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Abstract. In this paper we consider some problems of the theory of approximation of functions on inter-
val [0,∞) in the metric of L2,λ with weight sh2λx. The modulus of continuity used in those problems is
constructed with the help of generalized Gegenbauer shift operator. The direct Jakson type theorems are
proved. The function spaces of Nikolski-Besov type associated with Gegenbauer differential operator Dλ
are introduced and their descriptions in terms of best approximations are obtained.
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1 Introduction. Statement of main results

In the classical theory of approximation of functions on R = (−∞;∞) the classical shift operator f(x) 7→
f(x + y), x, y ∈ R plays a central role. In the approximation theory shift operators are used in the
construction of the modulus of continuity and smoothness, which are the basic elements of the direct and
inverse theorems. Various generalizations of shift operators enable to obtain natural analogues of problems
in approximation theory. Groups and semigroups of operators on Banach spaces are generalizations of the
shift operator. Many problems of this type in approximation theory were considered in [1, 2, 5, 6, 43].
These operators may not form a group or semigroup, but the generalized module of smoothness defined
in terms of them can be better adapted for the study of relations between the smoothness properties of
functions and the best approximations of these functions in weighted function spaces. Some results on
the approximation of functions with the use of generalized shift operators can be found in [20, 34-40, 47]
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(and the references in these). Note that most of the papers on this topic deal with the approximation of
functions by polynomials on a finite line segment.

For the half-line, most popular shift operators are the generalized Bessel and Dunkl shift operators
(see example [3, 29-33, 44, 46]). Fourier-Bessel and Fourier-Dunkl harmonic analysis, which are deal
with the Bessel and Dunkl integral transformations and their approximations, are closely connected with
the generalized Bessel and Dunkl shifts. Moreover, generalized Bessel shift is widely used in the poten-
tial theory (see example [4, 9-11]). Obtained results are analogues of the results for generalized Bessel
shift obtained the works [29, 30]. Similar questions constrained with generalized Gegenbauer shift are
considered in [12-14, 16-19]. The file of constructions of theory generalized shift operators generalize in
the theory of transformation operators (see for example [7]). The references of quoting works is far from
completion yet, perhaps essential supplement. We use only these works which have at least some relation
to this paper. In this paper we consider the generalized Gegenbauer shift and study some questions of
approximation theory of functions in the interval [0,∞) with the metric of L2,λ and the weight sh2λx.
We describe our results in more detail now. Let

Dλ = (x2 − 1)
1
2−λ d

dx
(x2 − 1)λ+

1
2
d

dx

= (x2 − 1)
d2

dx2
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.
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be the Gegenbauer differential operator. The functions (see [8], p. 1934)
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Γ (λ)Γ (α+ λ+ 1) 2α+2λ
x−α−2λ

×2F1

(
α

2
+ λ,

α

2
+ λ+

1

2
;α+ λ+ 1;

1

x2

)
(1.2)

and ([8], formulas (2.3) and (2.8), also [15] p. 1045, formulas 8.936 (1) and 8.932 (1))

Cλα(x) =
Γ (α+ λ)

Γ (λ)Γ (α+ 1)
(2x)α2F1
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,−α
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2
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where α, x ∈ [1,∞), and λ ∈ (0, 12 ), are eigen functions of the operator Dλ, and 2F1 (α, β; γ; x) is
Gausss hypergeometric function. Note that the functions Pλα (x), Cλα(x) are linearly independent solutions
of the equations

{(x2 − 1)
d2

dx2
+ (2λ+ 1)x

d

dx
− α(α+ 2λ)}y(x) = 0, (1.4)

and
sh2x y′′ (chx) + (2λ+ 1) chx y′ (chx)− α (α+ 2λ) y(chx) = 0. (1.5)

For the functions Pλα (chx), Cλα(chx) the formulas ([8], c. 1939)

Pλα (chxcht− shxsht cosϕ)

=
Γ (2λ− 1)

Γ 2(λ)

[α]∑
n=0

(−1)n
4nΓ (α− n+ 1)Γ 2(λ+ n)(2n+ 2λ− 1)

Γ (α+ 2λ+ n)

× shnxshntPλ+nα−n (chx)Cλ+nα−n(cht)C
λ− 1

2
n (cosϕ),

(1.6)

Cλα(chxcht− shxsht cosϕ)

=
Γ (2λ− 1)
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2
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(1.7)
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are valid. Taking into account the equation ([15], c. 844)

π∫
0

C
λ− 1

2
n (cosϕ)(sinϕ)2λ−1dϕ =

{
0, n ≥ 1,

Γ (λ)Γ ( 1
2 )

Γ (λ+ 1
2 )
, n = 0,

from (1.6) and (1.7) we obtain:

AλchtP
λ
α (chx) =

Γ (λ+ 1
2 )

Γ (λ)Γ ( 12 )

π∫
0

Pλα (chxcht− shxsht cosϕ)(sinϕ)2λ−1dϕ

=
Γ (2λ)Γ (α+ 1)

Γ (α+ 2λ)
Pλα (cht)Cλα(chx) = Pλα (cht)Qλα(chx),

(1.8)

AλchtC
λ
α(chx) =

Γ (λ+ 1
2 )

Γ ( 12 )Γ (λ)

π∫
0

Cλα(chxcht− shxsht cosϕ)(sinϕ)2λ−1dϕ

=
Γ (2λ)Γ (α+ 1)

Γ (α+ 2λ)
Cλα(cht)Cλα(chx) = Cλα(cht)Qλα(chx),

(1.9)

where Qλα(chx) =
Γ (2λ)Γ (α+1)
Γ (α+2λ)

Cλα(chx).
Let aλ = Γ (λ+ 1/2)/(Γ (λ)Γ (1/2)). Here the functions

Achtf(chx) ≡ Aλchtf(chx) (1.10)

= aλ

π∫
0

f(chxcht− shxsht cosϕ)(sinϕ)2λ−1dϕ

are generalized Gegenbauer shift operators for f ∈ Lp,λ, 1 ≤ p ≤ ∞ (see [16]). Their existence are a
result of the Lp,λ- boundedness (see section 2, property 5). The generalized Gegenbauer shift possesses
much analogous properties to the generalized Bessel shift from the work of Levitan [23]. These properties
are proved in Section 2. Note that the results of Sections 1 and 2 are obtained by scheme used in work
[29]. For proof of direct Jackson theorem in [30] S.S. Platonov essentially used Lemma 3.5 whose the
analogue does not take place for Gegenbauer function. Therefore we had to look for a new approach
which is distinct from the method of S. S. Platonov. For this we had to prove series of auxiliary results
of Lemmas 3.3-3.12, which present independent interest. For example in the Lemma 3.9 the formula for
resting term of Teylor-Delsart formulas, which is different from analogous of formulas for generalized
Bessel shift that is obtained by the other method of B. M. Levitan ([24], p. 124). Moreover, for proof of
Theorem 1.1 in Section 4 we had to prove Lemmas 4.1-4.4, i.e., we find the another approach. Here we
used the scheme of the proof in [30] for the results of Section 5.

Let R+ := [0,∞). We denote C(R+) and Cc(R+) the set of all even continuous functions on R and
the set of continuous functions on R with compact supports, respectively. Let C(k)(R+) be the set of
k-times differentiable even functions on R+, D(R+) be the set of infinitely differentiable even functions
on R+ with compact supports, and D′(R+) be the set of all generalized even functions that is continuous
linear functional on D(R+).

The value of f ∈ D′(R+) at ϕ ∈ D(R+) will be denoted by < f, ϕ >. By L2,λ ≡ L2,λ(R+) we
denote the Hilbert space of measurable function f by R+ (defined up to their values on a set of measure
zero), such that the norm

‖f‖2,λ =

 ∞∫
0

|f(chx)|2 sh2λxdx

 1
2

is finite.
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Scalar production in L2,λ is determined by the formula

(f, g) =

∞∫
0

f(chx) g(chx) sh2λxdx, f, g ∈ L2,λ.

The space L2,λ is invested in D′(R+) if for f ∈ L2,λ and ϕ ∈ D(R) put

< f, ϕ > : =
∞∫
0

f(chx)ϕ(chx) sh2λxdx.

