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Abstract. On the real line, the Dunkl operators D, are differential-difference operators associated with
the reflection group Zo on R. In the paper; in the setting R we study the fractional maximal operator
associated with the Dunkl operator Ma,v in the total Dy-Morrey-Guliyev spaces Ly, » (R, dmy). We
give sufficient conditions for the boundedness of the operator My, on total D,-Morrey-Guliyev spaces
Lp (R, dmy).
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1 Introduction

Morrey spaces, introduced by Morrey [22], play an important role in the regularity
theory of PDE, including heat equations and Navier-Stokes equations. In harmonic analysis,
Morrey spaces are crucial for analyzing the behavior of integral operators and providing
conditions for the global existence of solutions to nonlinear PDEs, such as the Schrodinger
equation. The total Morrey-Guliyev spaces Ly, » ,,(R"), introduced by Guliyev [11], extend
the Morrey space Ly, »(R™) by including the second parameter y, which can be seen as the
intermediate spaces between Lebesgue spaces and Morrey spaces. The norm in these spaces
is defined by a combination of the norms of L, y(R") and L,, ,(R"), which allows a wider
range of behavior. Let 0 < p < oo, A € R, pu € R, [t]y = min{1,¢}, ¢ > 0. The total
Morrey-Guliyev spaces Ly, » ,,(R™) are the set of all locally integrable functions f with the
finite (quasi-)norm
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where B(z,t) denotes the ball centered at x with radius ¢ > 0. Here the norm in the case
p < Xis equal to the maximum of the norms of L, y(R™) and L, ,(R"). Total Morrey-
Guliyev spaces can be viewed as generalizations of both classical and modified Morrey
spaces. In particular, the case where A = p corresponds to classical Morrey space, and the
case where p1 = 0 corresponds to modified Morrey space Lj, » (R™), see [2,3,5-8,12,16,20,
25-27].
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2 Fractional maximal function in total Morrey-Guliyev spaces for ...

On the real line, the Dunkl operators A,, are differential-difference operators introduced
in 1989 by Dunkl [13]. For a real parameter v > —1/2, we consider the Dunkl operator,
associated with the reflection group Zo on R :

Du(f)(a) = L 4 (2 1) L))

c R.
2z n

Note that D_; ;o = d/dx.

Let v > —1/2 be a fixed number and m,, be the weighted Lebesgue measure on R, given
by

dmy(z) == (2" I(v + 1))_1 lz[* T dx, zeR.

Forany x € Rand r > 0, let B(z,r) := {y € R : |y| €| max{0, |z| — r},|z| + 7] }
be a Dunkl-ball in R. Then B(0,7) =] — r,7[ and m, B(0,7) = ¢, r>*T2, where ¢, :=
2T (v + 1) (v + 1)] -

The maximal operator M,, associated by Dunkl operator on the real line is given by

M, (@) = sup (mu(Bar) ™ [ L fwldmG), e ®

and fractional maximal operator M, ,, 0 < a < 2v + 2 associated by Dunkl operator on
the real line is given by

Mo f(@) i=sup (m, B(z.) 755 [ (1)l dm, (), o€ R
r>0 B(z,r)

It is well known that maximal and fractional maximal operators play an important role
in harmonic analysis (see [30]). Also the fractional maximal function and the fractional
integral, associated with D,, differential-difference Dunkl operators play an important role
in Dunkl harmonic analysis, differentiation theory and PDE’s. The harmonic analysis of
the one-dimensional Dunkl operator and Dunkl transform was developed in [9,19,21]. The
Dunkl operator and Dunkl transform considered here are the rank-one case of the general
Dunkl theory, which is associated with a finite reflection group acting on a Euclidean space.
The Dunkl theory provides a useful framework for the study of multivariable analytic struc-
tures and has gained considerable interest in various fields of mathematics and in physical
applications (see, for example, [14]). The maximal function, the fractional integral and re-
lated topics associated with the Dunkl differential-difference operator have been research
areas for many mathematicians such as C. Abdelkefi and M. Sifi [1], V.S. Guliyev and Y.Y.
Mammadov [9,10], Y.Y. Mammadov [17], L. Kamoun [15], M.A. Mourou [23], F. Soltani
[28,29], K. Trimeche [31] and others. Moreover, the results on Lg (R, dm, )-boundedness
of fractional maximal operator and its commutators associated with D, were obtained in
[10].

