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Abstract. By means of the quadratic forms method under certain conditions on magnetic and electric po-
tential a self-adjoint and one-dimensional Schrodinger operator was constructed. Smoothness and behav-
ior at infinity of the solutions of the basic equation of perturbation theory for one-dimensional magnetic
Schrodinger operator was studied.
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1. Self-adjointness

In this item, in the space L1(R1)(R1 = (−∞,+∞) we study the self-adjointness of one-dimensional
magnetic Schrodinger operator generated by the differential expression

∆a,V =

(
1

i

d

dx
+ a(x)

)2

+ V (x), (1)

where a(x) and V (x) are magnetic and electric potentials, respectively, and these potentials are real
functions satisfying the following conditions:

a) Φ(x) ≡ a2(x) + V (x) + ia′(x) ∈ L1(R1);

b) a(x) ∈ L1(R1).

Subject to conditions a) and b) differential expression (1) may be written in the form

∆a,V = − d2

dx2
+W,

where
W = −2i

d

dx
a(x) + Φ(x). (2)

It is known that if a(x) and V (x) are sufficiently smooth bounded functions, then minimal ( in this case

they are also maximal) operators H0 and H = H0 +W that correspond to differential expressions − d2

dx2

and∆a,V , respectively, are self-adjoint operators in L2(R1) with the same domains of definitionW 2
2 (R1)

(second order Sobolev space). Generally speaking, under conditions a) and b), the differential expression
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∆a,V doesn’t determine the minimal operator on the linear manifold C∞
0 (R1). For constructing a self-

adjoint operator by means of this expression, we will use the method of quadratic forms. To this end,
recall some denotation and notation (see for detailed information the books [1, p. 303], [2, p. 185], [3, p.
386]).

Let E be Hilbert space and the linear manifold Q(q) be dense in E. Denote by q(φ,ψ) a complex-
valued one-and-a half linear form with domain of definition Q(q), and by q(φ) = q(φ,φ) a quadratic
form associated with q(φ,ψ). If the one-and-a half form q(φ,ψ) is generated by some linear operator A,
i.e.

∀φ ∈ Q(q), ∀ψ ∈ D(A) =⇒ q(φ,ψ) = (φ,Aψ),

then domain of its definition is denoted by Q(q) = Q(A).

Definition 1. Let the operator A be selfadjoint and lower bounded. The symmetric operator B is said
to be A -bounded in the sense of forms if

i) Q(A) ⊆ Q(B),

ii) ∃a, b > 0,∀φ ∈ Q(A) =⇒ |(φ,Bφ)| ≤ a (φ,Aφ) + b(φ,φ).

Then the lower bound of all such a is called A -bound of the operator B in the sense of forms.
Let us consider in L2(R1) the quadratic forms

h0(φ) =

+∞∫
−∞

∣∣φ′∣∣2 dx,
ha,V (φ) = h0(φ) + (Wφ,φ),

where W is an operator acting by formula (2). Obviously, h0(φ) corresponds to the self-adjoint operator

H0 := − d2

dx2
with domain of definition W 2

2 (R1). It is known that Q(h0) =W 1
2 (R1) =D(H

1/2
0 ) (first

order Sobolev space), and ∀φ∈Q(h0), h0(φ)=(H
1/2
0 φ,H

1/2
0 φ).

Theorem 1. Let conditions a) and b) be fulfilled. Then there exists a unique lower bounded self-adjont
operator H = H0 +W responding to the form ha,V (φ) = h0(φ) + (Wφ,φ) with Q(H0) = Q(H) such
that any essential domain of the operator H0 is also an essential domain for the operator H . In particular,
the space of basic functions C∞

0 (R1) is an essential domain of the operator H.
Before we pass to the proof of theorem 1, note that the sum H0 +W is understood in the sense of

forms and it may differ from the operator sum.