For any function f ∈ L2,λ with the help of generalized Gegenbauer shift, we denote the differences

∆1
chtf(chx) := Achtf(chx)− f(chx), . . . ,∆kchtf(chx) := ∆1

cht

(
∆k−1cht f(chx)

)
, k = 2, 3, ...

or

∆kchtf(chx) =

k∑
i=0

(−1)k−i
(
k
i

)
Aichtf(chx).

For all natural k we define the generalized modulus of continuity of k-order in the metric of L2,λ by
the formula

ωk(f ; δ)2,λ := sup
0<t≤δ

‖∆kchtf‖2,λ , δ > 0.

The best approximation function f ∈ L2,λ by functions belonging to Iν (the definition of classes Iν
see on the page 32) is defined as

Eν(f)2,λ = inf
g∈Iν

‖f − g‖2,λ.

We extend the action of the differential operator Dλ in a natural way to the space of generalized
functions D′(R+) by putting

< Dλf, ϕ >=< f,Dλϕ >, f ∈ D′(R+) , ϕ ∈ D(R+).

In particular, for every function f ∈ L2,λ generalized functions Dλf, D2
λf, . . . , belonging D′(R+)

are defined.
The following theorem is an analogue of Jackson’s direct theorem in classical approximation theory.

Theorem 1.1. Suppose that f, Dλf, . . . , Dsλf belong to L2,λ. Then

Eν(f)2,λ ≤ 2−s
(
sh

1

ν

)2s
ωn

(
Dsλf,

1

ν

)
2,λ
∼ 2−sν−2sωn

(
Dsλf,

1

ν

)
2,λ
, ν →∞.

Let r > 0 be a real number and let k and s be arbitary non-negative numbers such that 2k > r−2s > 0.
We denote by Hr

2,λ the set of all f ∈ L2,λ for which Dλf, D2
λf, . . . , D

s
λf ∈ L2,λ and the inequality is

valid.
ωk
(
Dsλf, δ

)
2,λ
≤ Af δr−2s, δ > 0 (1.11)

for some Af > 0. For f ∈ Hr
2,λ we define the seminorm hr2,λ(f) as

hr2,λ(f) = sup
δ>0

ωk (Dsλf, δ)2,λ
δr−2s

. (1.12)

Hr
2,λ is a Banach space with the norm (see the section 5)

‖f‖Hr2,λ := ‖f‖2,λ + hr2,λ(f).

In the following theorem we describe the space Hr
2,λ in terms of the best approximation by functions

belonging to Iν . This theorem implies that the Lr2,λ does not depend on k and s.
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We denote byC1, C2, . . . positive constants that do not depend on f but they can depend on k, r, s, λ.

Theorem 1.2. If f ∈ Hr
2,λ, then for ν ≥ 1 the inequality

Eν(f)2,λ ≤ Cλ,k,s
hr2,λ(f)

νr
(1.13)

is valid. Conversely, if f ∈ L2,λ and ν ≥ 1

Eν(f)2,λ ≤
Af
νr
, (1.14)

where Af is a constant that does not depend on ν (but depends on f ) then f ∈ Hr
2,λ and

‖f‖Hr2,λ ≤ C1

(
‖f‖2,λ +Af

)
. (1.15)

Let 1 ≤ q ≤ ∞, r > 0, and let k,s be non-negative integers such that 2k > r − 2s > 0. As in [30]
we say that a function f belongs to the Nikolskii-Besov class Br2, q, λ associated with the Gegenbauer
differential operator Dλ if Dλf, . . . , D

s
λf ∈ L2,λ and the norm

br2, q, λ(f) =


(∞∫

0

(
ωk(D

s
λf,δ)2,λ

)q
δ(r−2s)q

dδ
δ

)
1
q q <∞ ,

sup
δ>0

ωk(D
s
λf, δ)2,λ
δr−2s , for q =∞ .


is finite.

The class Br2, q, λ is a Banach space with the norm

‖f‖Br2, q, λ : = ‖f‖2,λ + br2, q, λ. (1.16)

Note that Br2,∞, λ = Hr
2,λ.

Theorem 1.3. Let a > 1 be an arbitary number (we can take, for example, a = 2). Then f ∈ L2, λ

belongs to Br2, q, λ if and only if the seminorm

b̃r2, q, λ(f) :=


( ∞∑
n=0

anrq
(
Ean(f)2,λ

)q) 1
q

, q <∞,

sup
n∈Z+

anrEan(f)2,λ, q =∞,

is finite, where Z = {0, 1, 2, . . .}. In this case the norm (1.16) in Br2, q, λis equivalent to the norm

‖f‖2,λ + b̃r2, q, λ (f) .

2 Transformations and generalized Gegenbauer shift

Here we reduce some information on Gegenbauer transformations and generalized Gegenbauer shift. The
Gegenbauer transformations of the functions Pλα (cht) andQλα(cht) are direct P -transformation called the
following integrals transformations [16]:

FP : f(cht) 7→ f̂P (α) =

∞∫
0

f(cht)Pλα (cht)sh2λtdt, (2.1)
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inverse P -transformation

F−1P : f̂P (α) 7→ f(chx) = C∗λ

∞∫
1

f̂P (α)Qλα(chx)
(
α2 − 1

)λ− 1
2
dα , (2.2)

and direct Q-transformation

FQ : f(cht) 7→ f̂Q(α) =

∞∫
0

f(cht)Qλα(cht)sh2λtdt,

inverse Q-transformation

F−1Q : f̂Q(α) 7→ f(chx) = C∗λ

∞∫
1

f̂Q(α)Pλα (chx)
(
α2 − 1

)λ− 1
2
dα , (2.3)

where Qλα(chx) =
Γ (2λ)Γ (α+1)
Γ (α+2λ)

Cλα(chx) and

C∗λ =
2

3
2−λΓ ( 12 )Γ (λ+ 1)Γ

(
1
2 − λ

)
Γ ( 3+2λ

4 )
(
Γ (λ+ 1

2 )Γ ( 5−2λ4 )cosπλ
)−1

2F 1(1, 12 − λ; 5−2λ
4 ; 1

2 )− 2F 1(1, 12 − λ; 5−2λ
4 ; 1−2λ

2 )
.

For f ∈ D(R+) the transformations (2.1) and (2.2) is defined.
We note that, if direct and inverse Bessel transformations differ only by a numerical factor (see [29]),

then the transformation (2.1) and (2.2) have different constructions. But they are natural and dictate of
formula (1.6) (ground see in [16]).

In [16] (Lemma 8) it is proved that if f ∈ L1,λ

⋂
L2,λ, then f̂P (α)f̂Q(α) ∈ L1,λ and the equality∫ ∞

0

f2(chx) sh2λx dx = C∗λ

∫ ∞
1

f̂P (α)f̂Q(α)
(
α2 − 1

)λ− 1
2
dα (2.4)

is valid.
For the formula (1.10) the operator Acht is spread for even continuous functions, in particular on the

functions in Cc [0,∞). We have the following

|Achtf(cht)|2 ≤ Achx
(
|f(chx)|2

)
. (2.5)

By Cauchy-Bunyakowski inequality we have

|Achtf(chx)|2 =

∣∣∣∣aλ ∫ π

0

f (chx cht− shx sht cosϕ) (sinϕ)2λ−1 dϕ

∣∣∣∣2
≤ aλ

∫ π

0

|f (chx cht− shx sht cosϕ)|2 (sinϕ)2λ−1 dϕ · aλ
∫ π

0

(sinϕ)2λ−1 dϕ

= aλ

∫ π

0

|f (chx cht− shx sht cosϕ)|2 (sinϕ)2λ−1 dϕ = Acht

(
|f(chx)|2

)
.

