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Bifurcation from infinity for some nonlinear eigenvalue problems which
are not linearizable
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Abstract. In this paper we consider bifurcation from infinity for a some class of nonlinear eigenvalue
problems in Hilbert space with nonlinearizable nonlinearities. We show the existence of unbounded con-
tinua of nontrivial solutions bifurcating from the interval at infinity. These global continua have properties
similar to those of the continua found in Rabonowitz’ well-known global bifurcation theorem from infinity.
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1 Introduction

Let H be a real separable Hilbert space with norm denoted by || · ||, and L : D(L) ⊂ H → H be a
linear semi-bounded below self-adjoint operator with compact resolvent, i.e. (L − λI)−1 is compact for
some (and hence for all) λ not belonging to the spectrum σ(L) of L, and D(L) is dense in H.

We consider the nonlinear eigenvalue problem

Lu = λu+ F (λ, u) +G(λ, u), (1.1)

where F : R×H → H and G : R×H → H are continuous operators satisfying the following conditions:

||F (λ, u)|| ≤ M ||u||, ∀λ ∈ R, ∀u ∈ H, ||u|| > 1, (1.2)

where M is a positive constant; for any bounded interval Λ ⊂ R,

G(λ, u) = o(||u||) at u = ∞, (1.3)

uniformly with respect to λ ∈ Λ.
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As norm in R×H, we take ||(λ, u)|| =
{
|λ|2 + ||u||2

}1/2
.

Note that, due to the assumption on L, every eigenvalue of L is real and necessarily isolated and of
finite multiplicity, and the whole spectrum σ(L) consists of infinite nondecreasing sequence of only such
points.

We say (λ,∞) is a bifurcation point for (1.1) if every neighborhood of (λ,∞) contains solutions of
(1.1), i.e., there exists a sequence {(λn, un)}∞n=1 of solutions of (1.1) such that λn → λ and ||un|| → ∞
as n → ∞ [3, 7].

In the case when F ≡ 0 it follows from [3, Ch. 4, § 3, Theorem 3.1] that if λ be an eigenvalue of odd
multiplicity of the operator L, then (λ,∞) is an bifurcation point of problem (1.1) and this bifurcation
point corresponds to a continuous branch of solutions a leaving to infinity. In [7] shows that if F ≡ 0

and λ ∈ σ(L) is of odd multiplicity, then the set of nontrivial solutions of problem (1.1) possesses an
unbounded component Dλ which meets (λ,∞). Moreover if Λ ⊂ R is an interval such that Λ ∩ σ(L) =

{λ} and M is a neighborhood of (λ,∞) whose projection on R lies in Λ and whose projection on H

is bounded away from 0, then either (i) Dλ\M is bounded in R × H, in which case Dλ\M meets
R = {(λ, 0) : λ ∈ R}, or (ii) Dλ\M is unbounded in R × H; if additionally Dλ\M has a bounded
projection on R, then Dλ\M meets (λ̂, 0) where λ ̸= λ̂ ∈ σ(L).

The bifurcation from infinity for noninearizable Sturm-Liouville problems have been considered in
[6, 9-11]. These papers prove the existence of global continua of nontrivial solutions in R × C1 corre-
sponding to the usual nodal properties and emanating from ”bifurcation intervals” at infinity surrounding
the eigenvalues of the linear problem.

In the present paper, we give generalization of result from [7] in the case F ≡ 0 and not differentiable
at infinity, and we shows the existence of global continua bifurcating from intervals containing eigenvalues
of the linear problem.

2 Preliminary

Alongside with the problem (1.1) we shall consider the following nonlinear problem

Lu = λu+ F̃ (λ, u) + G̃(λ, u), (2.1)

where L be as above and F̃ : R ×H → H and G̃ : R ×H → H are continuous operators satisfying the
following conditions:

||F̃ (λ, u)|| ≤ M ||u||, ∀λ ∈ R, ∀u ∈ H, ||u|| < 1, (2.2)

where M is a positive constant; for any bounded interval Λ ⊂ R,

G̃(λ, u) = o(||u||) at u = 0, (2.3)

uniformly with respect to λ ∈ Λ.
Let T̃ denote the closure of the set of nontrivial solutions of (2.1) in R×H and let

Iµ = [µ−M,µ+M ].

