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Quality Properties Of Solutions Of The Basic Equation Of Perturbation
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Abstract. By means of the quadratic forms method under certain conditions on magnetic and electric po-
tential a self-adjoint and one-dimensional Schrodinger operator was constructed. Smoothness and behav-
ior at infinity of the solutions of the basic equation of perturbation theory for one-dimensional magnetic
Schrodinger operator was studied.

Keywords. magnetic Schrodinger operator - quadratic form - perturbation theory - magnetic potential.

Mathematics Subject Classification (2010): 35B05 - 35J10 - 47A55 - 81Q10.

1. Self-adjointness

In this item, in the space Li(R1)(R1 = (—o0,+00) we study the self-adjointness of one-dimensional
magnetic Schrodinger operator generated by the differential expression

1d ?
Asv=|=— 1
o = (Y o) + Vi), 1)
where a(z) and V(x) are magnetic and electric potentials, respectively, and these potentials are real
functions satisfying the following conditions:

a) &(x) = a’(z) + V(z) + id (x) € L1(Ry);

b) a(z) € L1(Ry).

Subject to conditions a) and b) differential expression (1) may be written in the form

a2
Agv = ) +W,
where
W= _22‘%1(1:) +&(2). )
Itis known that if a(x) and V' (z) are sufficiently smooth bounded functions, then minimal ( in this case
they are also maximal) operators Hg and H = Hg + W that correspond to differential expressions —%

and A, v, respectively, are self-adjoint operators in Lo (R1) with the same domains of definition W3(Ry)
(second order Sobolev space). Generally speaking, under conditions a) and b), the differential expression
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A, v doesn’t determine the minimal operator on the linear manifold C§°(R;). For constructing a self-
adjoint operator by means of this expression, we will use the method of quadratic forms. To this end,
recall some denotation and notation (see for detailed information the books [1, p. 303], [2, p. 185], [3, p-
386]).

Let E be Hilbert space and the linear manifold Q(q) be dense in E. Denote by ¢(p, 1) a complex-
valued one-and-a half linear form with domain of definition Q(g), and by ¢(¢) = q(v, ) a quadratic
form associated with g(¢, ). If the one-and-a half form ¢(¢p, ¢) is generated by some linear operator A,
ie.

Vo € Q(q), Vi € D(A) = q(p,¢) = (¢, AY),
then domain of its definition is denoted by Q(g) = Q(A).

Definition 1. Let the operator A be selfadjoint and lower bounded. The symmetric operator B is said
to be A -bounded in the sense of forms if

i) Q(A) C Q(B),

ii) 3a,b > 0,Yp € Q(A) = [(¢, Bo)| < a(p, Ap) + by, o).

Then the lower bound of all such a is called A -bound of the operator B in the sense of forms.

Let us consider in Ly (R;) the quadratic forms

+oo
ho(e) = / ' d,
—00

ha,v (@) = ho(#) + (We, @),
where W is an operator acting by formula (2). Obviously, ho(y) corresponds to the self-adjoint operator

2
2 with domain of definition W3 (Ry). It is known that Q(ho) = Wa (R1) = D(Hé/z) (first
x
1/2

order Sobolev space), and YV € Q(ho), ho(p) = (Hé/2<p7 Hy' " ).

Hy =

Theorem 1. Let conditions a) and b) be fulfilled. Then there exists a unique lower bounded self-adjont
operator H = Ho + W responding to the form hg, v (@) = ho(@) + (W, ) with Q(Hy) = Q(H) such
that any essential domain of the operator Hy is also an essential domain for the operator H. In particular,
the space of basic functions C§°(R1) is an essential domain of the operator H.

Before we pass to the proof of theorem 1, note that the sum Hp + W is understood in the sense of
forms and it may differ from the operator sum.