We remind that the operator Acht is self-adjoint (see property 8). In particular, if f, g ∈ C(R+),
moreover f ∈ L1,λ and g is bounded, then (2.9) takes place. The equality (2.9) takes place also, if
f ∈ C(R+) and g ∈ Cc(R+). For this, it is enough to make the sequence of the functions fn ∈ C(R+),
which is convergence uniformly to f on every segment and in the equality∫ ∞

0

Achtfn(chx)g(cht)sh2λtdt =

∫ ∞
0

fn(cht)Achtg(chx)sh2λtdt

the limit is taken for n→∞.
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We note that
‖Achtf‖2,λ ≤ ‖f‖2,λ (2.6)

for f ∈ Cc [0,∞).
In fact, in (2.4) and (2.6) for g(chx) ≡ 1 we have

‖Achtf‖22,λ =

∫ ∞
0

|Achtf(chx)|2 sh2λxdx

=

∫ ∞
0

(
Acht |f(chx)|2

)
sh2λxdx ≤

∫ ∞
0

|f(chx)|2 sh2λxdx = ‖f‖22,λ .

From inequality (2.6) it follows that the operator Acht is continuous on Cc [0,∞) and is a bounded
operator on L2,λ. Lasting operator we will also denote Acht and for the inequality (2.6) remains true. The
generalized Gegenbauer shift has the following properties.

1) Linearity:

Acht{af(chx) + bg(chx)} = aAchtf(chx) + bAchtg(chx),

which follows from the integral property.
2) Positivity: Achtf(chx) ≥ 0, if f(chx) ≥ 0, which is obvious.
3) Acht1 ≡ 1.
4) If f(chx) ≡ 0 for x ≥ a, then Aλchtf(chx) ≡ 0 for |x− t| ≥ a.
In fact, chxcht− shxsht cosϕ ≥ ch(x− t) ≥ |x− t|, from this it follows the property 4).
For every 1 ≤ p <∞we denote by Lp,λ the space of measurable functions onR+ (defined up to their

on a set of measure zero) such that the norm ‖f‖p,λ =

(∞∫
0

|f(chx)|psh2λxdx
) 1
p

is finite. For p = ∞

we denote by L∞,λ the set of all functions f that are uniformly continuous and bounded on [0,∞). The
norm in L∞,λ is defined by the formula ‖f‖∞,λ := sup

x≥0
|f(chx)|.

5) Lp,λ boundedness of the operator Aλcht : For any f ∈ Lp,λ, 1 ≤ p ≤ ∞ the following inequality is
valid

‖Achtf‖p,λ ≤ ‖f‖p,λ.

Corollary. The operator Aλcht is continuous on Lp,λ. This follows from the properties 1) and 5).

Let fn be an arbitrary sequence, such that ‖fn − f‖p,λ → 0 as n→∞, (f ∈ Lp,λ, 1 ≤ p ≤ ∞), then

‖Achtfn −Achtf‖p,λ = ‖Acht(fn − f)‖p,λ ≤ ‖fn − f‖p,λ → 0

as n→∞, i.e., the operator Acht is continuous on Lp,λ
6) Symmetry of the operator Acht:

Achtf(chx) = Achxf(cht)

is obvious.
7) Commutativity of the operator Acht: For every continuous functions f(chx), x ∈ [0,∞) and

y, t ≥ 0 the following equality is valid

AchyAchtf(chx) = AchtAchyf(chx). (2.7)

In fact, let f(chx) = Cλα(chx), from (1.9) and property 6) we have

AchtAchyC
λ
α(chx) = AchtC

λ
α(chy)Qλα(chx)

= AλchyC
λ
α(cht)Qλα(chx) = AλchyA

λ
chtC

λ
α(chx).
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For

σn(chx) =

n∑
k=1

akC
λ
k (chx) (2.8)

the equality (2.6) follows from the property 1) of the operatorAcht. If we take into account (1.3) and
(2.7) and suppose chx = u, then sum (2.7) passes to be an n− order algebraic polynomial. But then
according to the Weierstrass theorem (see for example [26], p. 19) every continuous functions one can be
approximated uniformly on any segment of sums (2.7), i.e.

lim
n→∞

σn(chx) = σ(chx).

From (2.6) and (2.7) it follows that

AchyAchtσn(chx) =

n∑
k=1

akAchyAchtC
λ
k (chx)

=

n∑
k=1

akAchtAchyC
λ
k (chx).

From this we have
lim
n→∞

AchyAchtσn(chx) = AchyAchtσ(chx)

=

∞∑
k=1

akAchyAchtC
λ
k (chx) = AchtAchyσ(chx).

The property 7) is proved.
8) The operator Aλcht is self-adjoind (see [16], lemma 3). For f, g ∈ L1,λ the following equality is

valid

∞∫
0

Achtf(chx)g(cht)sh2λtdt =

∞∫
0

Achtg(chx)f(cht)sh2λtdt (2.9)

for almost all x ∈ [0,∞).

Lemma 2.1. ([16], lemma 1). Let f ∈ L1,λ, then(
Âchtf

)
P

(α) = f̂P (α)Qλα(cht).

The convolution of functions f, g ∈ L1,λ on [0,∞) is defined by the relation

(f ∗ g) (chx) =

∫ ∞
0

g(cht)Achtf(chx)sh2λtdt . (2.10)

The convolution exists for almost all x ∈ [0,∞), moreover f ∗ g ∈ L1,λ and in particular, if
f, g ∈ Cc [0,∞), then the convolution f ∗ g ∈ Cc [0,∞).

Lemma 2.2. For f, g ∈ Cc(R+) the following equalities are valid

a) (f ∗ g) (chx) = (g ∗ f) (chx),

b)
(
f̂ ∗ g

)
P

(chx) = f̂P (chx)ĝQ(chx). (2.11)
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Proof. The property a) immediately follows from (2.8). We will prove b). From (2.1) and (2.10) we have

(
f̂ ∗ g

)
P

(α) =

∞∫
0

(f ∗ g)(chx)Pλα (chx)sh2λxdx

=

∞∫
0

 ∞∫
0

g(chu)Achxf(chu)sh2λudu

Pλα (chx)sh2λxdx.

By changing the order of integration we obtain

(
f̂ ∗ g

)
P

(α) =

∞∫
0

 ∞∫
0

Achxf(chu)Pλα (chx)sh2λxdx

 g(chu)sh2λudu

=

∞∫
0

̂(Achxf)P (α)g(chu)sh2λudu.

Taking into account Lemma 2.1, we have

(
f̂ ∗ g

)
P

(α) = f̂P (α)

∞∫
0

g(chu)Qλα(chu)sh2λudu = f̂P (α)ĝQ(α).

Lemma 2.2 is proved.

3 The functions with bounded spectrum and their properties

Definition. We call the function f ∈ L2,λ with bounded spectrum of order ν, if f̂P (α) = 0 for α > ν.
The class of such functions we denote Iν .

The functions of class Iν will be used as approximation tools. We consider some properties of these
functions.

For any functions f ∈ L2,λ and g ∈ Cc [0,∞) we define the convolution f ∗ g and moreover

‖f ∗ g‖2,λ ≤ ‖f‖2,λ ‖g‖1,λ ,

in particular f ∗ g ∈ L2,λ. In fact, using the generalized Minkovsky inequality and the property (2.5), we
obtain

‖f ∗ g‖2,λ ≤
∞∫
0

‖Acht f‖2,λ |g(cht)| sh2λtdt

≤ ‖f‖2,λ

∞∫
0

|g(cht)| sh2λtdt = ‖f‖2,λ ‖g‖1,λ .

Lemma 3.1. For every f ∈ L2,λ[1,∞) the inequality is valid.

|f̂P (α)| ≤ Cλαλ−3/2‖f‖2,λ.

We denote by Cλ a positive constant, which depend only on copied out indexes generally speaking
are different in different formulas.
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Proof. Since the appointed values of the parameters ([15], p. 1054), the Gauss’s hypergeometric function
2F1(α2 +λ, α2 +λ+ 1

2 ;α+λ+ 1;x−2) > 0 is convergences uniformly for all x ∈ [1,∞), then from (1.2)
it follows that lim

x→∞
Pλα (x) = 0 and consequently, Pλα (x) accepts greatest value in the point x = 1. But

taking into account the equality ([15], c. 1056)

2F 1(
α

2
+ λ,

α

2
+ λ+

1

2
;α+ λ+ 1; 1) =

Γ (α+ λ+ 1)Γ ( 12 − λ)

Γ (α2 + 1)Γ (α2 + 1
2 )

,

and from (1.2) we obtain

max
x∈[1,∞)

Pλα (x) = Pλα (1) =
Γ (α+ 2λ)Γ ( 12 − λ) cosπλ

2α+2λΓ (λ)Γ (α2 + 1)Γ (α2 + 1
2 )
.

