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Necessary Optimality Conditions In An Optimal Control Problem
With Integro-Differential Equations Equality And Inequality Type
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Abstract. A problem of optimal control of nonlinear integro-differential system of equations with mul-
tipoint quality test involving equality and inequality type multipoint functional restraints is considered.
Necessary optimality conditions of first and second orders are proved.
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1 Introduction

Theory of necessary optimality conditions of second order for optimal control problem involving different
restraints (for example, functional restraints on trajectory) without the so called normality (see for example
[1-13]) was developed a little.

In this direction show the works [1-17], ete.
In the present paper, we consider an optimal control problem described by the system of nonlinear

integro-differential equations with multipoint test functional involving equality and inequality type mul-
tipoint functional restraints on the trajectory of the system.

Necessary optimality conditions of first and second orders without assumption of normality condition
are obtained.

In particular, the case of degeneration of the analogue of the Legendre-Klebsh condition, is studied.
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2 Problem statement

Consider a problem on the minimum of a multipoint functional

S0 (u) = φ0 (x (T1) , x (T2) , ..., x (Tk)) , (2.1)

under the following restraints

Sµ (u) = φµ (x (T1) , x (T2) , ..., x (Tk)) ≤ 0, µ = 1, p, (2.2)

Sµ (u) = φµ (x (T1) , x (T2) , ..., x (Tk)) = 0, µ = p+ 1, q, (2.3)

u (t) ∈ U ⊂ Rr, t ∈ T = [t0, t1] , (2.4)

ẋ (t) = f (t, x (t) , u (t)) +

∫ t

t0

K (t, τ, x (τ) , u (τ)) dτ, (2.5)

x (t0) = x0.

Here U ⊂ Rr is the given nonempty, bounded and open set f (t, x, u) (K (t, τ, x, u)) is n -dimensional
vector-function given and continuous in T × Rn × Rr (T × T ×Rn ×Rr) together with partial deriva-
tives with respect to (x, u) to second order inclusively, φµ (z1, z2, ..., zk), µ = 0, q are the given twice
continuously differentiable scalar functions in Rn·k, t0, t1, x0 are given, Ti, i = 1, k

(t0 < T1 < T2 < ... < Tk ≤ t1)− is an u (t) r-dimensional piecewise-continuous (with finite number of
discontinuity points of first kind) vector of control actions.

We call any control function with above properties an available control. The available control u (t) is
said to be an admissible control if the solution x (t) of system (2.5) corresponding to it satisfies restraints
(2.2), (2.3).

An admissible control delivering minimum to functional (2.1) at restraints (2.2)-(2.5) is said to be an
optimal control, the appropriate process an optimal process.

3 Basic results

Assume that (u (t) , x (t)) is an optimal process in problem (2.1)-(2.5) and for all µ = 1, p, Sµ (u) = 0.
This assumption is made for simplicity of the statement.

Introduce the Hamilton-Pontryagin function

H(µ) (t, x (t) , u (t) , ψµ (t)) = ψ′
µ (t) f (t, x (t) , u (t))

+

∫ t1

t

ψ′
µ (τ) K (τ, t, x (t) , u (t)) dτ, µ = 0, q

and make the denotation
H

(µ)
x (t) ≡ H

(µ)
x (t, x (t) , u (t) , ψµ (t)) ,

H
(µ)
xx (t) ≡ H

(µ)
xx (t, x (t) , u (t) , ψµ (t)) ,

H
(µ)
xu (t) ≡ H

(µ)
xu (t, x (t) , u (t) , ψµ (t)) ,

H
(µ)
uu (t) ≡ H

(µ)
uu (t, x (t) , u (t) , ψµ (t)) ,

fx (t) ≡ fx (t, x (t) , u (t)) ,Kx (t, τ) ≡ Kx (t, τ, x (τ) , u (τ)) ,

fu (t) ≡ fu (t, x (t) , u (t)) ,Ku (t, τ) ≡ Ku (t, τ, x (τ) , u (τ)) .

