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Abstract. In this paper, we investigate the stability of an perturbed exponential system {emnx}n cz
in a separable subspace of the weighted grand Lebesgue space Np),w(—ﬂ‘, 7). Analogues of classical
Levinson-type theorems are obtained for the completeness of the system in space Ly ,, (—m,7), 1 <
p < +oo and using this result, the stability of the perturbed exponential system is established.
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1 Introduction

The study of exponential systems plays a central role in harmonic analysis and the theory
of function spaces. Among them, perturbed exponential systems, which generalize classi-
cal exponential systems, have attracted considerable interest due to their connection with
eigenfunctions of differential operators subject to integral boundary conditions. The inves-
tigation of exponential systems, commonly known as the theory of nonharmonic Fourier
series (see [1-5]), traces its roots to the classical works in this direction include those by
Paley and Wiener [6], N. Levinson [1], who explored the basis properties of such systems
in various functional frameworks. One of the well-known early results in this area states

that the trigonometric system {ei”x :{f_ ~ Possesses a stable basis property in Lo (—, 7).

More precisely, the system {e”‘"m }Fee _ forms a Riesz basis in Lo(—m, ) provided that
|An, — n| < L < 1/4. The optimality of the constant % was established by M. I. Kadec [7],
and later by R. M. Redheffer and R. M. Young [8].

In recent years, the investigation of such systems in generalized function spaces, such
as grand Lebesgue spaces (see [9-16]) and weighted grand Lebesgue spaces, has gained
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2 The problem of stability of a basis ...

significant momentum. These spaces provide a flexible framework for analyzing systems
with variable integrability properties and are particularly effective in addressing questions
of stability and completeness. In this direction, special attention has been paid to the sta-
bility of bases generated by perturbed exponential systems, both in classical L, (see [17]),
Morrey-Lebesgue spaces (see [18]) and in grand Lebesgue spaces where the non-uniform
integrability structure plays a crucial role in the preservation of basis properties (see also
[19-21]).

Now, let us consider a certain sequence of real numbers {cv, }
examine the following exponential system

{emnl’}nez. (1.1

In this paper, we focus on the stability of a basis formed by a perturbed exponential system
within a separable subspace N, ,,(—, 7) of the weighted grand Lebesgue space L) ., (—7,7) ,
1 < p < +o00. We establish analogues of classical Levinson-type theorems, providing crite-

ria for the completeness and minimality of the system in this setting. The stability of system
(1.1) in space Ny, (=, 7), 1 < p < +0o0, is studied.

[e.e]

~ Of real numbers.We

2 Preliminaries

Let w (v) be a weight function defined on [—7, 7| . We denote by Ly, (-7, m), 1 <
p < +o0, the weighted grand Lebesgue space consisting of measurable functions defined
on [—m, 7| with finite norm

1

e [T _ p—e

=, s (5 [ 1rorar)™ <o
E<p— -7

We denote by A, (—m,7), 1 < p < +oo, the Muckenhoupt weight class consisting of
periodic functions w (x) with period 2, satisfying the following condition

1 1 P p-1
sup </ wp(t)dt> (/ w_p—l(t)dt> < 400,
IC[—m,7] |I‘ I ’I| I

where the supremum is taken over all finite intervals I in [, 7].
Since the space L), (—m,7), 1 < p < +o00, is non-separable, we consider its
separable subspace Ny, ,(—m, ) of functions f € L,y , (=, 7) :

1 C+6) = F Ol ) = 0 50,

We will need the following theorem regarding the density of the set C°°[—m, 7] in the
space Np) ., (—m; 7).

Theorem 2.1 ([22]) Let there is ¢ € (0,p — 1) such that w=' € L . Then set of
p—e—1
infinitely differentiable functions C*°[—m, | is dense in Np)’w(—ﬂ', ).
Let X be a b.f.s. over (M; u) with norm || - || x. We will also use certain concepts and

results from the theory of Banach function spaces (see [23]). The necessary facts from this
theory are stated below.