Taking into account the doubling formula ([15], p. 952)

Γ (2x) = 22x−1Γ (x)Γ
(
x+

1

2

)
/ Γ
(

1

2

)
,

we obtain

Pλα (1) =
Γ ( 12 − λ)Γ (α2 + λ)Γ (α2 + λ+ 1

2 ) cosπλ

2Γ (λ)Γ (α2 + 1)Γ (α2 + 1
2 )Γ ( 12 )

.

Using the relation ([15], p. 951)

lim
α→∞

Γ (α+ λ)

αλΓ (α)
= 1

we will have

lim
α→∞

Pλα (1)α1−2α =
Γ ( 12 − λ) cosπλ

4λΓ (λ)Γ ( 12 )
,

consequently

Pλα (chx) ≤ Cλα2λ−1, x ∈ [0,∞). (3.1)

On the other hand from (1.2) we have

Pλα (chx) ≤ Cλαλ−1 (chx)−α−2λ , x ∈ (0,∞). (3.2)

By Hölder inequality we have

|f̂P (α)| ≤
∞∫
1

|f(x)||Pλα (x)|(x2 − 1)λ−
1
2 dx ≤ ‖f‖2,λ

( ∞∫
0

(Pλα (chx))2sh2λx dx
) 1

2

= ‖f‖2,λ
( 1/α∫

0

(Pλα (chx))2sh2λx dx+

∞∫
1/α

(Pλα (chx))2sh2λx dx
) 1

2
. (3.3)

Using (3.1) we obtain

1/α∫
0

(Pλα (chx))2sh2λx dx ≤ Cλα4λ−2
1/α∫
0

sh2λx dx

≤ Cλα4λ−3sh2λ
1

α
≤ Cλα2λ−3sh2λ1 = Cλα

2λ−3. (3.4)
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By using (3.2) we have

∞∫
1/α

(Pλα (chx))2sh2λx dx ≤ Cλα2λ−2
∞∫

1/α

sh2λx dx

(chx)2α+4λ

≤ Cλα2λ−2
∞∫

1/α

dx

(chx)2α+2λ
≤ Cλα2λ−2

∞∫
1/α

e−2(α+λ)xdx

= Cλ
α2λ−2

2(α+ λ)
e−2(α+λ)x | 1/α∞ ≤ Cλα2λ−3. (3.5)

Using (3.4) and (3.5) in (3.3), we obtain the assertion of Lemma 3.1.

Lemma 3.2. Let f ∈ L2,λ∩L1,λ. In order the reflection g 7→ f ∗g on Cc [0,∞) to extend the continuous
reflection from L2,λ into L2,λ necessary and sufficient, that the functions f̂Q(x) and f̂P (x) are essentially
bounded on a [1,∞), i.e. f̂Q, f̂P ∈ L∞ [1,∞).

Proof. Since Cc [0,∞) is dense in the space L2,λ it follows that the equality b) and (2.10) is valid and for
f ∈ L2,λ, g ∈ Cc [0,∞). From equalities (2.4) and (2.10) it follows that for f, g ∈ L2,λ ∩ L1,λ

‖f ∗ g‖22,λ =

∫ ∞
1

f̂P (α)ĝP (α)f̂Q(α)ĝQ(α)
(
α2 − 1

)λ− 1
2
dα. (3.6)

Suppose that the reflection g 7→ f ∗ g from Cc [0,∞) into L2,λ continues to continuous reflection

from L2,λ into L2,λ, which denote g 7→ f ∗ g
(
g ∈ L2,λ

)
. We check that (̂f ∗ g)P (x) = f̂P (x)ĝQ(x) for

all f, g ∈ L2,λ ∩ L1,λ.
For every g ∈ L2,λ there is a sequence gn ∈ Cc [0,∞) which converges to g in L2,λ. Then f ∗ gn →

f ∗ g in L2,λ, according to Young inequality we have

‖f ∗ gn − f ∗ g‖2,λ = ‖f ∗ (gn − g)‖2,λ ≤ ‖gn − g‖2,λ ‖f‖1,λ → 0 as n→∞.

Let f ∈ L1,λ ∩ L2,λ, g ∈ L2,λ, gn ∈ Cc[0,∞). We will show that
(
f̂ ∗ gn

)
P
→
(
f̂ ∗ g

)
P

in
L2,λ. By Lemma 3.1 and Young inequality we have∥∥∥(f̂ ∗ gn)

P
−
(
f̂ ∗ g

)
P

∥∥∥2
2,λ

=
∥∥∥( ̂f ∗ (gn − g)

)
P

∥∥∥2
2,λ

=

∫ ∞
0

̂(f ∗ (gn − g))
2

P (α) sh2λαdα = Cλ ‖ f ∗ (gn − g) ‖22,λ

∫ ∞
1

(
α2 − 1

)λ− 1
2

α3−2λ dα

≤ Cλ ‖ gn − g ‖22,λ ‖f‖
2
2,λ

∫ ∞
1

(
α2 − 1

)λ− 1
2

α
3−2λ

dα

= Cλ ‖ gn − g ‖22,λ ‖f‖
2
2,λ

∫ ∞
0

αλ−
1
2 dα

(α+ 1)2−λ

= Cλ ‖ gn − g ‖22,λ ‖f‖
2
2,λ

Γ
(
λ+ 1

2

)
Γ (2− 2λ)

Γ
(
5
2 − λ

) .

From this, it follows that∥∥∥(f̂ ∗ gn)
P
−
(
f̂ ∗ g

)
P

∥∥∥
2,λ
≤ Cλ ‖g n − g ‖2,λ ‖f ‖1,λ → 0 for n→∞.

Further, on (2.10) (
f̂ ∗ gn

)
P

(α) = (ĝn)P (α)f̂Q(α).
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We will show that (̂gn)P (α)→ ĝP (α) as n→∞. By Lemma 3.1∣∣∣(̂gn)P (α)− ĝP (α)
∣∣∣ ≤ Cλαλ− 3

2 ‖gn − g‖2,λ → 0 for n→∞.

From this, it follows that f̂Q(α) (̂gn)P (α)→ f̂Q(α) ĝP (α) and consequently (̂f ∗ g)P (α) = f̂Q(α) ĝP (α) .

Therefore the operator multiplication by function f̂Q(α) is a continuous operator on a L2,λ, for this it is
necessary that f̂P ∈ L∞ [1,∞) , f̂Q ∈ L∞ [1,∞). Then (3.6) has the form

‖f ∗ g ‖22,λ =

∫ ∞
1

(̂f ∗ g)
2

P (α)
(
α2 − 1

)λ− 1
2
dα .

Conversely, if f̂P , f̂Q ∈ L∞ [1,∞) , from (3.6) and equality (2.4) it follows that for g ∈ Cc [0,∞)

‖f ∗ g ‖22,λ =

∫ ∞
1

f̂P (α) ĝP (α) f̂Q(α)ĝP (α)
(
α2 − 1

)λ− 1
2
dα

≤ ‖f̂P ‖‖f̂Q‖
∞∫
1

ĝP (α) ĝP (α)
(
α2 − 1

)λ− 1
2
dα

= ‖f̂P ‖∞‖f̂Q‖∞
∫ ∞
0

g2(chx)sh2λxdx = ‖f̂P ‖∞‖f̂Q‖∞‖g‖22,λ,

from this it follows that

‖f ∗ g‖2,λ ≤
√
‖f̂P ‖∞‖f̂Q‖∞‖g‖2,λ, (3.7)

where
‖f̂P ‖∞ = ess sup

α∈[1,∞)
|f̂P (α)|.

From (3.7) it follows that the operator g 7→ f ∗ g continues to the continuous operator from L2,λ into
L2,λ. We note that equality (2.11) remains true for any g ∈ L2,λ. Lemma 3.2 is proved.