Here ψµ (t) ∈ L∞ (T, Rn) is the solution of Volterra type integral equation

ψµ (t) =

∫ t1

t

H
(µ)
x (τ) dτ −

k∑
j=1

αj (t)
∂φµ (x (T1) , ..., x (Tk))

∂zj
,

where αj (t) is a characteristic function of the segment
[
t0, Tj

]
.
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By the scheme, for example from [18], one can show that the first and second (in the classical sense)
variations of the functional Sµ (u), µ = 0, q at the ”point” u = u (t) have the following form

δ1Sµ (u; δu) = −
∫ t1

t0

H
(µ)

′

u (t) δu (t) dt, µ = 0, q, (3.1)

δ2Sµ (u; δu) =

k∑
i, j=1

δx′ (Ti)
∂2φµ (x (T1) , ..., x (Tk))

∂zi ∂zj
δx

(
Tj

)
−
∫ t1

t0

[
δx′ (t) H

(µ)
xx (t) δx (t) + 2 δx′ (t) H

(µ)
xu (t) δu (t)

+ δu′ (t) H
(µ)
uu (t) δu (t)

]
dt , µ = 0, q . (3.2)

Here δu (t) is an arbitrary piecewise-continuous r-dimensional vector-function with the values from
Rr , i.e. δu (t) ∈ K C (T, Rr) (admissible variation of control), and δx (t) is the variation of trajectory
being the solution of the equation in variations (see e.i. [18])

δẋ (t) = fx (t) δx (t) +

∫ t

t0

(Kx (t, τ) δx (τ) +Ku (t, τ) δu (τ)) dτ + fu (t) δu (t) , t ∈ T, (3.3)

δx (t0) = 0. (3.4)

By the scheme for example of the papers [1-3, 13] and so on it is proved that for the optimal-
ity of the admissible control u (t) in problem (2.1)-(2.5) it is necessary the existence of a vector λ =

(λ0, λ1, ..., λq) ∈ Rq+1 such that

λµ ≥ 0, µ = 0, p, ∥λ∥ =

q∑
µ=0

|λµ| = 1, (3.5)

the relation

q∑
µ=0

λµ δ
1Sµ (u : δu) = 0 (3.6)

is fulfilled for all δu (t) ∈ K C (T , Rr).
Assume

H(λ) =

q∑
µ=0

λµH
(µ), ψλ (t) =

q∑
µ=0

λµ ψµ (t) .

By virtue of representation (3.1) we arrive at the following statement.

Theorem 3.1 For optimality of the admissible control u (t) in problem (2.1)-(2.5) it is necessary the

existence of a vector λ = (λ0, λ1, ... , λq) ∈ Rq+1 such that λµ ≥ 0, µ = 0, p, ∥λ∥ =
q∑

µ=0
|λµ| = 1 for

all θ ∈ [t0, t1)

H
(λ)
u (θ) = 0. (3.7)

Here θ ∈ [t0, t1) is an arbitrary continuity point of the control u (t).

Necessary optimality condition (3.7) is the analogue of the Euler equation for the problem under con-
sideration and is a necessary optimality condition of first order. Therefore, generally speaking, one can
distinguish a great number of admissible controls suspicious for optimality.

In this connection, there arises a problem of the search of additional optimality criteria (necessary
optimality conditions of second order) for eliminating nonoptimal controls satisfying the Euler equation.

Introduce
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Definition 3.1 We call any admissible control satisfying the Euler equation a classic extremal.
Now derive necessary conditions for optimality of classic extremals.
Denote by K (u : δu) the set of critical variations of the control u (t) in problem (2.2)-(2.5).

K (u : δu) =

=
{
δu : δ1Sµ (u; δu) ≤ 0, µ = 0, p , δ1Sµ (u; δu) = 0, µ = p+ 1, q

}
.