Definition 2.1 ([23]) A function f in a b.f.s. (Banach function space) X is said to have
continuous norm in X if || fxg,||x — 0, for every sequence {E,}," | satisfying E,, —
() u— a.e. The set of all functions in X of absolutely continuous norm is denoted by X,.
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Theorem 2.2 ([23]) The dual X* of a b.f.s. X is canonically isometrically isomorphic to
the associate space X ' if and only if X has absolutely continuous norm,where

X’_{QELIHQHX/— sup / ’f ‘dt<+00}

Proposition 2.1 ([23]) A function f € X has absolutely continuous norm if and only if
| fXE.|lx 4 O for every sequence {Ey}, .y satisfying Ey, | Op — a.e.

We also need the following theorems.

=1, fe€ LP(—m,~), and define

Theorem 2.3 (Hausdroff-Young) Ler 1 < p <2, —i—%
r)e""™dx, n € Z. Then Hausdorff-

its Fourier coefficients by f(n) = Cp 1= 5= f f(
Young inequality states that

Hendnezlle, < Co IfllL, .y py

1/q
| {entlle, = (Z \0n|q>

nEL

where

and C), is a constant depending only on p .
We will also use the following analogue of the Paley-Wiener theorem in Banach spaces

Theorem 2.4 Let X be a Banach space and let {x,,}7° | € X, be a (Schauder) basis of
X. Let {yn}2°2, € X, be another sequence such that there exists a constant 6 € [0, 1)
satisfying

<46

m
Z an (yn
n=1

for all finite scalar sequences (a1, . .., Q).
Then {y,} is also a Schauder basis of X. Moreover, {x,,} and {y,,} are equivalent bases.

m
§ anTn
n=1

3 A Necessary Condition for the Sequence {,, } to be Separated

Definition 3.1 ([24]) A system {fun},cny C Lpyo(—=7,7), 1 < p < 00, is called a q-
Hilbert system, if there exists C>0, such that for any finite system {cy }, . of complex
numbers the following inequality holds

O leal®)

Q

< C”Zn Cnfn”Lp)’w

1,1
where 7 + b= 1.
Definition 3.2 ([25]) A sequence {\n}, o, C R is called separated if
inf [ Ap — Am| > 0,
n#m

holds.



4 The problem of stability of a basis ...

Lemma 3.1 Let {cy,}, o7 be asequence of real numbers. If for w # 0 and w € Ly, (—m, )
the system {em"‘”}nez is a g-Hilbert system in the space Ly) , (—m,7), 1<p < +oo,
then the sequence {cu, },, o7 is separated.
=
dt> |

If we choose the coefficients as ¢, = 1, ¢, = —1, ¢, = 0,k # n # mand f;, = e'“+! then
we obtain

Proof. By the definition of g-Hilbert system, we have:

oo % c T
(5 ) w2
0<e<p—1 2 J_,

k=—o00

o0

> afrw

k=—o00

1
1 e s ' ' B L
2¢ < C  sup <27T/ |(emnt ezamt) ‘p Edt)

0<€<p—1 —T

1 . .
= 21 < Offeint — ot (3.1

On the other hand

eiant _ 6iarnt — 2

sin (an;amt> ' <lan —ap| |t| < 7lan — am| -

It follows from this that
Hez‘ant o emthLp),w(*”’ﬂ') < ‘(an — am)| ”wHLp)(_ﬂ'ﬂT)'

Then, from relation (3.1), we obtain

1 . .
24 S Hezant - ezathLp),w(fﬂ,ﬂ') S ™ ‘(O{n - Oém)| HWHLP)(—W,W)

= |an — ap| > = inf |a, —am,| > 0.

n#m

») (—m,m)

The theorem is thus proved.

4 Analogues of Levinson-Type Theorems in the Space N, (—; )
We establish the following analogues of Levinson’s theorems [26].

Theorem 4.1 Let oy, , k = 1,2,... be a sequence of complex number. A necessary and
sufficient condition for the exponential system { ew‘kt} wen 0 be incomplete in the space

Np) (=3 ) is the existence of a non-zero entire function F(z) of exponential type such
that

F (o) = 0 for all n,

where,
vy

F(z) = f(z)e*dx, f(x)c NII)),M (—m,m), f#0.

—T
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Proof. Suppose that the system {emkt } e 18 not complete in the space. Then there exists

a non-zero functional L € Nz;) (=, m) such that

L (e"**) = 0 forall k.