We consider the function

Ck(chx) = −
∫ chx

1

θ (chx, σ)Ck−1 (σ)
(
σ2 − 1

)λ− 1
2
dσ , C0 = 1, k = 1, 2, . . .

where

θ (chx, σ) =

{
−
∫ chx
σ

(
u2 − 1

)−λ− 1
2 du , 1 < σ < chx ,

0, σ ≥ chx ,

R1 (chs) f(chx) =

∫ chs

1

θ (chs, σ) (AσDλf) (chx)
(
σ2 − 1

)λ− 1
2
dσ, (3.8)

and

Rk (chs) f(chx) =

∫ chs

1

θ (chs, σ) (Rk−1 (σ)Dλf) (chx)
(
σ2 − 1

)λ− 1
2
dσ , k = 2, 3, . . . (3.9)

Denote by D(k)
λ (0,∞) the class of functions which k-time the operator Dλ is applied.

Lemma 3.3. [12] If f ∈ D(n−1)
λ (0,∞), then the Taylor-Delsartes formula is valid

Rn (chs) f(chx) = Achtf(chx)−
n−1∑
k=0

Ck (chs) Dkλf(chx) .
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From this formula we will construct the function (approximating aggregate) P 0,1
ν f(chx) = Ach 1

ν
f(chx),

P s,nν f(chx) = An+s
ch 1

ν

f(chx)−
n+s−1∑
k=1

Ck

(
ch

1

ν

) (
An+s−1
ch 1

ν

Dkλf
)

(chx) , n = 1, 2, . . . , (3.10)

where
A0
chtf(chx) = f(chx), Anchtf(chx) = Acht

(
An−1cht f

)
(chx) , n = 1, 2, . . . .

Further we show that the function (3.10) is a function with bounded spectrum attached to certain con-
ditions applying on the function f . For this we need some auxiliary approvals.

Lemma 3.4. Let f ∈ L2,λ. Then the following equality is valid.(
Âkchtf

)
P

(α) = f̂P (α)
(
Qλα(cht)

)k
, k = 1, 2, . . . .

In fact, according to Lemma 2.1 we can write the next chain of equalities(
Âkchtf

)
P

(α) =
̂(

Acht

(
Ak−1cht f

))
P

(α) =

(
Âk−1cht f

)
P

(α)Qλα(cht)

=
̂(
Ak−2cht f

)
P

(α)
(
Qλα(cht)

)2
= . . . = f̂P (α)

(
Qλα(cht)

)k
.

Lemma 3.5. Let f and Dkλf belong to L2,λ, then(
D̂kλf

)
P

(α) = (α (α+ 2λ))kf̂P (α) , k = 1, 2, . . .

Proof. Using the symmetry of the operator Dλ, from (1.5) we obtain(̂
Dλf

)
P

(α) =

∫ ∞
0

Pλα (chx)Dλf(chx) sh2λx dx =

∫ ∞
0

f(chx)
(
DλP

λ
α (chx)

)
sh2λx dx

= α (α+ 2λ)

∫ ∞
0

f(chx)Pλα (chx) sh2λx dx = α (α+ 2λ) f̂P (α).

For k = 1 our approval is proved, the generalized case is proved by the induction.

Lemma 3.6. Let f ∈ Iν . If Dkλf ∈ L2,λ , k = 1, 2, . . . , n+ s− 1 ,then and P s,nν f ∈ Iν .

Proof. From (3.10) by Minkowsky inequality we have

∥∥P s,nν f
∥∥
2,λ

=

∥∥∥∥∥An+sch 1
ν

f −
n+s−1∑
k=1

Ck

(
ch

1

ν

)(
Akch 1

ν
Dkλf

)∥∥∥∥∥
2,λ

≤
∥∥∥An+sch 1

ν

f
∥∥∥
2,λ

+

n+s−1∑
k=1

Ck

(
ch

1

ν

)∥∥∥Akch 1
ν
Dkλf

∥∥∥
2,λ

≤ ‖f‖2,λ +

n+s−1∑
k=1

Ck

(
ch

1

ν

) ∥∥∥Dkλf∥∥∥
2,λ

, (3.11)

at the end we used the inequality (2.6).
Further taking into account Lemmas 3.3 and 3.4 we can write

̂(P s,nν f
)
P

(α) =
̂(
An+s
ch 1

ν

f
)
P

(α)−
n+s−1∑
k=1

Ck

(
ch

1

ν

) ̂(
Ak
ch 1

ν

Dkλf
)
P

(α)
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= f̂P (α)
(
Qλα

(
ch

1

ν

))n+s
− f̂P (α)

n+s−1∑
k=1

Ck

(
ch

1

ν

)
(α (α+ 2λ))k

(
Qλα

(
ch

1

ν

))k

= f̂P (α)

[(
Qλα

(
ch

1

ν

))n+s
−
n+s−1∑
k=1

Ck

(
ch

1

ν

)
(α (α+ 2λ))k

(
Qλα

(
ch

1

ν

))k]
. (3.12)

The assertion of Lemma 3.6 follows from (3.11) and (3.12).

Lemma 3.7. If f ∈ Drλ(0,∞), then for almost every x ∈ (0,∞) the equality is valid.(
AkchtD

r
λf
)

(chx) =
(
DrλA

k
chtf

)
(chx), k, r = 1, 2, ...

Proof. Let k = 1. In (2.2) we can write(
AchtD

r
λf
)

(chx) = C∗λ

∫ ∞
0

̂(
AchtD

r
λf
)
P

(α)Qλα(chx) sh2λαdα, (3.13)

(
DrλAchtf

)
(chx) = C∗λ

∫ ∞
0

̂(
DrλAchtf

)
P

(α)Qλα(chx) sh2λαdα. (3.14)

From Lemmas 3.4 and 3.5 we get

̂(
DrλAchtf

)
P

(α) = (α (α+ 2λ))r ̂(Achtf)P (α) = (α (α+ 2λ))r Qλα(chx)f̂P (α). (3.15)

On the other hand

̂(
AchtD

r
λf
)
P

(α) =
(̂
Drλf

)
P

(α)Qλα(chx) = (α (α+ 2λ))r Qλα(chx)f̂P (α). (3.16)

From (3.15) and (3.16) it follows that

̂(
DrλAchtf

)
P

(α) = ̂(
AchtD

r
λf
)
P

(α).

But, from (3.13) and (3.14) it follows that(
AchtD

r
λf
)

(chx) =
(
DrλAchtf

)
(chx) (a.e.).

For k = 1 Lemma 3.6 is proved. The generalized case is proved by the induction:(
AkchtD

r
λf
)

(chx) = Acht

(
Ak−1cht D

r
λf
)

(chx)

= Acht

(
DrλA

k−1
cht f

)
(chx) =

(
DrλA

k
chtf

)
(chx) .

Lemma 3.8. The following equality is valid.

AkchtRn (chs) f(chx) = Rn (chs)
(
Akchsf

)
(chx) , k = 1, 2, . . . .

Proof. By Lemmas 3.3 and 3.7 we have

Rn (chs)
(
Akchsf

)
(chx) = Ak+1

chs f(chx)−
n−1∑
ν=0

Cν (chs)Dνλ

(
Akchsf

)
(chx)

= Ak+1
chs f (chx)−

n−1∑
ν=0

Cν (chs)Akchs
(
Dνλf

)
(chx) , (3.17)

AkchsRn (chs) f(chx) = Ak+1
chs f(chx)−

n−1∑
ν=0

Cν (chs)Akchs
(
Dνλf

)
(chx). (3.18)

The assertion of Lemma 3.8 follows from (3.17) and (3.18).
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Lemma 3.9 The following equality is valid.

Rn (chs) f(chx) = Cn (chs)AchsD
n
λf(chx), n = 1, 2, · · · .

Proof. Using Lemma 3.3 and the formula (3.9), we have

Rn (chs) f(chx) = Achsf(chx)−
n∑

k=0

Ck (chs) Dkλf (chx) + Cn (chs)Dnλf(chx)

=

chs∫
1

θ (chs, σ) (DλRn (σ)) f(chx)
(
σ2 − 1

)λ− 1
2
dσ + Cn (chs)Dnλf(chx).