Proof of theorem 1. Obviously, the operator W acting by formula (2) is symmetric. Show Q(Hp) C
Q(W). Take an arbitrary element ¢ from Q(Hy). From the equality Q(Ho) = W4 (R;) it follows that
¢ € ACjoc(R1) N Loo(Ry1), i.e. ¢ is a locally absolute function, and ¢(£o00) = 0. Taking into attention
conditions a) and b), from the equality
x
a(z) = a(zg) + /a'(t)dt

zo

it follows that a(z) € ACj,e(R1) N Loo(R1).
From condition a) and ¢ € AC},.(R1) N Loo(R1) we have:

+oo .
_f &(x)p(z)dz

—+00
< [ d
__mglg§+ool<ﬁ(w)l_£ol (z)|dx
= 1ellL . (r) 1P@)I L, (r,) < +00-

From the equality
400 400
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and the Schwatz inequality we get:

+oo o “+oo -
J —2i(a(2)p(@)) p(@)dz| <2 [ |a() |o(@)ll ¢ (2)| da
= = @)

<2llallz (r,) 9@ Lo (R 19" @) 1, g,y < 00

Then from inequalities (3) and (4) it follows that Vo € Q(Hy) the expression

+oo

W, ) =_f (We(z))e(x)da
+oo .
= " {=2i(a(2)p(@) + [a*(z) + V(2) +id (2)] ¢(2) } o(z)dz

has a meaning. This means that ¢ € Q (W), whence it follows that Q(Hp) C Q(W).
Conditions a) and b) yield that the operator

. d . d  —
W = —QZ%a(x) + P(z) = —2w(m)% + D(z)

belongs to the Kato class. From the Schechter theorem [4, theorem 7.3] we get that the relative Hp-bound
of the operator W equals zero. If we take into account that the space of the basic functions C§°(R1) is the
essential domain of the operator Hp, we can be convinced that all the statements of the theorem follow
from KLMN theorem (see e.i. [(5 p. 11)]. The theorem is proved.

2. Investigation of the equation f + K ()\)f = 0 on the half-plane C = {A € C : ImX\ > 0}
Let h(z) € C§°(Ry) and z = A2, Im\ > 0. Assume ug(A) = ug(z, ) = Ro(A2)h(z), u(\) = u(z, \) =
R(A?)h(x), where Ro(A?) = (Ho — A?)~! and R(A\?) = (H — A?)™! are the resolvents of the opera-

. L . d .
tors Hp and H, respectively. Taking into account that the operators —io and Ry ()\2) are permutational,
T

Ro(\?) is an integral operator with the kernel
eiAz—yl
2\

Go(xv:%)‘) = -

and the space of all basic functions C§°(R1), according to theorem 1, is the essential domain of both
operators Hy and H, for u()\) we get the inhomogeneous equation

u(A) + K(Nu(A) = uo(N), (5)
where K () is an integral operator with the kernel

eiAlT—yl

K(xa:%)‘):_ 2%\

[(y) + 2Xsgn(z — y)a(y)] .

Denote by C(R;) the Banach space of functions continuous and bounded on R; and with the norm
sup  1F(@)| = e, < +oo-
o0

—oo<z<+

In the paper [6, theorem 1] it is proved that the operator K (\) is analytic with respect to A in the upper
part of the complex plane Cy = {\ € C': Im\ > 0} in the uniform operator topology and for all A from
C\{0} = {A€C:ITm) >0, X # 0} is compact in C(R;), and continuous in the uniform operator
topology. These results allow as to apply to the equation

S+ KN =0 (6)

the Fredholm analytic theorem [1, p. 224, theorem VI.14]. According to Fredholm’s theory, inhomoge-
neous equation (5) for ImA > 0 has a unique solution in C'(Ry), if the corresponding homogeneous
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equation (6) has only a zero solution. Denote by £ the set of those points from the half-plane Cy for
which homogeneous equation (6) has a nontrivial solution in C(R;). Preliminarily we prove the follow-
ing two lemmas.

Lemma 1. If conditions a) and b) are fulfilled, then the operator M (X) with the kernel
M(z,y,\) = K(z,y, \)e~Azl=lvD

is analytic with respect to X in the half-plane C'y in uniform operator topology and for all X from C 4\ {0}
is compact in C'(Ry), and continuous in uniform operator topology.