Note that the notion of the set of critical variations was derivedin [4, 5] (see also [6-10]).
Let A (u) be a set of allvectors λ ∈ Rq+1 satisfying relations (3.5), (3.6).
Cite an implicit necessary optimality condition of second order for the problem under consideration

Theorem 3.2 For optimality of the classic extremal u (t) in problem (2.1)-(2.5) it is necessary that the
relation

max
λ∈A(u)

q∑
µ=0

λµ δ
2Sµ (u : δu) ≥ 0 (3.8)

to be fulfilled for all δu ∈ K (u : δu).

Note that necessary optimality conditions of type (3.8) for the problems of mathematical simulation
and optimal control of ordinary dynamic systems were first established in the papers [6, 7, 12, 13, 20]
(see also [10, 11]), and in the case of the problem with vector quality index in the papers [1, 2, 12] and so
on (see appropriate review [13, 20]).

The proof of inequality (3.8) is carried out by the scheme, for example from [1] without significant
changes in reasonings.

Using the implicit necessary optimality condition of second order (3.8), we get constructively verifi-
able necessary optimality conditions.

Find the representation of the solution of the equation in variations (3.3)-(3.4).
Let F (t, τ) (n× n) be a matrix function being the solution of the problem

Fτ (t, τ) = −F (t, τ) fx (τ)−
∫ t

τ

F (t, s) Kx (s, τ) dτ,

F (t, t) = E,

(E − (n× n) − is a unit matrix).
Then the solution δx (t) of the equation in variations (3.3)-(3.4) allows the representation (see e.i.

[19])

δx (t) =

∫ t

t0

Q (t, τ) δu (τ) dτ, (3.9)

where Q (t, τ) (n× n) is a matrix function defined by the formula

Q (t, τ) = F (t, τ) fu (τ) +

∫ t

τ

F (t, s) Ku (s, τ) ds.

Assume

M (µ) (τ, s) = −
k∑

i, j=1

αi (τ) αj (s) Q
′ (Ti, τ)

∂2φµ (x (T1) , ..., x (Tk))

∂zi ∂zj
Q
(
Tj , s

)

+

∫ t1

max (τ, s)

Q′ (T, τ) H
(µ)
xx (t) Q (T, s) dt , µ = 0, q , (3.10)

M (λ) (τ, s) =

q∑
µ=0

λµM
(µ) (τ, s) . (3.11)
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Bemeansofrepresentation (3.9) by analog with [19], the second variation (3.2) of the functional Sv (u)
is represented in the form

δ2Sµ (u : δu) = −
∫ t1

t0

∫ t1

t0

δu′ (τ) M (µ) (τ, s) δu (s)

−2

∫ t1

t0

[∫ t1

t

δu′ (τ) H
(µ)
ux (τ) Q (τ, t) dτ

]
δu (t) dt

−
∫ t1

t0

δu′ (t) H
(µ)
uu (t) δu (t) dt , µ = 0, q . (3.12)

Taking into attention representation (3.12) in (3.8), we arrive at the following statement.

Theorem 3.3 For the optimality of the classic extremal u (t) in problem (2.1)-(2.5) it is necessary that
for all δu (t) ∈ K C (T, Rr) satisfying the conditions∫ t1

t0

H
(µ)

′

u (t) δu (t) dt ≥ 0 , µ = 0, p ,∫ t1

t0

H
(µ)

′

u (t) δu (t) dt = 0 , µ = p+ 1, q , (3.13)

the inequality

min
λ∈A(u)

{∫ t1

t0

∫ t1

t0

δu′ (τ) M (λ) (τ, s) δu (s) ds dτ +

∫ t1

t0

δu′ (t) H
(λ)
uu (t) δu (t) dt

+2

∫ t1

t0

[∫ t1

t

δu′ (τ) H
(λ)
ux (τ) Q (τ, t) dτ

]
δu (t) dt

}
≤ 0 (3.14)

to be fulfilled.

Necessary eptimality condition (3.14) is a constructively verifiable integral necessary optimality con-
dition of second order.

Determining from it by this or other way the admissible variation δu (t) ∈ KC (T, Rr) of the control
u (t), one can obtain more simple and convenient for practical use second order optimality conditions, in
particular, the analogue of the Legendre-Klebsh condition follows.