Taking into account Lemma 3.8 we obtain

AchsRn (chs) f(chx) = Rn (chs) (Achsf) (chx)

=

∫ chs

1

θ (chs, σ) (Rn (σ)DλAσf) (chx)
(
σ2 − 1

)λ− 1
2
dσ + Cn (chs)AchsD

n
λf(chx)

=

∫ chs

1

θ (chs, σ) (RnAσDλf) (chx)
(
σ2 − 1

)λ− 1
2
dσ + Cn (chs)AchsD

n
λf(chx)

=

∫ chs

1

θ (chs, σ) (AσDλRnf) (chx)
(
σ2−1

)λ− 1
2
dσ + Cn (chs)AchsD

n
λf(chx)

= AchsRn (chs) f (chx)−Rn (chs) f (chx) + Cn (chs)AchsD
n
λf(chx) ,

from this it follows the assertion of Lemma 3.9.

Lemma 3.10. If f ∈ D(k)
λ (0,∞), then the following equality is valid.

∆kchsf(chx) = Rk (chs)
(
Ak−1chs f

)
(chx) , k = 1, 2, . . . .

Proof. For k = 1 we have

R1 (chs) f(chx) =

∫ chs

1

θ (chs, σ) (AσDλf) (chx)
(
σ2 − 1

)λ− 1
2
dσ

=

∫ chs

1

θ (chs, σ) d

[(
σ2 − 1

)λ− 1
2 d

dσ
Aσf(chx)

]

= θ (chs, σ)
(
σ2 − 1

)λ+ 1
2 d

dσ
Aσf(chx) |chs1 +

∫ chs

1

d

dσ
Aσf(chs) dσ

= Achsf(chx)− f(chx) = ∆1
chsf(chx).

Let

∆kchsf(chx) = Rk (chs)
(
Ak−1chs f

)
(chx) .
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Then we have

∆k+1
chs f(chx) = ∆chs

(
∆kchsf

)
(chx) = R1 (chs)

(
∆kchsf

)
(chx)

=

∫ chs

1

θ (chs, σ) AσDλRk

(
Ak−1σ f

)
(chx)

(
σ2 − 1

)λ− 1
2
dσ

=

∫ chs

1

θ (chs, σ) Rk

(
Ak−1σ

)
Dλ (Aσ − f + f) (chx)

(
σ2 − 1

)λ− 1
2
dσ

=

∫ chs

1

θ (chs, σ) Rk

(
Ak−1σ DλR1f

)
(chx)

(
σ2 − 1

)λ− 1
2
dσ

+

∫ chs

1

θ (chs, σ) Rk

(
Ak−1σ

)
Dλf(chx)

(
σ2 − 1

)λ− 1
2
dσ

= Rk+1

(
Ak−1chs R1f

)
(chx) +Rk+1

(
Ak−1chs f

)
(chx)

= Rk

(
Ak−1chs R1f

)
(chx)− Ck (chs) Dkλ

(
Ak−1chs R1f

)
(chx)

+Rk

(
Ak−1chs f

)
(chx)− Ck (chs) Dkλ

(
Ak−1chs f

)
(chx)

= Rk

(
Akchsf −A

k−1
chs

)
f(chx)− Ck (chs) Dkλ

(
Ak−1chs f −A

k−1
chs f

)
(chx)

+Rk

(
Ak−1chs f

)
(chx)− Ck (chs) Dkλ

(
Ak−1chs f

)
(chx)

= Rk

(
Akchsf

)
f(chx)−Rk

(
Ak−1chs f

)
(chs) − Ck (chs)Dkλ

(
Akchs

)
(chx)

+ Ck (chs)Dkλ

(
Ak−1chs f

)
(chx) +Rk

(
Ak−1chs f

)
(chx)

− Ck (chs)Dkλ

(
Ak−1chs f

)
(chx) = Rk

(
Akchsf

)
(chs)

− Ck (chs)Dkλ

(
Akchsf

)
(chx) = Rk+1

(
Akchsf

)
(chx) .

By the Principle of Mathematical Induction it follows the assertion of Lemma 3.10.

Lemma 3.11. If f ∈ D(k)
λ (0,∞), then the following equality is valid.

∆kchsf(chx) = Ck (chs) Akchs

(
Dkλf

)
(chx) , k = 1, 2, . . . . (3.19)

The assertion of lemma at once follows from Lemmas 3.9 and 3.10. From Lemmas 3.10 and 3.3 it
follows that

∆nchtf(chx) =

n∑
k=0

(−1)n−k
(
n

k

)
Akchtf(chx)

= Anchtf(chx)−
n−1∑
k=0

Ck(cht)An−1cht D
k
λf(chx). (3.20)

Lemma 3.12. If f ∈ D(k)
λ (0,∞), then the following equality is valid.

∆mchtD
k
λf(chx) = Dkλ∆

m
chtf(chx) , k = 1, 2, . . . ; m = 1, 2, . . . .

Proof. From Lemma 3.6 at m = 1 we obtain

Dkλ∆chtf(chx) = Dkλ (Achtf − f) (chx) = Dkλ∆chtf(chx)−Dkλf(chx)

= Acht

(
Dkλf

)
(chx)−Dkλf(chx) = ∆chtD

k
λf(chx).
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From this we have the chain of the following equalities

Dkλ∆
m
htf(chx) = Dkλ

(
∆cht

(
∆m−1cht f

))
(chx) = ∆cht

(
Dkλ

(
∆m−1cht f

))
(chx)

= ∆cht

(
∆chtD

k
λ

(
∆m−2cht f

))
(chx)

= ∆2
cht

(
Dkλ

(
∆m−2cht f

))
(chx) = ∆mchtD

k
λf(chx).

Thus Lemma 3.12 is proved.

From (3.10) it follows that

P s,nν f(chx)− f(chx) = An+s
ch 1

ν

f(chx)−
n+s−1∑
k=0

Ck

(
ch

1

ν

)
An+s−1
ch 1

ν

Dkλf(chx) . (3.21)

Remind ([25], Ch. VIII) that the line operator on a Hilbert spaceH with the off dense field of definition
D = D (A) ⊂ H is called an essential self-adjoint, if its closure Ā is the self-adjoint operator. Also we
note that for the self-adjoint on an essential operator of the equality Ā = A∗ is satisfied. (i.e. the closure
operator A agrees with the self-adjoint operator). The operator A is called positive, if (Aϕ,ϕ) ≥ c (ϕ,ϕ)

for all ϕ ∈ D and some c > 0.

Lemma 3.13. The Gegenbauer operator Dλ with the field of definition D = D(R+) on an essentially
self-adjoint.

Proof. In fact, integration by parts, from (1.1) we obtain∫ ∞
0

(Dλf) (chx)g(chx) sh2λx dx =

∞∫
1

(Dλf)g(x)(x2 − 1)λ−
1
2 dx

=

∞∫
1

[
d

dx
(x2 − 1)λ+

1
2
df(x)

dx

]
g(x)dx =

∞∫
1

g(x)d
[
(x2 − 1)λ+

1
2
df(x)

dx

]

= (x2 − 1)λ+
1
2 g(x)

df(x)

dx

∣∣∣∣∞
1

−
∞∫
1

(x2 − 1)λ+
1
2
df(x)

dx

dg(x)

dx
dx

= −
∞∫
1

(x2 − 1)λ+
1
2
dg(x)

dx
df(x) = −(x2 − 1)λ+

1
2 f(x)

dg(x)

dx

∣∣∣∣∞
1

+

∞∫
1

f(x)
d

dx

[
(x2 − 1)λ+

1
2
dg(x)

dx

]
dx =

∞∫
1

f(x)(Dλg)(x)(x2 − 1)λ−
1
2 dx

=

∫ ∞
0

f(chx)(Dλg)(chx)sh2λxdx,

(3.22)

for every f, g ∈ D(R+), i.e., Dλ is the self-adjoint operator.
(3.22) is valid for every f ∈ Dc(R+) and g ∈ C(2)(R+) (see also [12]), and for the self-adjoint

operator its closure is a self-adjoint operator (see for examply [41] p. 355).
We note that the operator (−Dλ) is positive. In fact, from the proof of Lemma 3.13 we see that

(Dλf, f) = −
∫ ∞
1

(x2 − 1)λ+
1
2

(
df(x)

dx

)2
dx.

