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Abstract. In this paper, we investigate the stability of an perturbed exponential system
{
eiαnx

}
n∈Z

in a separable subspace of the weighted grand Lebesgue space Np),ω(−π, π). Analogues of classical
Levinson-type theorems are obtained for the completeness of the system in space Lp),ω (−π, π) , 1 <

p < +∞ and using this result, the stability of the perturbed exponential system is established.
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1 Introduction

The study of exponential systems plays a central role in harmonic analysis and the theory
of function spaces. Among them, perturbed exponential systems, which generalize classi-
cal exponential systems, have attracted considerable interest due to their connection with
eigenfunctions of differential operators subject to integral boundary conditions. The inves-
tigation of exponential systems, commonly known as the theory of nonharmonic Fourier
series (see [1–5]), traces its roots to the classical works in this direction include those by
Paley and Wiener [6], N. Levinson [1], who explored the basis properties of such systems
in various functional frameworks. One of the well-known early results in this area states
that the trigonometric system

{
einx}+∞n=−∞ possesses a stable basis property in L2(−π, π).

More precisely, the system
{
eiλnx}+∞n=−∞ forms a Riesz basis in L2(−π, π) provided that

|λn − n| ≤ L < 1/4. The optimality of the constant 1
4 was established by M. I. Kadec [7],

and later by R. M. Redheffer and R. M. Young [8].
In recent years, the investigation of such systems in generalized function spaces, such

as grand Lebesgue spaces (see [9–16]) and weighted grand Lebesgue spaces, has gained
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2 The problem of stability of a basis ...

significant momentum. These spaces provide a flexible framework for analyzing systems
with variable integrability properties and are particularly effective in addressing questions
of stability and completeness. In this direction, special attention has been paid to the sta-
bility of bases generated by perturbed exponential systems, both in classical Lp (see [17]),
Morrey-Lebesgue spaces (see [18]) and in grand Lebesgue spaces where the non-uniform
integrability structure plays a crucial role in the preservation of basis properties (see also
[19–21]).

Now, let us consider a certain sequence of real numbers {αn}∞−∞ of real numbers.We
examine the following exponential system{

eiαnx
}
n∈Z. (1.1)

In this paper, we focus on the stability of a basis formed by a perturbed exponential system
within a separable subspaceNp),ω(−π, π) of the weighted grand Lebesgue spaceLp),ω (−π, π) ,
1 < p < +∞. We establish analogues of classical Levinson-type theorems, providing crite-
ria for the completeness and minimality of the system in this setting. The stability of system
(1.1) in space Np),ω(−π, π), 1 < p < +∞ , is studied.

2 Preliminaries

Let ω (x) be a weight function defined on [−π, π] . We denote by Lp),ω (−π, π) , 1 <
p < +∞, the weighted grand Lebesgue space consisting of measurable functions defined
on [−π, π] with finite norm

‖f‖p),ω = sup
0<ε<p−1

(
ε

2π

∫ π

−π
|f(t)ω(t)|p−εdt

) 1
p−ε

< +∞.

We denote by Ap (−π, π) , 1 < p < +∞, the Muckenhoupt weight class consisting of
periodic functions ω (x) with period 2π, satisfying the following condition

sup
I⊂[−π,π]

(
1

|I|

∫
I
ωp(t)dt

)(
1

|I|

∫
I
ω
− p

p−1 (t)dt

)p−1
< +∞,

where the supremum is taken over all finite intervals I in [−π, π].
Since the space Lp),ω (−π, π) , 1 < p < +∞, is non-separable, we consider its

separable subspace Np),ω(−π, π) of functions f ∈ Lp),ω (−π, π) :

‖f (·+ δ)− f (·)‖Lp),ω(−π,π) → 0, δ → 0.

We will need the following theorem regarding the density of the set C∞[−π, π] in the
space Np),ω(−π;π).

Theorem 2.1 ([22]) Let there is ε ∈ (0, p − 1) such that ω−1 ∈ L 1
p−ε−1

. Then set of

infinitely differentiable functions C∞[−π, π] is dense in Np),ω(−π, π).