Let B̃ denote the set of bifurcation points of problem (1.1).

Theorem 2.1 [4] (see also [5]). Let µ ∈ R be an eigenvalue of the operator L of odd multiplicity and

dist (µ ; σ(L)\{µ}) > 2M. (2.4)

Then the set B̃ is nonempty, and B̃ ∩ (Iµ × {0}) ̸= ∅.

We define the set C̃∗µ ∈ T̃ to be the union of all the components of T̃ which meet Iµ × {0} (by
theorem 2.1 this set is nonempty). Note that the set C̃∗µ may not be connected in R × H , but the set
C̃µ = C̃∗µ ∪ (Iµ × {0}) is connected in R×H .

Theorem 2.2 [4]. If µ ∈ σ(L) is odd multiplicity and condition (2.4) holds, then either (i) C̃µ is un-
bounded in R×H or (ii) C̃µ contains the set Iµ̂ × {0} where µ ̸= µ̂ ∈ σ(L).



Z.S. Aliyev and N.A. Mustafayeva 15

Let Bε denote open ball in H of radius ε centered at 0.
The coincidence degree of the pair of operators (L,H) with respect to Br , denoted d [(L,H),Br], will

be defined for any continuous operator H : H → H which mapping bounded sets onto bounded sets,
provided Lu ̸= H(u) for u ∈ ∂Br ([2, Ch. 3]). For convenience we shall introduce the following notation

d(L−H,Br) = d[(L,H), Br].

Let B denote the set of asymptotic bifurcation points of problem (1.1).

Theorem 2.3 Let µ ∈ σ(L) is of odd multiplicity and condition (2.4) holds. Then B ∩ (Iµ × {∞}) ̸= ∅.

Proof . Assume the contrary, i.e. suppose that B ∩ (Iµ×{∞}) = ∅. Then there exists sufficiently Rµ > 0

and sufficiently small δµ > 0 such that the problem (1.1) has no solution in Iµ(δµ)× (E\BRµ
), i.e.

Lu ̸= λu+ F (λ, u) +G(λ, u), λ ∈ Iµ(δµ), ||u|| ≥ Rµ. (2.5)

where Iµ(δ) = [µ−M − δ, µ+M + δ].
Let

δµ, 0 =
dist (µ ; σ(L)\{µ})− 2M

2
. (2.6)

Without loss of generality we can assume that

δµ < δµ, 0. (2.7)

It follows by (1.3) that there exists Rµ, 0 > Rµ such that

||G(λ, u)||
||u|| <

δµ
4

, λ ∈ Iµ(δµ), ||u|| ≥ Rµ, 0. (2.8)

Set λ = µ−M − δµ
2 and λ = µ+M +

δµ
2 . It follows by (2.4), (2.6) and (2.7) that

dist (λ : σ(L)) = dist
(
λ : σ(L)

)
= M +

δµ
2

. (2.9)

In view (2.9), from (2.5) we obtain the following relations

Lu ̸= λu+ F (λ, u) +G(λ, u), u ∈ ∂BRµ, 0
, (2.10)

and
Lu ̸= λu+ F (λ, u) +G(λ, u), u ∈ ∂BRµ, 0

. (2.11)

Then, it follows by homotopy invariance of the coincide degree that

d(L− λI − F (λ , · )−G(λ , · ),Bµ, 0) = d(L− λI − F (λ , · )−G(λ , · ),Bµ, 0). (2.12)

On the other hand, by (1.2), (2.6)-(2.10) for any t ∈ [0, 1] and any u ∈ ∂BR ∩ D(L), R ≥ Rµ, 0, we
obtain

||Lu− λu− t F (λ , u)− tG(λ , u)|| ≥ ||Lu− λu|| − t||F (λ , u)||

−t||G(λ , u)|| ≥ c(λ)||u|| − ||F (λ , u)|| − ||G(λ , u)|| ≥ c(λ)||u||

−M ||u|| − δµ
2 ||u|| > δµ

2 ||u|| = δµRµ, 0

2 > 0.

Hence, for any u ∈ D(L) with R ≥ Rµ, 0 and for any t ∈ [0, 1] we have

Lu ̸= λu− t F (λ , u)− tG(λ , u).