It is well known that maximal operator play an important role in harmonic analysis
(see [30]). Harmonic analysis associated to the Dunkl transform and the Dunkl differential-
difference operator gives rise to convolutions with a relevant generalized translation. In this
paper, in the framework of this analysis in the setting R, we study the boundedness of the
fractional maximal operator M, ,, on total D,-Morrey-Guliyev spaces Ly, » (R, dm,).

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A ~ B and say that A and B are
equivalent.
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2 Preliminaries in the Dunkl setting on R

Definition 2.1 Ler 0 < p < 0o, A € R, p € R, [t]; = min{1,t¢}, t > 0. We denote by
Ly z(R,dm, ) the Morrey space [17] (= D,-Morrey space), by L, (R, dm,,) the modified
Morrey space [17] (= modified D, -Morrey space), and by Ly, » ,,(R, dm,,) the total Morrey-
Guliyev space [24] (= total D,,-Morrey-Guliyev space), associated with the Dunkl operator
the set of all classes of locally integrable functions f with the finite norms

A
1fllz, (Rdm,) = x:}ggof P | fll L, (B ,t) dma) s
2
1Az, @ dm,) = x;&%o[th "N, (Bait).dm.)s
A o
[z, s, ®dm) = sup [thy P (17 | fllL,Bt).dm.):
ZERM, t>0

respectively.

Definition 2.2 Let 0 < p < 0o, A € R and p € R. We define the weak Morrey space
Ly z(R,dm,) [17] (= weak D, -Morrey space), the weak modified Morrey space L;, (R, dm,,)
[17] (= weak modified D,-Morrey space), and the weak total Morrey-Guliyev space
L, )\#(R, dm,) [24] (= weak total D, -Morrey-Guliyev space), associated with the Dunkl
operator the set of all classes of locally integrable functions f with the finite norms

£y = 59 17 1 i, 300 )
7 _a
I lwz, @ dm,) = x;élltlo[th "N Alw LBt .dm.)»
7 _A 22
I f Wz, (R dm) = I6§33>0[t]1 " W W, (B, .dm)s

respectively.
Lemma 2.1 [I18,24]If0 <p <00, 0 < u << 2v+2, then
Ly u(R,dmy,) = Ly \(R,dm,) N Ly ,(R,dm,)

and

£z, s, (R dmy) = maX{HfHLp,A(R,dmy), HfHLp,H(R,dml,)} ~
Lemma 2.2 [18,24]If0 <p <00, 0 < pu <A< 20+ 2, then
WLy u(R,dm,) = WL, \(R,dm,) "WL,,(R,dm,)

and

LUy ity = 25 Ll s sy L1, ) | -
Remark 2.1 If 0 < p < 0o, and A > 2v + 2 or pu < 0, then
Ly u(R,dmy) = WLy (R, dm,) =O(R),

where © = O(R) is the set of all functions equivalent to 0 on R.



4 Fractional maximal function in total Morrey-Guliyev spaces for ...

Lemma23 [I8]IfO0<p<oo,0< A<M <2u+2and0 < g < o <20+ 2, then
Ly av (R,dm,) C» Ly xo o (R, dm,)

and
1N 2 ng oy ®om) S WLy (R -

Lemma24 [I8]If0<p<oo, 0<A<2v+2and0 < u <2v+ 2, then
Lp,2y+2,u(R7dmy) Cy Loo(Rvdml/) Cy Lp,)\,Zl/-‘rQ(Ra dmu)

and
1 F 12 x 20 s2 (Rodmy) < Czlz/prHLoo(R,dm,,) <Ly 2 so, (®Rodm)-

Lemma2s5 [I8]IfO0 < A< 2v+20< u<2v+20< a<2v+2—Xand
0<B<20+2—pu, thenfor% <p< %

Lpx,(R,dmy) Cy Ligyi2-a20+2-5R,dmy)
and for f € Ly » (R, dm, ) the following inequality

/
1AL 202 aomsz s (Rodmy) < cl/P 1F . (R A

is valid.

3 Fractional maximal operator M, , in total D,-Morrey-Guliyev spaces
LPJ\’H (R, dm,,)

In this section, we investigate the boundedness of the fractional maximal operator M, ,
in total D, -Morrey-Guliyev spaces L, » ., (R, dm,,).
The following Guliyev type local estimates are valid (see also [4]).