Proof of theorem 1. Obviously, the operator W acting by formula (2) is symmetric. Show Q(H0) ⊆
Q(W ). Take an arbitrary element φ from Q(H0). From the equality Q(H0) = W 1

2 (R1) it follows that
φ ∈ ACloc(R1) ∩ L∞(R1), i.e. φ is a locally absolute function, and φ(±∞) = 0. Taking into attention
conditions a) and b), from the equality

a(x) = a(x0) +

x∫
x0

a′(t)dt

it follows that a(x) ∈ ACloc(R1) ∩ L∞(R1).

From condition a) and φ ∈ ACloc(R1) ∩ L∞(R1) we have:∣∣∣∣∣+∞∫
−∞

Φ(x)φ(x)dx

∣∣∣∣∣ ≤ max
−∞<x<+∞

|φ(x)|
+∞∫
−∞

|Φ(x)| dx

= ∥φ∥L∞(R1)
∥Φ(x)∥L1(R1)

< +∞.

(3)

From the equality
+∞∫

−∞

(a(x)φ(x))′φ(x)dx = −
+∞∫

−∞

(a(x)φ(x))φ′(x)dx
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and the Schwatz inequality we get:∣∣∣∣∣+∞∫
−∞

−2i(a(x)φ(x))′φ(x)dx

∣∣∣∣∣ ≤ 2
+∞∫
−∞

∣∣∣a(x) ∥φ(x)∥φ′(x)
∣∣∣ dx

≤ 2 ∥a∥L∞(R1)
∥φ(x)∥L2(R1)

∥∥φ′(x)
∥∥
L2(R1)

< +∞.

(4)

Then from inequalities (3) and (4) it follows that ∀φ ∈ Q(H0) the expression

(Wφ,φ) =
+∞∫
−∞

(Wφ(x))φ(x)dx

= −
+∞∫
−∞

{
−2i(a(x)φ(x))′ +

[
a2(x) + V (x) + ia′(x)

]
φ(x)

}
φ(x)dx

has a meaning. This means that φ ∈ Q(W ), whence it follows that Q(H0) ⊆ Q(W ).

Conditions a) and b) yield that the operator

W = −2i
d

dx
a(x) + Φ(x) = −2ia(x)

d

dx
+ Φ(x)

belongs to the Kato class. From the Schechter theorem [4, theorem 7.3] we get that the relative H0-bound
of the operator W equals zero. If we take into account that the space of the basic functions C∞

0 (R1) is the
essential domain of the operator H0, we can be convinced that all the statements of the theorem follow
from KLMN theorem (see e.i. [(5 p. 11)]. The theorem is proved.

2. Investigation of the equation f +K(λ)f = 0 on the half-plane C+ = {λ ∈ C : Imλ > 0}

Let h(x) ∈ C∞
0 (R1) and z = λ2, Imλ > 0. Assume u0(λ) ≡ u0(x, λ) = R0(λ

2)h(x), u(λ) ≡ u(x, λ) =

R(λ2)h(x), where R0(λ
2) = (H0 − λ2)−1 and R(λ2) = (H − λ2)−1 are the resolvents of the opera-

tors H0 and H , respectively. Taking into account that the operators −i d
dx

and R0(λ
2) are permutational,

R0(λ
2) is an integral operator with the kernel

G0(x, y, λ) = −e
iλ|x−y|

2iλ

and the space of all basic functions C∞
0 (R1), according to theorem 1, is the essential domain of both

operators H0 and H , for u(λ) we get the inhomogeneous equation

u(λ) +K(λ)u(λ) = u0(λ), (5)

where K(λ) is an integral operator with the kernel

K(x, y, λ) = −e
iλ|x−y|

2iλ
[Φ(y) + 2λsgn(x− y)a(y)] .

Denote by C(R1) the Banach space of functions continuous and bounded on R1 and with the norm
sup

−∞<x<+∞
|f(x)| = ∥f∥C(R1)

< +∞.