Let X be a b.f.s. over (M ;µ) with norm ‖ · ‖X . We will also use certain concepts and
results from the theory of Banach function spaces (see [23]). The necessary facts from this
theory are stated below.

Definition 2.1 ([23]) A function f in a b.f.s. (Banach function space) X is said to have
continuous norm in X if ‖fχEn‖X → 0, for every sequence {En}∞n=1 satisfying En →
∅ µ− a.e. The set of all functions in X of absolutely continuous norm is denoted by Xa.
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Theorem 2.2 ([23]) The dual X∗ of a b.f.s. X is canonically isometrically isomorphic to
the associate space X

′
if and only if X has absolutely continuous norm,where

X ′ =

{
g ∈ L1 : ‖g‖X′ = sup

‖f‖X≤1

∫
M
|f(t)g(t)| dt < +∞

}
.

Proposition 2.1 ([23]) A function f ∈ X has absolutely continuous norm if and only if
‖fχEn‖X ↓ 0 for every sequence {En}n∈N satisfying En ↓ ∅µ− a.e.

We also need the following theorems.

Theorem 2.3 (Hausdroff-Young) Let 1 ≤ p ≤ 2, 1
p+

1
q = 1, f ∈ Lp(−π, π), and define

its Fourier coefficients by f̂ (n) = cn := 1
2π

∫ π
−π f (x)e

−inxdx, n ∈ Z. Then Hausdorff–
Young inequality states that

‖ {cn}n∈Z‖`q ≤ Cp ‖f‖Lp (−π,π)
,

where

‖ {cn}‖`q =

(∑
n∈Z
|cn|q

)1/q

and Cp is a constant depending only on p .

We will also use the following analogue of the Paley-Wiener theorem in Banach spaces

Theorem 2.4 Let X be a Banach space and let {xn}∞n=1 ∈ X, be a (Schauder) basis of
X . Let {yn}∞n=1 ∈ X, be another sequence such that there exists a constant θ ∈ [0, 1)
satisfying ∥∥∥∥∥

m∑
n=1

an(yn − xn)

∥∥∥∥∥ ≤ θ
∥∥∥∥∥
m∑
n=1

anxn

∥∥∥∥∥
for all finite scalar sequences (a1, . . . , am).

Then {yn} is also a Schauder basis of X.Moreover, {xn} and {yn} are equivalent bases.

3 A Necessary Condition for the Sequence {αn} to be Separated

Definition 3.1 ([24]) A system {fn}n∈N ⊂ Lp),ω(−π, π), 1 < p < +∞, is called a q-
Hilbert system, if there exists C>0, such that for any finite system {cn }n∈Z of complex
numbers the following inequality holds

(
∑

n |cn|
q)

1
q ≤ C‖

∑
n cnfn‖Lp),ω

,

where 1
q +

1
p = 1.

Definition 3.2 ([25]) A sequence {λn}n∈Z ⊂ R is called separated if

inf
n6=m

|λn − λm| > 0,

holds.
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Lemma 3.1 Let {αn}n∈Z be a sequence of real numbers. If for ω 6= 0 and ω ∈ Lp) (−π, π)
the system

{
eiαnx

}
n∈Z is a q-Hilbert system in the space Lp),ω (−π, π) , 1 < p < +∞,

then the sequence {αn}n∈Z is separated.

Proof. By the definition of q-Hilbert system, we have:

( ∞∑
k=−∞

|ck|q
) 1

q

≤ C sup
0<ε<p−1

(
ε

2π

∫ π

−π

∣∣∣∣∣
∞∑

k=−∞
ckfkω

∣∣∣∣∣
p−ε

dt

) 1
p−ε

.

If we choose the coefficients as cn = 1, cm = −1, ck = 0, k 6= n 6= m and fk = eiαkt then
we obtain

2
1
q ≤ C sup

0<ε<p−1

(
ε

2π

∫ π

−π

∣∣(eiαnt − eiαmt
)
ω
∣∣p−εdt) 1

p−ε

⇒ 2
1
q ≤ C

∥∥eiαnt − eiαmt
∥∥
p),ω

. (3.1)

On the other hand∣∣eiαnt − eiαmt
∣∣ = 2

∣∣∣∣sin(αn − αm2
t

) ∣∣∣∣ ≤ |αn − αm| |t| ≤ π |αn − αm| .
It follows from this that∥∥eiαnt − eiαmt

∥∥
Lp),ω(−π,π)

≤ π |(αn − αm)| ‖ω‖Lp)(−π,π).

