1g§n—-1g§n—1g§n—-1

where
20(q,$2)
o 1o ’oo dr
Laallu) = 2000 )| [ eiglre- (= w )T |.
1
By integration by parts, we have

9a(q,92)

[ eiatre- 6w ) 2| < ata, ) [0 - ! - w)

1

-1
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which when combined with the estimate

20c(q,12)
/ ej,q(ré(u’—w'))g < a(g,2) (2.18)
1
implies that
20:(q,12) )
/ ej,q(Tﬁ‘(U’—w'))% < a(q,2) 22@Dic . ( —w')| > . (2.19)

1

By (2.16), (2.17), (2.19), (2.11), and Holder’s inequality, we have

_1
My, (€] < (ala, 2)) [771]F (12, [22@ D0+ [po@ig) "+ 220

By (2.13) and (2.20), we obtain (2.4). By symmetry, we can obtain (2.5). To see (2.6), we
make use of the observation

bl folyn 20500
Jul™ o]
(Tl o) €1 g x T g

In fact,
[Mg.0, . (€:m))|
—i0(|ul,|v Q(ulavl)
= Mq,e,]’,k(é,'fl)_/ / € 9(| M andlbd'v

(lul,|v])€Lj,g X 1k,q

22(q,$2) 9a(q,$2)

/ / / /}Qu V)| [erg(s€ - v') = 1] |ejq(ré - ') — 1] do(u/ deS

1 Sn—18§n—1
_9a(q,2)(5+1) _90a(q,2)(k+1)
< (alg, )7 @Il [em 2] om0

IN

This completes the proof of Lemma 2.1.

Now, let u(m’m) be the maximal function given by
: |£2(u’, )]
A e =sw | [ [ e um v = 0l o)
" fulna i€,
(2.21)

Lemma 2.2. Suppose that 2 € LI(S"! x S*=1) for some q¢ > 1. Let @1 and o be as in
Theorem 1.1 or Theorem 1.2 or Theorem 1.3. Then

158 (F)ll oy < C (g ) 12 22| fll oensr) (2.22)

forall1 < p < oo and C is a constant independent of of the essential variables.
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Proof. Notice that

A (F) (@, an1) < (alg, ) 120, ML () (@, 2n11)

where

2j+1 2k+1

j,kEZ rs

23

It can be shown that

MO ) (@, 2000) () (@, 2011) < M 0 M7 (f)(@, 2041)
where
27+1
M7 (f) (@, 2py1) = sup / ‘fx—ru Tnt1 — P1( ‘*
JEZ
and
2k+1

MP(f) (@, 2ns1) = sup / |f@ = —sv', 2nt1 — pa(s ‘7

Under the given assumptions on 1 and 2, it follows by Theorem 2.4 in [4] that

||ﬂm(f)||Lp(Rn+1) < Cfllpe@ntr

and o
M| Logn+ty < C Il oges)

M(G)(f)(x,$n+1) = sup / / (@ —ru/ — 50/, 2ni1 — O(r, s))’ drds.

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

for all 1 < p < oo with constant C' independent of u" and v’. Hence, by (2.23), (2.28), and

(2.29), we obtain (2.22).This completes the proof of Lemma 2.2.

3 Proof of Main result

Proof of Theorem 1.1. We start by choosing a sequence {A,, : m € N} of functions on

S~ x §"~1 and a sequence {\,, : m € N} C R such that

Al Yo (') = [ Ap(1)do(0) =0,
Sn—1 Sn—1

Am(ru’,sv,) = Am(u/,v/),r,s >0,

[Amlls <4, [[Amll2 < 222,

- Z A’rnfélrn(‘%'vy)a
m=1

oo
D (m+2)% A < 192]l L 10g Ly2(57-1 x80-1)
m=1

(3.1)

3.2)
3.3)

3.4)

(3.5)
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By (3.4), it follows that