7w ,(JJ
phic. According to Theorem 2.2 it is sufficient to prove that the space Np)w(—ﬂ', T),1 <
p < 400, admits an absolutely continuous norm.
By Theorem 2.1, we have

Let us show that the spaces Nz;) (—m, ) and Ny (—m, ) are isometrically isomor-

Co([—m, 7)) = Np),w(—ﬂ',ﬂ').
Then for every € > 0 there exists fy € C[—m, 7] such that
Hf - fOHLp)_W <E.

Suppose that {E,,}, .y C (—m,m) is a sequence of Lebesgue measurable sets such that
E,— 3, u—a.e.,ie. xg, - 0, u — a.e.We need to show

”fXEnHLp)’UJ — 0.
Let € > 0 be arbitrary. Then

HfXEnHL;mUJ - H(f - fO)XEn + fOXEnHLp7W
< = fo)xe, |y + [ foxe, | Lyw .1
<&+l foxz,llz,w-

Let M = HfoHLoo(,mr) . Then we obtain

1

Voxsalle,, , < Mlxe,lz, =M supoceapr (5 [7 Xm0 %dt) "

1
1

— _1
< Msup0<€<p71 (% fEn ‘w(t) |p_€dt> ! < Msup0<5<p71 (i) pme Hw (t)| ’OO’En|p_E’

where |-| denotes Lebesgue measure.
Since lim, E, =(), En, = @ ,a.e. we have

lim FE,

From (4.1) it follows that
HfXEnHLp)’w — 0asn — oo.

Thus, by Proposition 2.1, we conclude that the space Np)w(—ﬂ', ) possesses an absolutely
continuous norm. From Theorem 2.2, it follows that

’

N

p)’w(fw, ™) X N;)Vw(fﬂ', ),

which means that there exists a function g € N;)’w (=, m) such that forevery f € Ny, (-7, ),
we have

™

L(f)= | [fl@)g(z)dr. (4.2)

—T
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Substituting f(x) = e’ into (4.2), we obtain:

L (") = / e g(z)dx = 0.

—T
It thus becomes clear that F'(z) = [*_ f(x)e*“dx is an entire function and hence
F(ap) =0 foralln.
The theorem is thus proved.

Theorem 4.2 Suppose that the function F (z) is represented in the form (4.2) and g €

!

Np) L (=T, 1 < p < 400, F(ag) = 0and [ any complex number then
a—p
F — r
(@) = 22 ),

is also represented in the form (4.2).

Proof. As in the classical Levinson theorem, let us define the new h(x) function in the
following way

T

h(z) = g(z) +i (B — ap) e "7 / 'Y g(y)dy. (4.3)

—T

If we multiply both sides of equation (4.3) by ¢*“* and integrate, we obtain

/ i e h(z) do = / ! e g(x) da +i(8 — ap) / " gita—an)a ( / ’ €Y g(y) dy) dx

—T —T —T —Tr

—Fla) (5 a0 [ [ ety do
)

—T

By Fubini’s theorem, changing the order of integration yields

/ eiamh(x) do — F(a) + B—a / (ei(a—ao)ﬂ _ ei(a—ao)y>eiaoyg(y) dy

— a—og )

— Fla)+ 2% /7r e"g(y) dy

a—og )
— Fla) - i:ZZF(a) - ;__fo Fla).

Thus -
Fl(a):/ eCh(x)dz.

The theorem is proved.

Corollary 4.1 Suppose that the system {ei‘”‘km } wey 18 complete in the space Npy (=, 7).
Then, if we remove any n functions from this system and replace them with any other n ex-
ponential functions {eiﬁ’vx }Zzl (here By # ay,Vk = 1,7) then the newly obtained system
will be complete in space Ny ,(—m, 7).
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5 Stability of the System {e’“~*} ¢, in the Space Ny, (—7, )

Let us consider the following theorem concerning the stability of an exponential system
with respect to the sequence {ay, },,c; in the space Ny ,(—, 7).

Theorem 5.1 Let 1 < p < 400, weA,, re(1,min(p,q)), r < p1 < p w* € Lnr,
p1—T
an, B, €R, n € Z, such that , a; 7, B;7#B; , for i#j, and '

+oo

> lan—Bal < +o0. (5.1)

n=—oo

If the system {eio‘"x}n ez forms a basis isomorphic to the system {emf"’} in space

- nez
Np)w (—m,m), then {ezﬁnx}nez forms a basis isomorphic to the system {emx}

Np),w (_ﬂ-a 7T)

ne”L n

Proof. Let’s denote } 4
en (.’L’) — ine , On (.CC) — elon®
and 4
Y (z) = €Pr® neZ, xcl-nmn.