Lemma3l Let 0 < a < 2v+2,1<p< 2”(1—” % —% = 2110_12 and B(z,r) be any
Dunkl-ball in R. If p > 1, then the inequality

2042 o
1Mo fll1g(Br)dm,) S L, @B,dm,) +7 9 supt 27 |y (Bet) dm,) B-D)
'

holds for all f € L;QOC(R, dm,)).

Moreover if p = 1, then the inequality

< vt2 —2v—24«
[ Maw fllw Ly (B@r)dmy) S 12y @B,dm,) +7 ¢ f;lzpt 1Nl 22 (B ,t),dma)
T
3.2)

holds for all f € LY°(R,dm,,).
Proof. Let 0 < o < 2v+2,1 < p < 22 0 — & = 24 For arbitrary Dunkl-ball
B = B(a,r)let f = fi + fo, where fi = fxap and f2 = fxeyp.
HMa,VfHLq(B,dmy) < HMa,VflnLq(B,dmy) + ”Ma,l/f2HLq(B,dmu)'

By the continuity of the operator M, ,, : L,(R, dm,) — Ly(R,dm,)
for example, [17]) we have

1_1_ _a
*p q ~ 2v+2 (See’

Mo fillLyB,dm,y S Iz, @B.dm,)-
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Let y be an arbitrary point from B. If B(y, ) N C(2B) # (), then 7 > r. Indeed, if z €
B(y,7)N c(2B),then7' Sly—z|>|lz—z|—|e—y|>2r—r=r.

On the other hand, B(y,7) N |:(2B) C B(z,27).Indeed, z € B(y,7)N E(2B), then we
get|o —z| <|ly—z|+ |z —y|<T+7r <27

Hence
1
Mo, f2(y) = sup ~ / f(z)|dm,(z
) 70 my (B(y, 7))~ 2+ B(y,7)0°(2B)| (@] ()
1
< 222 gqup - / f(2)|dmy(z
m>r m,(B(z,27))' " 2 B(x,zf)‘ ()l dm (2)
— 22V+2—Oé 1

sup = f(2)]dmy(2).
r>2r my(B(z, 7)) 22 /B(x,r)| 2 2)

Therefore, for all y € B we have

1
My, fay) < 227279 sup / f(2)]dm,(2). (3.3)
() S BT o, ) A
Applying Holder’s inequality, we get
1
Moo faly) S sup [ fEPdme. e
T>2r my(B(x, T))p 2042 B(x’ﬂr)

Thus

”Ma,Vf”Lq(B,dml,) S, HfHLp(2B,dml,)

+ m,,(B(x,T))% ( sup 1 i /B(x B} 1f(2)] dmy(z)>-

w>2r m,, (B(x,7))r 02

Let p = 1. It is obvious that for any ball B = B(z, )

Mo fllw i, (Bdm,) < 1MawfillweryBdm,) + [ Mawfallwi,s.dm.,)-
By the continuity of the operator M, : L (R, dm,) — W L4(R, dm,) we have
| Ma,v fillweryB.dam,) S Iy @B,dm,)-
Then by (3.4) we get the inequality (3.2).

Lemma32 Let 0 < aa < 2v+2,1 < p< 22 1_1

o 5 — ¢ = 3o and B(z,r) be any
Dunkl-ball in R. If p > 1, then the inequality

2v42 _2u+2
[ Maw fllLy(Bar)dms) ST ° sup t |l (B@t).dm.) (3.5)
T
holds for all f € Li°(R, dm,)).
Moreover if p = 1, then the inequality
2042 _2u+42
[Maw FllwLy(Br)dm,) ST ¢ Sup t o (B@),dm.) (3.6)
'8

holds for all f € LY°(R, dm,).