From this it follows that (−Dλ) is positive. The operator (−Dλ + µ) is strictly positive for any µ > 0,
since, ((−Dλ + µ) , f) ≥ µ (f, f) for every f ∈ Dc.
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In fact,

((−Dλ + µ) , f)− µ (f, f) = (−Dλf, f) + µ (f, f)− µ (f, f)

= (−Dλf, f) ≥ 0⇔ ((−Dλ + µ) , f) ≥ µ (f, f) .

It is clear that the operator Dλ is self-adjoint in essential if and only if the operator (−Dλ + µ) is
self-adjoint in essential.

For strictly positive symmetric operator A the criterion of self-adjoint exists (see [41], Theorem 26):
A is self-adjoint in essential if and only if KerA∗ = {0}. To prove that the operator (−Dλ + µ) an
essential is self-adjoint it’s enough to show that Ker (−Dλ + µ)∗ = {0}.

Let

(−Dλ + µ)∗ u = 0 , u ∈ D
(
D∗λ
)
. (3.23)

So far as the field of definition of operator Dλ equals D(R+) then the equality (3.32) is equivalent to
the following equality

(−Dλ + µ) u = 0 , u ∈ L2,λ, (3.24)

where the product is in the sense of theory of generalized functions, i.e., for any function f ∈ D(R+)

probably the equality is carry out:

∫ ∞
0

u (chx) (−Dλ + µ) f(chx) sh2λx dx = 0

or ∫ ∞
0

u (chx) (Dλf) (chx) sh2λx dx = µ

∫ ∞
0

u (chx) f (chx) sh2λx dx. (3.25)

Since, the differential operator (−Dλ + µ) is elliptic on the interval [0,∞), from theorems of regu-
larity it follows that the function u (chx) is probably smooth (of classes C∞) even function on R \ {0}
and is the solution of equation Dλ u = µu in classical means. On the interval (0,∞) the aggregate of
all solutions of the equation Dλ u = µu set of functions u (chx) = c1u1(chx) + c2u2(chx) , where
u1 (chx) and u2 (chx) are fundamental systems of solutions, but c1 and c2 are arbitary constans. As in the
capacity of fundamental systems of solutions one may take the functions Pλα (chx) and Qλα(chx) defined
by formulas (1.2) and (1.3). From (1.3) it follows that u1 (chx) = Qλα(chx) is even smooth function on
the substantial line R. We show that u1 (chx) doesn’t provide of equality (3.25).

In fact, from (1.5) it follows that

Dλ Q
λ
α(chx) = α (α+ 2λ)Qλα(chx). (3.26)

On the other hand ([8], c. 1935)

d

dx
Qλα(x) = 2λQλ+1

α−1(x). (3.27)

We take any function f ∈ D(R+).
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Let supp f ∈ [1, a]. Then, taking into account (3.26) and (3.27) we obtain∫ ∞
1

Qλα(x)(Dλf)(x)(x2 − 1)λ−
1
2 dx

=

∞∫
1

Qλα(x)
d

dx

[
(x2 − 1)λ+

1
2
df(x)

dx

]
dx

= (x2 − 1)λ+
1
2Qλα(x)

d

dx
f(x)

∣∣∣∣∞
1

−
∫ ∞
1

(x2 − 1)λ+
1
2
d

dx
Qλα(x)

d

dx
f(x)dx

= −
∫ ∞
1

(x2 − 1)λ+
1
2
d

dx
Qλα(x)df(x)

= −(x2 − 1)λ+
1
2 f(x)(2λ Qλ+1

α−1(x))
∣∣∣a
1

+

∞∫
1

f(x)DλQ
λ
α(x)(x2 − 1)λ−

1
2 dx

= −2λ(α2 − 1)λ+
1
2 f(a)Qλ+1

α−1(a) + α(α+ 2λ)

∞∫
1

Qλα(x)f(x)(x2 − 1)λ−
1
2 dx

= c1(α, λ, a) + α(α+ 2λ)

∞∫
0

Qλα(x)f(x)(x2 − 1)λ−
1
2 dx,

where

c1(α, λ, a) = −2λ(α2 − 1)λ+
1
2 f(a)Qλ+1

α−1(a).

In this way,

∞∫
0

Qλα(chx)(Dλf)(chx)sh2λxdx = c1(α, λ, a) + α(α+ 2λ)

∞∫
0

Qλa(chx)f(chx)sh2λxdx.

Consequently, (3.25) non fulfills, if c1 6= 0 but therefore u1(chx) = c1Q
λ
α(chx) = 0 for c1 = 0.

By analogy it is proved that u2(x) non fulfills (3.25). Twice integrating of parts we obtain

∞∫
1

u2(x) (Dλf) (x)(x2 − 1)λ−
1
2 dx =

∫ ∞
1

u2(x) d

[
(x2 − 1)λ+

1
2
d

dx
f(x)

]

= (x2 − 1)λ+
1
2 u2(x)

d

dx
f(x)

∣∣∣∣∞
1

−
∫ ∞
1

(x2 − 1)λ+
1
2
d

dx
f(x)

d

dx
u2(x)dx

= −(x2 − 1)λ+
1
2 f(x)u2(x)

∣∣∣a
1

+

∫ ∞
1

f(x) (Dλu2) (x)(x2 − 1)λ−
1
2 dx

= −(a2 − 1)λ+
1
2 f(a)

d

dx
u2(a) +

∫ ∞
1

f(x) (Dλu2(x)) (x2 − 1)λ−
1
2 dx.

The formula (3.27) is valid and for Pλα (x) and that’s why from (1.2) we have

d

dx
u2(a) =

d

dx
Pλα (a) = 2λPλ+1

α−1 (a).

Thus ∫ ∞
0

Pλα (chx)(Dλf)(chx)sh2λxdx

= c2(α, λ, a) + α(α+ 2λ)

∫ ∞
0

f(chx)Pλα (chx)sh2λxdx,
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where

c2(α, λ, a) = −2λ(α2 − 1)λ+
1
2 f(a)Pλ+1

α−1 .

Consequently, (3.25) non fulfills, if c2 6= 0, but therefore u2(chx) = c2P
λ
α (chx) = 0 for c2 = 0.

Thus, we prove that

u(chx) ≡ 0,

from where the assertion of Lemma 3.13 follows.

Corollary 3.4. If the functions f and Dλf ∈ L2,λ , then there exists fn ∈ D(R+), such that fn → f and
Dλfn → Dλf in L2,λ.

Really, from the definition of the couplinged operator D∗λ it follows that f ∈ D (D∗λ) and g = D∗λf
if and only if g = Dλf in meaning of the theory of generalized functions. It remains to reproduce locking
operator Dλ is agree to D∗λ.

4 Direct theorems of Jackson type

In this section we will prove the Theorem 1.1. Firstly we will prove a particular case of this theorem.

Theorem 4.1. For f ∈ L2,λ the following inequality is valid

Eν(f)2,λ ≤ ωk
(
f ;

1

ν

)
2,λ

.

Proof. From (3.20) and (3.21) for s = 0 we have

∥∥∥P 0,n
ν f − f

∥∥∥2
2,λ

=

∫ ∞
0

∣∣∣∣∣Akch 1
ν
f(chx)−

k−1∑
i=0

Ci

(
ch

1

ν

)
Ak−1
ch 1

ν

Diλf(chx)

∣∣∣∣∣
2

sh2λdx

=

∥∥∥∥∥
k∑
i=0

(−1)k−i
(
k
i

)
Aich 1

ν

∥∥∥∥∥
2

≤
(
ωk

(
f ;

1

ν

)
2,λ

)2

.

Hence the assertion of Theorem 4.1 follows.
Denote through W (m)

λ L2,λ the class of functions which is m-time applied the operator Dλ, moreover
Dm
λ
f ∈ L2,λ , m = 1, 2, . . . .

Lemma 4.1. If f ∈W (m)
λ L2,λ, then the following inequality is valid

ωm

(
f ;

1

ν

)
2,λ
≤
(
ch 1
ν − 1

2λ+ 1

)m ∥∥Dmλ f∥∥ 2,λ .