Then, from relation (3.1), we obtain

2
1
q ≤

∥∥eiαnt − eiαmt
∥∥
Lp),ω(−π,π)

≤ π |(αn − αm)| ‖ω‖Lp)(−π,π)

⇒ |αn − αm| ≥
2

1
q

π‖ω‖Lp)(−π,π)
⇒ inf

n6=m
|αn − αm| > 0.

The theorem is thus proved.

4 Analogues of Levinson-Type Theorems in the SpaceNp),ω(−π;π)

We establish the following analogues of Levinson’s theorems [26].

Theorem 4.1 Let αk , k = 1, 2, . . . be a sequence of complex number. A necessary and
sufficient condition for the exponential system

{
eiαkt

}
k∈N to be incomplete in the space

Np),ω(−π;π) is the existence of a non-zero entire function F (z) of exponential type such
that

F (αn) = 0 for all n,

where,

F (z) =

∫ π

−π
f (x) eizxdx, f (x) ∈ N ′p),ω (−π, π) , f 6= 0.
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Proof. Suppose that the system
{
eiαkt

}
k∈N is not complete in the space. Then there exists

a non-zero functional L ∈ N ′p),ω(−π, π) such that

L
(
eiαkx

)
= 0 for all k.

Let us show that the spaces N
′

p),ω(−π, π) and N∗p),ω(−π, π) are isometrically isomor-
phic. According to Theorem 2.2 it is sufficient to prove that the space Np),ω(−π, π), 1 <
p < +∞, admits an absolutely continuous norm.

By Theorem 2.1, we have

C∞([−π, π]) = Np),ω(−π, π).

Then for every ε > 0 there exists f0 ∈ C[−π, π] such that

‖f − f0‖Lp),ω
< ε.

Suppose that {En}n∈N ⊂ (−π, π) is a sequence of Lebesgue measurable sets such that
En → ∅, µ− a.e., i.e. χEn →→ 0, µ− a.e.We need to show

‖fχEn‖Lp),ω
→ 0.

Let ε > 0 be arbitrary. Then

‖fχEn‖Lp,ω = ‖(f − f0)χEn + f0χEn‖Lp,ω

≤ ‖(f − f0)χEn‖Lp,ω + ‖f0χEn‖Lp,ω

< ε+ ‖f0χEn‖Lp,ω.

(4.1)

Let M = ‖f0‖L∞(−π,π) . Then we obtain

‖f0χEn‖Lp),ω
≤M‖χEn‖Lp),ω

=M sup0<ε<p−1

(
ε
2π

∫ π
−π |χEnω(t)|

p−εdt
) 1

p−ε

≤M sup0<ε<p−1

(
ε
2π

∫
En
|ω(t)|p−εdt

) 1
p−ε ≤M sup0<ε<p−1

(
ε
2π

) 1
p−ε ||ω (t)| |∞|En|

1
p−ε ,

where |·| denotes Lebesgue measure.
Since limn En =

⋂
n En = ∅ , a.e. we have

lim
n
|En| =

∣∣∣lim
n

En

∣∣∣ = 0.

From (4.1) it follows that
‖fχEn‖Lp),ω

→ 0 as n→∞.

Thus, by Proposition 2.1, we conclude that the space Np),ω(−π, π) possesses an absolutely
continuous norm. From Theorem 2.2, it follows that

N
′

p),ω(−π, π) ∼= N∗p),ω(−π, π),

which means that there exists a function g ∈ N ′p),ω(−π, π) such that for every f ∈ Np),ω (−π, π) ,
we have

L(f) =

∫ π

−π
f(x)g(x)dx. (4.2)
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Substituting f(x) = eiαnx into (4.2), we obtain:

L
(
eiαnx

)
=

∫ π

−π
eiαnxg(x)dx = 0.