6 Fractional maximal function in total Morrey-Guliyev spaces for ...

Proof. 0 <a<2v+2,1<p< 2%“2,%—%: ﬁ.Denote
1 1
A1 = m, (Ba,7)i ( sup [ Elam).
m>2r m,,(B(xz,T))r 2+2 JB(x,T)

Ag = || fllL,2B,dmy)-
Applying Holder’s inequality, we get
1 1
Ay Sy (Bt (sup ———— [ | dm(2)
q JB(z,7)

T>2r mV(B(x, 7—))

3=

On the other hand,

1 1 » -
my(B(z,T))a (Tsllg m /B(%T) |f(2)] dml,(z)>
2 mu(Ba. ) (sup (B(l ;

VS 25 s

Qe

Since by Lemma 3.1

Mo fllLy(B,dm,) S A1+ Az,

we arrive at (3.5).
Let p = 1. Inequality (3.6) directly follows from (3.2).

The following Spanne’s type result completely characterizes the boundedness of M, ,
on total D,-Morrey-Guliyev spaces L, » (R, dm,,).

Theorem 3.1 Ler0 < a <20 +20< \u<2v+21<p< min{Wa%}’
andl -1 = _«
p q 2v4-2°

LIff e Liyu(R,dm,), then My, f € WLy (R, dm,) and

Mo flW Ly rg g ®dmn) < Coap 1Ly s, R dma)s (3.7

where Cy » ,, is independent of f.
2.If f € Lpxu(R,dm,), 1 < p < oo, then M, f € Ly ,(R,dm,) and

HMa,ufHLq rg wg ®dmy) S CpanplflL, 5, Rdm,)s (3.8)
p

7?1
where Cy, 5 ,, depends only on p,\,j1 and v.
Proof. Let p = 1. From the inequality (3.6) we get

A
1Mo FlWLy sgpg®admy) = SUp [t 1/t ([ Mo fllw Ly (B, dm,)
zeR™,t>0

2v+42 2v+2

S osup [MNU/EEE T sup T 0 ([fllLy(Bar).dm.)
z€R™, >0 T>2t

SNz spam,y  sup [T [/ 7022 sup 70 22 (7] (1 /7]
z€R™, >0 7>t

— — —2v—-2 —2u— —a+2v42—
el A B el P 1 0 (o el Vs P
T€R™,t>0 T>t

Sz, Rdmy)
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which implies that the operator M, is bounded from L1  , (R, dm, ) to WLy  ,(R, dm,).
Let1 < p < min{ #2422 %} From the inequality (3.1) we get

_2A I3
HMavfoLq,%%(Rdmu) = mﬂi}}gw[th P/ 1 Maw Nl Ly (Ba,t),dm.)
7% % 2042 _2v42
S osup [ty P/t sup T a |l Br)
z€R™,t>0 T>2
_% % 2042 _2u42 % _%
S M leys,®dm,y  sup [ty P [1/t]] ¢« supT o [7]} [1/7]
zeR™, >0 T>t
2U4+2—X\ p—2v42 A—2v+2 2v4+2—p
=fllz,\ ®dm,y sup [ty * [1/t]y 7 sup[r]y * [1/7]y 7
zeR™ >0 T>1

Sz Rdm,)
which implies that the operator M, ,, is bounded from L, » ,(R, dm,) to Ly » (R, dm,,).
From Theorem 3.1 in the case A = p or u = 0 we get the following corollaries.

Corollary 3.1 [1,28] Let 0 < o < 2042, 0 < A < 2v+2,1 < p < 24222 gpq
1

1 a

p q = wt2
LIf feLix(R,dny,), then M, f € WLi(R,dm,) and

Mo fllwer, @®dm,) < CorllfllL,\@®dm,)s

where C, » is independent of f.
2.If f € Ly x(R,dm,), p > 1, then My, f € Ly \(R,dm,) and

Mo fllL, s®dm) < Cpar | fl L, 5 ®dm,)s

where C,, , \ depends only on p, g, X and v.

Corollary32 [17] Let 0 < a < 20 +2,0 < A < 2v+2,1 < p < 24222 gpg
1_1_ a

p q ~ 2v+42°
LIff € Lix(R,dm,), then M, f € WL \(R,dm,) and

1Maw Flwz, \@am,) < Car IFIZ, , @dm,):

where C1 ) is independent of f., 2. If f € EP,A(R, dmy),p > 1,then M, f € zq7,\(R, dm,,)
and

||Ma,Vf||qu>\(R,dmy) < CI%QJ\ HfHZpA(R,di)’

where C), , \ depends only on p, g, X and v.

Remark 3.1 Note that in the case of the multidimensional Dunkl setting, the main results
of this paper were proved in [19].
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