In the paper [6, theorem 1] it is proved that the operatorK(λ) is analytic with respect to λ in the upper
part of the complex plane C+ = {λ ∈ C : Imλ > 0} in the uniform operator topology and for all λ from
C+\ {0} = {λ ∈ C : Imλ ≥ 0, λ ̸= 0} is compact in C(R1), and continuous in the uniform operator
topology. These results allow as to apply to the equation

f +K(λ)f = 0 (6)

the Fredholm analytic theorem [1, p. 224, theorem VI.14]. According to Fredholm’s theory, inhomoge-
neous equation (5) for Imλ > 0 has a unique solution in C(R1), if the corresponding homogeneous
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equation (6) has only a zero solution. Denote by L+ the set of those points from the half-plane C+ for
which homogeneous equation (6) has a nontrivial solution in C(R1). Preliminarily we prove the follow-
ing two lemmas.

Lemma 1. If conditions a) and b) are fulfilled, then the operator M(λ) with the kernel

M(x, y, λ) = K(x, y, λ)e−iλ(|x|−|y|)

is analytic with respect to λ in the half-planeC+ in uniform operator topology and for all λ fromC+\ {0}
is compact in C(R1), and continuous in uniform operator topology.

Proof. Let Imλ ≥ 0. Then from the equality

eiλ|x−y|e−iλ(|x|−|y|) = eiλ(|x−y|+|y|−|x|)

and inequality
|x− y| ≥ |x| − |y|

we have ∣∣∣eiλ(|x−y|+|y|−|x|)
∣∣∣ = e−Imλ(|x−y|+|y|−|x|) ≤ 1.

Hence we get
|M(x, y, λ)| ≤ |T (x, y, λ| .

The proof of the lemma follows from this inequality and theorem 1 of [6].

Lemma 2. Let τ be an arbitrary positive number. Then for any real numbers z and y the following equality
is valid

+∞∫
−∞

e−τ(|x−y|+|x−z|)dx =
1

τ
e−τ |y−x|(1 + τ |y − z|). (7)

Proof. At first consider the case y < z. Represent the integral

J =

+∞∫
−∞

e−τ |x−y|e−τ |x−z|dx

in the sum of three integrals

J =
y∫

−∞
e−τ |x−y|e−τ |x−z|dx+

z∫
y
e−τ |x−y|e−τ |x−z|dx

+
+∞∫
z
e−τ |x−y|e−τ |x−z|dx = J1 + J2 + J3.

(8)

Since in the integral J1 x < y < z, we have

J1 =

y∫
−∞

e−τ |x−y|e−τ |x−z|dx =

y∫
−∞

e−τ [(y−x)+(z−x)]dx.

Making a change s = (y − x) + (z − x), in the last integral we get

J1 =

z−y∫
+∞

e−τs ds

−2
=

1

2τ
e−τs

∣∣∣z−y
+∞ =

1

2τ
e−τ(z−y). (9)
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Taking into account that in the integral J2 y < x < z, we have

J2 =

z∫
y

e−τ(x−y)e−τ(z−x)dx =

z∫
y

e−τ(z−y)dx = (z − y)e−τ(z−y). (10)

From the inequalities y < z < x it follows

J3 =

+∞∫
z

e−τ |x−y|e−τ |x−z|dx =

+∞∫
z

e−τ [(x−y)+(x−z)]dx.

If in the last integral we make the change s = (x− y) + (x− z), we get

J3 =

+∞∫
z

e−τ [(x−y)+(x−z)]dx =

+∞∫
z−y

e−τs ds

2
= − 1

2τ
e−τs

∣∣∣+∞
z−y =

1

2τ
e−τ(z−y). (11)

From equalities (8)-(11) for y < z we get

J =

+∞∫
−∞

e−τ |x−y|e−τ |x−z|dx =
1

τ
e−τ(z−y)(1 + τ(z − y)). (12)

Taking into account the symmetry of the integral J with respect to variables z and y, from (12) we
get equality (7). The lemma is proved.