It thus becomes clear that F (z) =
∫ π
−π f(x)e

izxdx is an entire function and hence

F (αn) = 0 for all n.

The theorem is thus proved.

Theorem 4.2 Suppose that the function F (z) is represented in the form (4.2) and g ∈
N
′

p),ω (−π, π) , 1 < p < +∞, F (α0) = 0 and β any complex number then

F1(α) =
α− β
α− α0

F (α),

is also represented in the form (4.2).

Proof. As in the classical Levinson theorem, let us define the new h(x) function in the
following way

h(x) = g(x) + i (β − α0) e
−iα0x

∫ x

−π
eiα0yg(y)dy. (4.3)

If we multiply both sides of equation (4.3) by eiαx and integrate, we obtain∫ π

−π
eiαxh(x) dx =

∫ π

−π
eiαxg(x) dx+ i(β − α0)

∫ π

−π
ei(α−α0)x

(∫ x

−π
eiα0yg(y) dy

)
dx

= F (α) + i(β − α0)

∫ π

−π

∫ π

y
ei(α−α0)xeiα0yg(y) dx dy.

By Fubini’s theorem, changing the order of integration yields∫ π

−π
eiαxh(x) dx = F (α) +

β − α0

α− α0

∫ π

−π

(
ei(α−α0)π − ei(α−α0)y

)
eiα0yg(y) dy

= F (α) +
β − α0

α− α0

∫ π

−π
eiαyg(y) dy

= F (α)− β − α0

α− α0
F (α) =

α− β
α− α0

F (α).

Thus

F1(α) =

∫ π

−π
eiαxh(x)dx.

The theorem is proved.

Corollary 4.1 Suppose that the system
{
eiαkx

}
k∈Z is complete in the space Np),ω(−π, π).

Then, if we remove any n functions from this system and replace them with any other n ex-
ponential functions

{
eiβkx

}n
k=1

(here βk 6= αk, ∀k = 1, n
)

then the newly obtained system
will be complete in space Np),ω(−π, π).
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5 Stability of the System
{
eiαnx

}
n∈Z in the SpaceNp),ω(−π, π)

Let us consider the following theorem concerning the stability of an exponential system
with respect to the sequence {αn}n∈Z in the space Np),ω(−π, π).

Theorem 5.1 Let 1 < p < +∞ , ωεAp, rε(1,min(p, q)) , r < p1 < p, ω−1 ∈ L p1r
p1−r

,

αn, βn εR , n ∈ Z, such that , αi 6=αj , βi 6=βj , for i 6=j, and

+∞∑
n=−∞

|αn−βn|r< +∞. (5.1)

If the system
{
eiαnx

}
n∈Z forms a basis isomorphic to the system

{
einx

}
n∈Z in space

Np),ω (−π, π) , then
{
eiβnx

}
n∈Z forms a basis isomorphic to the system

{
einx

}
n∈Z in

Np),ω (−π, π)

Proof. Let’s denote
en (x) = einx , ϕn (x) = eiαnx

and
ψn (x) = eiβnx , n ∈ Z, x ∈ [−π, π] .

According to the Lemma 3.1,

‖ϕn − ψn‖p),ω ≤M |αn − βn| , n ∈ Z, (5.2)

here M = π‖ω‖p). Let fix number m ∈ Z+ and consider the system of functions as
following

fn =

{
ϕn, |n| < m
ψn, |n| ≥ m , n ∈ Z .

Applying inequality (5.2) together with Hölder’s inequality, we obtain the following for any
finite complex sequence {cn}∥∥∥∥∥∑

n

cn
(
fn − ϕn

)∥∥∥∥∥
Lp),ω

≤
∑
n

|cn| ‖fn − ϕn‖Lp),ω

≤
∑
n

|cn| |αn − βn|

≤

(∑
n

|cn|r
′

) 1
r′
(∑

n

(αn − βn)r
) 1

r

.