TG,Q(f)(xv Tpit1) = Z AmT@,Am(f)(l‘a $n+1)7 (3.6)

m=1

where T} 4,, is given by (1.6) with {2 is replaced by A,,. Let {0y, jr : j,k € Z} be the
sequence of measures such that

Om.jk(§;m) = Moy, (§n) (3.7

where M g ; 1, is given by (2.1) with ¢ = 2 and «(q, A,,) = logy(e + || A ||2). Thus, the
operator Ty 4, is decomposed as follows:

Tp, 4 (F) (@, Tn01) = Y O * [ (2, Tn11)- (3.8)
J,kEZ
Thus, by (3.6), (3.8), and Minkowski’s inequality, it suffices to prove that
1Ty, A | oty < (M4 2)2C| fl| Lo ntr) (3.9)

where C' is a constant independent of m. Now, by an argument similar to that used in [7],

we let {o;1}%°, and {2}, be smooth partitions of unity on (0, o) in the sense that
supp(wj(-l)) - {t : 9720(2An) ) < ¢ < 2_20‘(2’Am)(j_1)} , (3.10)
supp(w,(f)) - {t -9 2a(2,Am) (k+1) ¢ 2_20‘(2’Am)(k_1)} , (3.11)
0<wM w? <1 (3.12)
> w0 =3 =)0 =1 (3.13)
JEZ keZ

drw(-l) d’"w@) C

J k <
), || < 7 (3.14)

where C; is independent of m. Defined the multiplier operator .7-}0,?) in R"*+! by

<f;’,? P& ) = @i (|20 Aig)) i) (22 @Amke) fe ).

Thus, for r, s € Z, we have

m e £ a( @ 2
(s P DEm) = FEom) (1) (20 Ae)) ) (wf, (202 A k)
Therefore, by (3.13), we get

N e F s D@ ngn) = f(,2041)- (3.15)
r,SEL

By (3.15), we decompose the operator Tj 4, as follows

Ty, A, f (2, Tn1) = Z Omji*f (T, Tng1) = Z Tm,j,k* Z ]+rk+s j+2k+sf

7,kEZ 7,kEZ r,SEZL



Ahmad Al-Salman, Badriya Al-Azri 63

Now, let

J,kEZ

Hence, by (3.16), T 4,, reduces to

Tyt f (@, 2n11) = Y NI () (@, 2ni1)- (3.17)
r,SEL

Now, for p > 2, we have

NI

2
NG fllp < Co ||| D [omn * Filh s

7,k€Z
p

1

2
< Gy (a2 An) Al ||| 2 |70t

5,kEZ
p

< Gy (a2 An))? 1 Aul1 I£1], G.18)

forall r, s € Z and C,, is a constant independent of m. Here, the first and the last inequalities
follow by Littlewood-Paley theory while the second inequality follows by (2.22)
Next, we consider the L?- norm. Notice that by Plancherel’s theorem and the properties of

the portions {1} and {2}, we have
INIP fll72 < / F(&m)I? Mag,jx(€,m)[ d€ d, (3.19)
keZ A]+r k+s

where

A — A(m) ﬂ/l( m)

Jj+rk+s j+r k+s?
Aﬁ?« _ {5 . 9 20(2,Am) (+r+1) |2a(2,Am)j£‘ < 2—204(2,Am)(j+r+1)}’

and

Al(;z)s {5 9—20(2,Am) (kts+1) |2a (2,Am)k £l < 9—2a(2, Am)(k+s+1)} '

By Lemma 2.1, (2.13), and the fact that || 4,,||; < 4, we get
INI fll e < ((2, Ap))® C 2700 27 Ailsl || £ 2 (3.20)

for some real o; > 0 and Bl > 0. Hence, by interpolation between (3.18) and (3.20) along
with the fact that «(2, A,,) < 2(m + 2), we get (3.9) for p > 2. The case for 1 < p < 2
follows by duality. This completes the proof of Theorem 1.1.

Proof of Theorems 1.2 and 1.3. The proofs follows by similar argument as that for the
proof of Theorem 1.1 with minor modifications. We omit the details.
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