So, using the homotopy invariance of the coincide degree again, we obtain that

d(L− λ I − F (λ , · )− G(λ , · ),BR) = d(L− λ I,BR).
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Since λ /∈ σ(L), then d(L− λ I,Br) does not depend on r (r > 0), and

d(L− λ I,Br) = i(λ) for any r > 0

(see [2, Ch. 3; 3, Ch. 2]). Consequently,

d(L− λ I − F (λ , · )− G(λ , · ),BR) = i(λ). (2.13)

Similarly, we obtain
d(L− λ I − F (λ , · )− G(λ , · ),BR) = i(λ). (2.14)

Then by (2.13) and (2.14) it follows from (2.12) that

i(λ) = i(λ). (2.15)

On the other hand, since µ is the only eigenvalue of L in [λ, λ] and has odd multiplicity, then by Leray-
Schauder formula [2, p. 501] we have

i(λ) = −i(λ),

which contradicts relation (2.15). The resulting contradiction completes the proof of Theorem 2.2.

Lemma 2.1 If (λ,∞) ∈ B, then
dist (λ : σ(L)) < M. (2.16)

Proof . Let {(λn, un)}∞n=1 ⊂ R × E is a sequence of solutions of problem (1.1) such that λn → λ and
||un|| → ∞ as n → ∞. Without loss of generality we assume that λ /∈ σ(L) and ||un|| > 1. Then for
sufficiently large n it follows by (1.1) that

un = (L− λnI)
−1 (F (λn, un) +G(λn, un)) . (2.17)

For each n ∈ N let vn =
un

||un||
∈ E. Dividing (2.17) by ||un|| shows that vn satisfies the equation

vn = (L− λnI)
−1 (Fn +Gn) , (2.18)

where Fn =
F (λn, un)

||un||
and Gn =

G(λn, un)

||un||
. Based on the conditions (1.2) and (1.3) we have

||Fn|| ≤ M, lim
n→∞

Gn = 0. (2.19)

By the relation

(L− λnI)
−1 =

(
I − (λn − λ) (L− λI)−1

)−1
(L− λI)−1

it follows that
|| (L− λnI)

−1 || → || (L− λI)−1 || as n → ∞. (2.20)

In view (2.19) and (2.20), from we obtain

1 ≤ M || (L− λI)−1 || ,

which by

|| (L− λI)−1 || =
1

dist (λ : σ(L))

implies (2.16). The proof of the Lemma 2.1 is complete.

Corollary 2.1 Let µ ∈ σ(L) is of odd multiplicity and dist (µ ; σ(L)\{µ}) > 2M . Then B ∩ (Iµ(δµ, 0)\Iµ) =
∅.
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3 Global bifurcation from infinity for problem (1.1)

Let T be the set of nontrivial solutions of (1.1) in R × H. We define the set C∗µ ∈ T to be the union of
all the components of T which meet Iµ × {∞} (by theorem 2.3, Lemma 2.1 and Corollary 2.1 this set is
nonempty). Note that the set C∗µ may not be connected in R × H, but the set Cµ = C∗µ ∪ (Iµ × {∞}) is
connected.

For any set A ⊂ R×H we let PR(A) denote the natural projection of A onto R× {0}.
It follows by theorem 2.1 that the set Cµ meets Iµ × {∞} and unbounded in R × H. Moreover, we

have a global bifurcation result which generalizes Theorem 1.6 of [7]

Theorem 3.1 Let µ ∈ σ(L) is of odd multiplicity and assume that executed the condition (2.4). Then at
least one of the following holds:

(i) Cµ meets Iµ̂ × {∞} where µ ̸= µ̂ ∈ σ(L);
(ii) Cµ meets (λ, 0) for some λ ∈ R;
(iii) PR(Cµ) is unbounded.

Proof . If (λ, u) ∈ T with u ̸= 0, dividing (1.1) by ||u||2 and setting v = u
||u||2 we have

Lv = λv + F̃ (λ, v) + G̃(λ, v), (3.1)

where
F̃ (λ, v) = ||v||2F (λ,

v

||v||2
), G̃(λ, v) = ||v||2G(λ,

v

||v||2
) for v ̸= 0. (3.2)

Extend F̃ and G̃ to v = 0 by F̃ (λ, 0) = 0 and G̃(λ, 0) = 0, respectively. The hypotheses made for F̃ and
G̃ imply F̃ : R×H → H and G̃ : R×H → H are continuous. The inversion (λ, u) → T (λ, u) = (λ, v)

was used in the papers [6],[8] and [9] turns a ”bifurcation at infinity” problem into a ”bifurcation at zero”
problem.