Theorem 2. Let σ + iτ = λ ∈ L+ and f(x) be a nontrivial solution of homogeneous equation (6) from
C(R1). Then, if the conditions a) and b) are fulfilled, then

sup
−∞<x<+∞

eτ |x| |f(x)| < +∞. (13)

Proof. Let σ + iτ = λ ∈ L+, f(x) be the solution of equation (6), χn be an operator of multiplication
by the characteristic function of the section [−n, n], K(n)(λ) = K(λ)χn. It is clear that

lim
n→∞

∥∥∥K(n)(λ)−K(λ)
∥∥∥
C(R1)→C(R1)

= 0.

Then according to general theory of compact operators [see [7, p. 41] or [8]) there exists a sequence of
numbers {γn} and a sequence of functions {fn(x)} ⊂ C(R1) such that for any n

fn(x) + γnK
(n)(λ)fn(x) = 0,

moreover, lim
n→∞

γn = 1, lim
n→∞

∥fn(x)− f(x)∥C(R1)=0. It is clear that for any n the function

gn(x) = e−iλ|x|fn(x)

is the solution of the equation
gn(x) + γnM

(n)(λ)gn(x) = 0,

where M (n)(λ) is an integral operator with the kernel

M (n)(x, y, λ) = K(n)(x, y, λ)e−iλ(|x|−|y|) = K(x, y, λ)χn(x)e
−iλ(|x|−|y|).

It is easy to show that if y ∈ [−n, n], |x| ≥ n+ 1, then there exists c > 0 such that

|K(x, y, λ)| ≤ c

2 |λ|e
−Imλ|x| (|Φ(y)|+ |a(y)|) .
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Hence and from the equality
fn(x) = −γnK(n)(λ)fn(x)

it follows that if the conditions a) and b) are fulfilled, then the function gn(x) = e−iλ|x|fn(x) belongs to
the space C(R1). Show that

sup
n

∥gn∥C(R1)
= sup

n

{
sup

−∞<x<+∞
|gn(x)|

}
< +∞. (14)

It inequality (14) is not valid, then there will be found the subsequence {gnl(x)} ⊂ {gn(x)} such that

lim ∥gnl∥C(R1)
= +∞. For the normalized sequence g̃nl =

gnl(x)

∥gnl∥C(R1)

we have

g̃nl(x) = −γnlM
(nl)(λ)g̃nl(x). (15)

According to lemma 1, the operator M (nl)(λ) is compact. Therefore, from equality (15) is follows that
there exist g̃(x) ∈ C(R1) and the subsequence

{
g̃nlk

(x)
}

⊂ {gnl(x)} such that the sequence g̃nlk
(x)

uniformly converges to g̃(x) as k → ∞. Passing to limit we find

f(x) = lim
k→∞

f̃nlk
(x) = lim

k→∞
eiλ|x|g̃nlk

(x) = eiλ|x|g̃(x).

Hence it follows that the function g̃(x) may not identically equal to zero since by the supposition the func-
tion f(x) is a nontrivial solution of equation (6). On the other hand, by lim

k→∞

∥∥gnlk

∥∥
C(R1)

= +∞ we get

g̃(x) = 0. The obtained contradiction shows the validity of inequality (14). Inequality (13) follows from
inequality (14) and equalities gn(x) = e−iλ|x|fn(x), lim

n→∞
∥fn(x)− f(x)∥C(R1)

= 0. The theorem is
proved.

Theorem 3. Let σ + iτ = λ ∈ L+ and f(x) be a nontrivial solution of homogeneous equation (6) from
C(R1). Then if the conditions a) and b) are fulfilled, then f(x) ∈W 1

2 (R1).