Proof. Let ImA > 0. Then from the equality
eMz—yl —ix(lzl=ly) _ jir(lz—yl+ly|-]=])
and inequality
|z —yl > |z] - [y|

we have
cAMlz—yl+lyl=lz])| _ —ImA(jz—yl+]yl—|z]) <1

Hence we get
|M(z,y,\)| < [T (2,y, Al

The proof of the lemma follows from this inequality and theorem 1 of [6].

Lemma 2. Let T be an arbitrary positive number. Then for any real numbers z and y the following equality
is valid
+oo

/ e~mla=vltle=2D gy — Lo=rlv=al(g | 1)) )y, )
T

—0o0
Proof. At first consider the case y < z. Represent the integral

—+00
J = /e_le_y‘e_T‘x_z‘dx

— 00

in the sum of three integrals

Y z
J= [ emlemulemmlomzl gy 4 [ o TlemylgmTlemzl gy

o Y
(8)
+oo
+ f eiTlxiy‘eiTlIizldx =J1 4+ Jo+ J3.
z
Since in the integral J; = < y < z, we have
Yy Yy
g = / o Tl—yl — ezl gy / T2+ =) g
— 00 —00
Making a change s = (y — =) + (2 — z), in the last integral we get
z—y
_ —rs ds I R PR ¢ —7(2—y)
J1 = / e 5 =5e Foo = 57€ . 9)

—+oo
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Taking into account that in the integral J; y < x < z, we have
4 4
Jo = /e_T(x_y)e_T(z_x)dx = /e_T(Z_y)da: =(z— y)e_T(z_y)‘ (10)
Y Y

From the inequalities y < z < « it follows

+o0 +oo
Iy = /effla:fylefrlezldm: /efr[<wfy>+<wfz>1dm.
z z

If in the last integral we make the change s = (z — y) + (z — 2), we get

+00o +oo

[ ey, [ rsd8 _ L —rs|too _ L -y
J3 / e dz / e 5 5. ¢ iy = g€ . (11)
z z—y

From equalities (8)-(11) for y < z we get

+oo

J= / e TlrylemTle =2l gy = le_T(Z_y)(l +7(z—y)). (12)
T
— 00

Taking into account the symmetry of the integral J with respect to variables z and y, from (12) we
get equality (7). The lemma is proved.

Theorem 2. Let 0 + it = X\ € L and f(x) be a nontrivial solution of homogeneous equation (6) from
C(R1). Then, if the conditions a) and b) are fulfilled, then

sup e f(2)] < +o0. (13)
—oo<r<+00

Proof. Leto +it = X € L4, f(x) be the solution of equation (6), x» be an operator of multiplication
by the characteristic function of the section [—n,n], K (n) (A) = K(A)xn. Itis clear that

L HK(n)()‘) a K()‘)HC(Rl)ac(Rl) =0

Then according to general theory of compact operators [see [7, p. 41] or [8]) there exists a sequence of
numbers {~y, } and a sequence of functions { f,(z)} C C(R;) such that for any n

Fn(@) + 1K™ N fu () = 0,

moreover, nli_)moo'yn =1, nli_}moo [fn(x) = f(@)llc(R,)=0- It is clear that for any n the function

gn(@) = e~ ()
is the solution of the equation
gn(@) + 1M (N)gn (@) = 0,
where M (™) (A) is an integral operator with the kernel
M(n)(%y’ \) = K(")(:c,% )\)e—ik(lw\—lyl) - K(.T,y,)\)Xn(ib)e_ik(lz‘_‘yl).
It is easy to show that if y € [—n, n], |z| > n + 1, then there exists ¢ > 0 such that

K (2,9, )] < e ™o (16 (y)] + Ja(y)]) -

T 2Al
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Hence and from the equality
fn(@) = =K () f(2)

it follows that if the conditions a) and b) are fulfilled, then the function g, (z) = il fn(x) belongs to
the space C'(R1). Show that

sup ooy =] s o)} <-+oe. (1)
n n —oco<x<+00
It inequality (14) is not valid, then there will be found the subsequence {gn,(z)} C {gn(z)} such that
lim [|gn, || (g, ) = +o0. For the normalized sequence gn, = g () we have
gm: e
g (@) = = M ()i, (). (15)