By (1.2) and (1.3) it follows from (3.2) that

||F̃ (λ, v)|| = ||v||2||F (λ,
v

||v||2
)|| ≤ M ||v|, ∀λ ∈ R, ∀v ∈ H, ||v|| < 1; (3.3)

for any bounded interval Λ ⊂ R,
G̃(λ, v) = o(||v||) at v = 0, (3.4)

uniformly with respect to λ ∈ Λ.
Since µ ∈ σ(L) is of odd multiplicity and the condition (2.4) holds, by (3.3) and (3.4), the component

Cµ of nontrivial solutions of problem (3.1) satisfied the alternatives of Theorem 2.2. Under the inversion
(λ, v) → T−1(λ, v) = (λ, u), C̃µ → Cµ satisfying (1.1). If C̃µ contains the another bifurcation interval
Iµ̂×{0}, then C̃µ contains also the another bifurcation interval Iµ̂×{∞}. If C̃µ is unbounded in R×H , then
we have two possible cases: (a) PR(C̃µ) is bounded in R; (b) PR(C̃µ) is unbounded in R. Consequently,
in the case (a) Cµ meets (λ, 0) for some λ ∈ R, and in the case (b) PR(Cµ) is unbounded in R. The proof
of Theorem 3.1 is complete.

Now we give one application to a nonlinear eigenvalue problem for ordinary differential equations of
second order.

Consider the following problem

−y′′ = λy + y + 1 + λ, 0 < x < π, (3.5)

y(0) = 0 = y(π). (3.6)

Let H = L2(0, π). Define the operators L : D(L) ⊂ H → H, F : H → H and G : R ×H → H as
follows:

D(L) =
{
y ∈ H | y ∈ W 2

2 (0, π), −y′′ ∈ L2(0, π), y(0) = 0 = y(π)
}
,

Ly = −y′′, F (λ, y) = y + 1, G(λ, y) = λ. (3.7)
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Then the problem (3.5)-(3.6) can be written as an operator equation in the form of (1.1), i.e.

Ly = λy + F (λ, y) +G(λ, y). (3.8)

It is known that L is a semi-bounded from below self-adjoint operator in H and possesses infinitely
many eigenvalues µk = k2, k = 1, 2, ... , all of which are simple. By (3.7) it follows that the conditions
(1.2) and (1.3) are satisfied, and M = 2. Accordingly, Ik = Iµk = [k2 − 2, k2 +2] for our problem. Then
by Theorem 3.1 for each k ∈ N connected component Ck ≡ Cµk of solutions of problem (3.5)-(3.6),
containing Ik × {∞} is either (i) contains the interval Is × {∞}, where s ̸= k or (ii) contains the point
(λ, 0) for some λ ∈ R or (iii) PR(Ck) is unbounded.

On the other hand, for λ ̸= k2 − 1, k ∈ N, the solution of problem (3.5)-(3.6) is unique and given by

u(x) = −1 + cos
√
λ+ 1x+

1− cos
√
λπ

sin
√
λπ

sin
√
λ+ 1x .

For k odd, uλ(x) → ∞ as λ → k2−1; for k2 even, uλ(x) → −1+cos kx ≡ uk2−1, and in addition to the
solution (k2− 1, uk2−1), (3.5)-(3.6) possesses the family of solutions (k2− 1, uk2−1+α sin kx), α ∈ R.
Thus

C1 = {(λ, uλ) : λ ∈ (−1, 0) ∪ (0, 8)} ∪ {(3, u3 + α sin 2x) : α ∈ R}∪

∪{(−1, 0)} ∪ (I1 × {∞}) ∪ (I2 × {∞}) ∪ (I3 × {∞}).

Note that in each interval Ik ×{∞} there is only one bifurcation point (k2 − 1,∞). Note also that C1
meets (−1, 0) and meets I2 ×{∞} as well as I3 ×{∞}, i.e. C1 does not satisfy (iii). Hence it also is seen
that if k ≥ 2 then Ck does not satisfy (ii) and (iii).
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