Proof. From theorem 2 it follows that f(x) ∈ C(R1) ∩ L2(R1). Show that the generalized derivative
of the function f(x) also belongs to L2(R1). To this end, we calculate the first order derivative of the
function

K(x, y, λ) = −e
iλ|x−y|

2iλ
[Φ(y) + 2λsgn(x− y)a(y)]

with respect to the variable x:

∂K(x, y, λ)

∂x
= −e

iλ|x−y|

2
sgn(x− y) [Φ(y) + 2λsgn(x− y)a(y)]

−2
eiλ|x−y|

i
δ(x− y)a(y) = −e

iλ|x−y|

2
sgn(x− y)Φ(y)

−λeiλ|x−y|a(y)− 2
eiλ|x−y|

i
δ(x− y)a(y), (16)

where δ(x − y) is the Dirac function. Taking into account the equality eiλ|x−y|δ(x − y) = δ(x − y) in
(16), we get

∂K(x, y, λ)

∂x
= −e

iλ|x−y|

2
sgn(x− y)Φ(y)− λeiλ|x−y|a(y) + 2iδ(x− y)a(y). (17)

Note that the function a(y) is continuous, the order δ(x− y) of the function equals zero, and therefore the
derivative δ(x− y)a(y) has a meaning. Using the equalities

f(x) = −K(λ)f(x) = −
+∞∫

−∞

K(x, y, λ)f(y)dy,
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from (17) we get:

f ′(x) = −
+∞∫

−∞

∂K(x, y, λ)

∂x
f(y)dy = ψ1(x, λ) + ψ2(x, λ) + ψ3(x, λ),

where

ψ1(x, λ) =

+∞∫
−∞

eiλ|x−y|

2
sgn(x− y)Φ(y)f(y)dy,

ψ2(x, λ) =

+∞∫
−∞

λeiλ|x−y|a(y)f(y)dy,

ψ3(x, λ) = −2i

+∞∫
−∞

δ(x− y)a(y)f(y)dy.

Show that all three functions ψ1(x, λ), ψ2(x, λ), ψ3(x, λ) belong to the space L2(R1). From the equali-
ties

ψ3(x, λ) = −2i

+∞∫
−∞

δ(x− y)a(y)f(y)dy = −2ia(x)f(x)

and inequality (14) and also from the conditions on the function a(x) it follows that
ψ3(x, λ) ∈ L2(R1). Now prove that ψ1(x, λ) ∈ L2(R1). To this end, we calculate the integral

+∞∫
−∞

|ψ1(x, λ)|2 dx =

+∞∫
−∞

∣∣∣∣∣∣
+∞∫

−∞

eiλ|x−y|

2
sgn(x− y)Φ(y)f(y)dy

∣∣∣∣∣∣
2

dx

=

+∞∫
−∞


+∞∫

−∞

eiλ|x−y|

2
sgn(x− y)Φ(y)f(y)dy


×


+∞∫

−∞

e−iλ|x−z|

2
sgn(x− z)Φ(z)f(z)dz

 dx

=

+∞∫
−∞

+∞∫
−∞


+∞∫

−∞

eiλ|x−y|

2
sgn(x− y)

e−iλ|x−z|

2
sgn(x− z)dx


×Φ(y)f(y)Φ(z)f(z)dydz

=

+∞∫
−∞

+∞∫
−∞

1

4

+∞∫
−∞

eiσ(|x−y|−|x−z|)−τ(|x−y|+|x−z|)sgn(x− y)sgn (x− z) dx


×Φ(y)f(y)Φ(z)f(z)dydz,

whence, according to lemma 2, we have the estimation

+∞∫
−∞

|ψ1(x, λ)|2 dx ≤ 1

4τ

+∞∫
−∞

+∞∫
−∞

e−τ |y−z| (1 + τ |y − z|) |Φ(y)f(y)|
∣∣∣Φ(y)f(y)∣∣∣ dydz.

From inequalities (13) and conditions on the function Φ(x) it follows that ψ1(x, λ)

∈ L2(R1). Quite similarly we get ψ2(x, λ) ∈ L2(R1). The theorem is proved.
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