According to lemma 1, the operator M (n1) (M) is compact. Therefore, from equality (15) is follows that
there exist g(z) € C(R1) and the subsequence {§n,k_ (z)} C {gn ()} such that the sequence Iny, (2)
uniformly converges to g(x) as k — co. Passing to limit we find

f(z) = klggofmk (z) = kliﬁn;oemx‘g’”k (@) = el ().
Hence it follows that the function g(z) may not identically equal to zero since by the supposition the func-

tion f(z) is a nontrivial solution of equation (6). On the other hand, by lim ||gm || = 400 we get
k—o0 k1O (R1)

g(z) = 0. The obtained contradiction shows the validity of inequality (14). Inequality (13) follows from

inequality (14) and equalities g, (z) = e~ f,,(z), lim | fn(z) — f(@)llc(r,) = 0- The theorem is
n—oo

proved.

Theorem 3. Let o + it = A € L4 and f(x) be a nontrivial solution of homogeneous equation (6) from
C/(R1). Then if the conditions a) and b) are fulfilled, then f(z) € W3 (R1).

Proof. From theorem 2 it follows that f(z) € C(R1) N L2(R;). Show that the generalized derivative
of the function f(z) also belongs to La(R7). To this end, we calculate the first order derivative of the

function
eiAlz—yl

K(z,y,A) = = =55 [(y) + 2Asgn(z — y)a(y)]

with respect to the variable x:

OK (z,y, \) ezl

o = =g sgn(z — y) [2(y) + 2Xsgn(z — y)a(y)]

eiAlz—yl etAlz—yl
5(z —yla(y) = —

sgn(z — y)d(y)

, iXz—y|
—/\eulx_y‘a(y) _9¢

§(z —y)aly), (16)

where 0(x — y) is the Dirac function. Taking into account the equality e”‘lz*mé(a: —y) =0(x —y)in
(16), we get
OK (z,y, \) eMz=yl

o = g —sgn(x — y)P(y) — AN a(y) + 2i5(z — y)aly). (17)

Note that the function a(y) is continuous, the order §(z — y) of the function equals zero, and therefore the
derivative §(z — y)a(y) has a meaning. Using the equalities

+oo
f(2) = ~KON)f(x) = - / K (9, M) £ (y)dy,
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from (17) we get:

+oo
fio) == [ PGB gy = 12,0 + vl ) + dale ),
where
R0 ixla—y|
r(a,n) = / sgn(z — )P() f(y)dy,
+oo
Pl N) = / AeMe=vla(y) f(y)dy,
“+oo
b, ) = ~2i / 5z — y)aly) f(y)dy.

Show that all three functions 1 (x, A), ¥a(x, A), ¥3(z, A) belong to the space La(R;1). From the equali-

ties
+oo

(e, N) = —2i / 5@ — y)a(y)f(y)dy = —2ia(z) ()

and inequality (14) and also from the conditions on the function a(z) it follows that
P3(xz, \) € La(R1). Now prove that ¢ (z, A) € La(Ry). To this end, we calculate the integral

+oo 2
eiAT—yl
/ (o V2 = / | st~ ay| as
— 00 (oo}
il IR
= / / 5 s9n(z —y)2(y)f(y)dy
o —7.A|m z|
/ ————sgn(z — 2)®(2) f(2)dz p dx
Rraluall e 1)\\1 y| e—iX\z—z\
/ / / sgn(x — y) 3 sgn(x — z)dx
x®(y) f(y)P(2) f(z)dydz
“+o00 00
/ / / eiollo=yl=le=2N=r(z=yl+le=2D gon 0 ) som (2 — 2) da
xD(y)f(y)P(2)f(2)dydz,
whence, according to lemma 2, we have the estimation
“+o00 400
/|¢1x)\| dr < - / / T (1 gy — 2] 9(9) £ (0) [00) () | d=
-0 — 00

From inequalities (13) and conditions on the function @&(z) it follows that ;(x,\)
€ La(Rq). Quite similarly we get ¢2(x, ) € La(R7). The theorem is proved.
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