Theorem 3.4 For the optimality of the classic extremal u (t) in problem (2.1)-(2.5) it is necessary that
the inequality

min
λ∈A(u)

v′H
(λ)
uu (θ) v ≤ 0 (3.15)

tobe fulfilled for all v ∈ Rrandθ ∈ [t0, t1).

Inequality (3.15) is the analogue of the Legendre-Klebsh condition for the problem under considera-
tion.

Introduce the denotation

P (λ) (θ, e) =

∫ t1

θ

∫ t1

θ

e′ (τ) M (λ) (τ, s) e (s) ds dτ +

∫ t1

θ

e′ (τ) H
(λ)
uu (t) e (t) dt

+2

∫ t1

θ

[∫ t1

t

e′ (τ) H
(λ)
ux (τ) Q (τ, t) dτ

]
e (t) dt ,

R(λ) (θ) =

∫ t1

θ

∫ t1

θ

M (λ) (τ, s) ds dτ +

∫ t1

θ

H
(λ)
uu (t) dt

+2

∫ t1

θ

[∫ t1

t

H
(λ)
ux (τ) Q (τ, t) dτ

]
dt .

The following statements hold.
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Theorem 3.5 If u (t) is an optimal control in problem (2.1)-(2.5), then for all θ ∈ [t0, t1), and e (t) ∈
K C (T, Rr) satisfying the condition∫ t1

θ

H
(µ)

′

u (t) e (t) dt ≥ 0 , µ = 0, p,

∫ t1

θ

H
(µ)

′

u (t) e (t) dt = 0 , µ = p+ 1, q

the following inequality is fulfilled

min
λ∈A(u)

P (λ) (θ, e) ≤ 0. (3.16)

Theorem 3.6 For optimality of the classic extremal u (t) in problem (2.1)-(2.5) it is necessary that the
inequality

min
λ∈A(u)

v′R(λ) (θ) v ≤ 0. (3.17)

to be fulfilled for all v ∈ Rr , θ ∈ [t0, t1) such that∫ t1

θ

H
(µ)

′

u (t) v dt ≥ 0 , µ = 0, p,

∫ t1

θ

H
(µ)

′

u (t) v dt = 0 , µ = p+ 1, q.

For proving theorem 3.5 it sufficesin the necessary optimality condition (3.14) to determine the vari-
ation δu (t) of the control u (t) by the formula

δu (t) =

{
0, t ∈ [t0, θ) ,

e (t) , t ∈ [θ, t1] .

Here θ ∈ [t0, t1) is an arbitrary continuity point of u (t), and e (t) ∈ K C (T, Rr).
For e (t) ≡ v, t ∈ [θ, t1]theorem 3.5 yields theorem 3.6.
It is clear that optimality condition (3.17) is weaker than (3.16), but may be simply verified.

4 The case of degeneration of the analogue of the Legendre-Klebsh condition

In this item we study the case of degeneration of the analogue of the Legendre-Klebsh condition.

Definition 4.1 We call the classic extremal a singular control in the classic sense in problem (2.1)-(2.5)
if for all v ∈ Rr and θ ∈ [t0, t1)

min
λ∈A(u)

v′H
(λ)
uu (θ) v = 0. (4.1)

Using the structure of the papers [14, 15] and necessary optimality condition (3.14), we study classic
singular controls for optimality.

It holds

Theorem 4.1 If u (t) is a singular optimal control in the classic sense in problem (2.1)-(2.5), then for
any θ ∈ [t0, t1) and v ∈ Rr , satisfying the conditions

H(µ)
′

[θ] v ≥ 0 , µ = 0, p,H
(µ)

′

u [θ] v = 0 , µ = p+ 1, q

the following inequality is fulfilled

min
λ∈A(u)

v′
[
M (λ) (θ, θ) +H

(λ)
ux Q (θ, θ)

]
v ≤ 0.

Theorem 3.7 is proved by means of relation (3.14) by using appropriate constructions from [14].
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