According to the Lemma 3.1,
”Spn— djan)’UJ S M’an_ﬁn‘7neza (52)

here M = 7er||p). Let fix number m & Z, and consider the system of functions as
following

_Jen, Inf<m
fn—{ 1/’717 |n|2m , NEZL .

Applying inequality (5.2) together with Holder’s inequality, we obtain the following for any
finite complex sequence {c¢;, }

> on(fn = on)

n

< Z lenl || fr — ‘PnHLP),w
n

< Z‘Cnuan_ﬁn‘ (53)

L

< (§Z|Q4“>T (2:(anﬁnY>r-

Since 1 < 7 < 2 and weA,, the system {emx}nez becomes basis in N, , (=7, 7) (see
result [22]) so we can apply here by the Theorem 2.4 about Hausdroff-Young inequality

1
s
(Z ’Cn’Tl> < |1 cnen
n n

Since w™! € L p1r for Vf € L,) ., by using Holder’s inequality we obtain

191, = ([ 1ol -wrar)’

LI’)’UJ

5.4

r
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4 ﬁ T _mr %
< </ |fw|p1dt> </ w Pl‘"dlf) < K”fHP)M' 5.5)

Taking inequality (5.5) into account in inequality (5.4), we obtain

g Cn€n
n

1
i

() e

(5.6)

p)w
Since the systems {¢,, } and {¢,} are isomorphic bases, there exists a constant L > 0 such
that
Y cneal| S L|D cnn (5.7)
n p)w n p),w

Thus, taking inequality (5.7) into account in inequality (5.6), and using inequality (5.5), we
have

10 enlfn = Pu)lly < Mi (Siagzm (@n = B2)") 10 cnally o

—+00

n=—oo loan — Bn

Since the series "

converges, for a sufficiently large m € Z, we can
1

choose it so that (Z|n\zm o, — Bn|r> "< ﬁl , holds. Thus, for an arbitrarily chosen
m & Z+Z

O=0M( > lan—pBal"| <1,
[n|>m
and
Hzn cn(fn — Spn)Hp),w < QHZn CnSOn”p),w

holds.

Hence, by the Paley—Wiener theorem, the system {f,,} is an isomorphic basis to the
system {y, } in Np) ,,. Since the systems {f,,} and {¢,,} differ from each other countable
number functions, more precisely system {,, } consist of functions

ez,u,m+1ac’ ezu,m+2x’ o ezum,2x7 ewmflx,

which are different functions in system {f,} , it follows that according to the theorem,
the fact that the system {¢, } is an isomorphic basis to the system { f,,} is equivalent to
its completeness. On the other hand, according to Theorem 2.2, which is an analogue of
Levinson’s theorem in IV}, ., space, if in the system { f,, } the elements with indices [n| < m

are replaced, respectively, by the elements {1, }, then the resulting system, {1, } will be
complete in N ,,. Therefore, the system {1),, } is an isomorphic basis to the system {(, }
in N . The theorem is proved.

Corollary 5.1 Let1 <p < 400, 1 <po<p we A,NA,,and

( . < P PPo ))
re|l,min , ,
p—1"po+p(po—1)

{an} ., {Bn} C R is a sequence of distinct numbers and ), ., |oy — Bp|" < +00. Then if
the system {ei'a""” }n ¢z, I8 an isomorphic basis to the system {ei”x }n ¢z, in space Ny , then
the system {e“‘"x}

is an isomorphic basis to the {eio‘”“}

nel nez "’
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Proof. From the condition

bbo

<,
po +p(po —1)

we obtain

T
Po <
Do+ 7T — TPo

Hence, there exists a number p; such that

Po

—_— < p1 <D
Po+ 7 —7Tpo

Choosing such a p;, we have

r
D1 < Po

pr—r po—1

Thus, since w1 € L _»y , it follows that wlelm. By Theorem 5.1, if the system

po—1 pP1—"

{eianl’} is an isomorphic basis to {einx} in Ny, then the system {ei“"x} is also an
isomorphic basis to {€*} in N,,) .
The result is proved.
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