(5.3)

Since 1 < r < 2 and ωεAp the system
{
einx

}
n∈Z becomes basis in Np),ω (−π, π) (see

result [22]) so we can apply here by the Theorem 2.4 about Hausdroff-Young inequality(∑
n

|cn|r
′

) 1
r′

≤

∥∥∥∥∥∑
n

cnen

∥∥∥∥∥
r

. (5.4)

Since ω−1 ∈ L p1r
p1−r

for ∀f ∈ Lp),ω by using Hölder’s inequality we obtain

‖f‖r =
(∫ π

−π
|fω|r · ω−rdt

) 1
r
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≤
(∫ π

−π
|fω|p1dt

) 1
p1

(∫ π

−π
ω
− p1r

p1−r dt

) p1−r

p1r

≤ K‖f‖p),ω. (5.5)

Taking inequality (5.5) into account in inequality (5.4), we obtain(∑
n

|cn|r
′
) 1

r
′

≤ K

∥∥∥∥∥∑
n

cnen

∥∥∥∥∥
p),ω

. (5.6)

Since the systems {ϕn} and {ψn} are isomorphic bases, there exists a constant L > 0 such
that ∥∥∥∥∥∑

n

cnen

∥∥∥∥∥
p),ω

≤ L

∥∥∥∥∥∑
n

cnϕn

∥∥∥∥∥
p),ω

(5.7)

Thus, taking inequality (5.7) into account in inequality (5.6), and using inequality (5.5), we
have

‖
∑

n cn(fn − ϕn)‖p),ω ≤M1

(∑
|n|≥m (αn − βn)r

) 1
r ‖
∑

n cnϕn‖p),ω.

Since the series
∑+∞

n=−∞ |αn − βn|r converges, for a sufficiently large m ∈ Z+ we can

choose it so that
(∑

|n|≥m |αn − βn|
r
) 1

r
< 1

M1
, holds. Thus, for an arbitrarily chosen

m ∈ Z+:

θ =M1

 ∑
|n|≥m

|αn − βn|r
 1

r

< 1,

and
‖
∑

n cn(fn − ϕn)‖p),ω ≤ θ‖
∑

n cnϕn‖p),ω
holds.

Hence, by the Paley–Wiener theorem, the system {fn} is an isomorphic basis to the
system {ϕn} in Np),ω. Since the systems {fn} and {ψn} differ from each other countable
number functions, more precisely system {ψn} consist of functions

eiµ−m+1x, eiµ−m+2x, . . . , eiµm−2x, eiµm−1x,

which are different functions in system {fn} , it follows that according to the theorem,
the fact that the system {ϕn} is an isomorphic basis to the system {fn} is equivalent to
its completeness. On the other hand, according to Theorem 2.2, which is an analogue of
Levinson’s theorem inNp),ω space, if in the system {fn} the elements with indices |n| < m
are replaced, respectively, by the elements {ψn}, then the resulting system, {ψn} will be
complete in Np),ω. Therefore, the system {ψn} is an isomorphic basis to the system {ϕn}
in Np),ω. The theorem is proved.

Corollary 5.1 Let 1 < p < +∞, 1 < p0 < p, ω ∈ Ap ∩Ap0 , and

r ∈
(
1,min

(
p

p− 1
,

pp0
p0 + p(p0 − 1)

))
,

{αn} , {βn} ⊂ R is a sequence of distinct numbers and
∑

n∈Z |αn − βn|
r < +∞. Then if

the system
{
eiαnx

}
n∈Z is an isomorphic basis to the system

{
einx

}
n∈Z in space Np),ω then

the system
{
eiµnx

}
n∈Z is an isomorphic basis to the

{
eiαnx

}
n∈Z .
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Proof. From the condition
r <

pp0
p0 + p(p0 − 1)

,

we obtain
rp0

p0 + r − rp0
< p.

Hence, there exists a number p1 such that

rp0
p0 + r − rp0

< p1 < p.

Choosing such a p1, we have
rp1
p1 − r

<
p0

p0 − 1
.

Thus, since ω−1 ∈ L p0
p0−1

, it follows that ω−1 ∈ L rp1
p1−r

. By Theorem 5.1, if the system{
eiαnx

}
is an isomorphic basis to

{
einx

}
in Np),ω, then the system

{
eiµnx

}
is also an

isomorphic basis to
{
einx

}
in Np),ω.

The result is proved.
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