Proof. From Lemma 5 in [12] we have

‖Rk(cht)f‖2,λ ≤
(
cht− 1

2λ+ 1

)k ∥∥∥Dkλf∥∥∥ 2,λ , k = 1, 2, . . . .

Hence, for k = 1 we get∥∥∥∆1
chtf

∥∥∥
2,λ

= ‖R1(cht)f‖2,λ ≤
(
cht− 1

2λ+ 1

)∥∥∥Dkλf∥∥∥ 2,λ .

Now, ∥∥∆mchtf∥∥2,λ =
∥∥∥∆1

cht

(
∆m−1cht f

)∥∥∥
2,λ
≤
(
cht− 1

2λ+ 1

) ∥∥∥∆m−1cht (Dλf)
∥∥∥ 2,λ
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≤
(
cht− 1

2λ+ 1

)2 ∥∥∥∆m−2cht (D2
λf)
∥∥∥
2,λ
≤ . . . ≤

(
cht− 1

2λ+ 1

)m ∥∥Dmλ f∥∥ 2,λ , (4.1)

hence it follows that

ωm

(
f ;

1

ν

)
2,λ
≤
(
ch 1
ν − 1

2λ+ 1

)m ∥∥Dmλ f∥∥ 2,λ .

Thus Lemma 4.1 is proved.

This lemma admittances the following amplification.

Lemma 4.2. If f ∈W (m)
λ L2,λ , then the following inequality is valid

ωm

(
f ;

1

ν

)
2,λ
≤

( (
ch 1
ν − 1

)m
m! (2λ+ 1) . . . (2λ+ 2m− 1)

) ∥∥Dmλ f∥∥ 2,λ .

Proof. In (3.19), taking into account (2.6) and Lemma 5 in [12] we obtain ,∥∥∆mchtf∥∥2,λ ≤ Cm(cht)
∥∥∥∆1

cht

(
AmchtD

m
λ f
)∥∥∥

2,λ
≤ Cm(cht)

∥∥Dmλ f∥∥ 2,λ

≤
(

(cht− 1)m

m! (2λ+ 1) . . . (2λ+ 2m− 1)

) ∥∥Dmλ f∥∥ 2,λ ,

hence the assertion of Lemma 4.2 follows.

Lemma 4.3. If f ∈W (m)
λ L2,λ , then

ωn+k

(
f ;

1

ν

)
2,λ
≤
(
ch 1
ν − 1

2λ+ 1

)k
ωn

(
Dkλf ;

1

ν

)
2,λ

.

Proof. From (4.1) and, Lemmas 3.11 and 3.12 we have∥∥∥∆n+kcht f
∥∥∥
2,λ

=
∥∥∥∆kcht (∆nchtf)∥∥∥

2,λ
≤
(
cht− 1

2λ+ 1

)k ∥∥∥Dkλ(∆nchtf)
∥∥∥ 2,λ

=

(
cht− 1

2λ+ 1

)k ∥∥∥∆ncht(Dkλf)
∥∥∥ 2,λ ,

hence the assertion of Lemma 4.3 follows.

Lemma 4.4. If f ∈W (n)
λ L2,λ , then

ωn+k

(
f ;

1

ν

)
2,λ
≤

( (
ch 1
ν − 1

)k
k! (2λ+ 1) . . . (2λ+ 2m− 1)

)
ωn

(
Dkλf ;

1

ν

)
2,λ

.

In fact, from (2.6), Lemmas 3.10 and 3.11, and also from Lemma 5 in [12] we have∥∥∥∆n+kcht f
∥∥∥
2,λ

=
∥∥∥∆kcht (∆nchtf)∥∥∥

2,λ
≤ Ck(cht)

∥∥∥AkchtDkλ(∆nchtf)
∥∥∥ 2,λ

≤
(

(cht− 1)k

k! (2λ+ 1) . . . (2λ+ 2k − 1)

) ∥∥∥∆ncht(Dkλf)
∥∥∥ 2,λ ,

hence the assertion of Lemma 4.4 follows.

Proof of Theorem 1.1. From (3.20) and (3.21) we have

∥∥P s,nν f − f
∥∥
2,λ

=

∥∥∥∥∥
n+s∑
k=0

(−1)n+s−k(n+sk )Akch 1
ν
f

∥∥∥∥∥ ≤ ωn+s (f ;
1

ν

)
2,λ

.
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From this, taking into account Lemmas 4.3, we obtain

Eν(f)2,λ ≤
(
ch 1
ν − 1

2λ+ 1

)s
ωn

(
Dsλf ;

1

ν

)
2,λ

≤
(

2sh2
1

2ν

)s
ωn

(
Dsλf ;

1

ν

)
2,λ
≤ 2−s(sh

1

ν
)2sωn(Dsλ,

1

ν
)2,λ

as, sh ta ≤
1
asht for a ≥ 1, (see further (5.32)).

5 Nikolski-Besov Space associated with the Gegenbauer operator and their description
approximation

For proof of inverse theorems of approximation theory the inequalities of Bernsteint’s type are used.

Lemma 5.1. (The inequality of Bernsteint’s type). For every f ∈ Iν the following equality is valid

‖Dkλf‖2,λ ≤ (ν(ν + 2λ))k‖f‖2,λ .

Proof. Using the equality (2.3) and Lemma 3.4, we obtain

‖Dkλf‖
2
2,λ

∞∫
0

|(Dkλf) (chx)|2sh2λxdx

=

∞∫
0

(̂Dkλf)
P

(α) (̂Dkλf)
Q

(α) (α2 − 1)λ−
1
2 dα

=

∞∫
1

(α(α+ 2λ))2kf̂P (α)f̂Q(α) (α2 − 1)λ−
1
2 dα

=

ν∫
1

(α(α+ 2λ))2kf̂P (α)f̂Q(α) (α2 − 1)λ−
1
2 dα

≤ (ν(ν + 2λ))2k
∫ ∞
1

f̂P (α)f̂Q(α) (α2 − 1)λ−
1
2 dα

= (ν(ν + 2λ))2k
∫ ∞
0

f2(chx)sh2λx dx = (ν(ν + 2λ))2k‖f‖22,λ ,

hence the assertion of Lemma 5.1 follows.

Lemma 5.2. For Φ ∈ Iν and t > 0 the following equality is valid∥∥∥∆kchtΦ∥∥∥
2,λ
≤
(
ν (ν + 2λ)k (cht− 1)

)k
‖Φ‖2,λ .

Proof. From Lemma 3.11, Lemmas 2 and 5 in [12] we have∥∥∥∆kchtΦ∥∥∥
2,λ

= Ck (chs)
∥∥∥Akcht (DkλΦ)∥∥∥

2,λ

≤ Ck (chs)
∥∥∥(DkλΦ)∥∥∥

2,λ
≤ Ck (chs) (ν (ν + 2λ))k ‖Φ‖2,λ

≤ (ν (ν + 2λ))k (cht− 1) ‖Φ‖2,λ .

Thus Lemma 5.2 is proved.
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We have defined the spaces Hr
2,λ and B2,q,λ in Section 1. Now we will show that these spaces are

Banach spaces. For this we need to prove some auxiliary results. The following lemma and the corollary
are the analogues of the classical Boas inequality ([45], p. 266).

Lemma 5.3. Let ν > 0 be an arbitary number and f ∈ Wm
2,λ. For every number δ and t such that

0 < δ < t < 1
ν the following inequality is valid(

sh
δ

2

)−2m ∥∥∆mchδf∥∥2,λ ≤ c (m,λ)
(
sh
t

2

)−2m ∥∥∆mchtf∥∥2,λ . (5.1)

Proof. Using (3.19) we obtain∥∥∆mchδf∥∥2,λ = Cm (chδ)
∥∥Amchδ (Dmλ f)∥∥2,λ , m = 1, 2, ...,∥∥∆mchtf∥∥2,λ = Cm (cht)
∥∥Amcht (Dmλ f)∥∥2,λ , m = 1, 2, ... .

From continuity of the operator Acht in Wm
2,λ (see [12], Corollary 1 and Lemma 7) we will have

lim
t→0

‖∆mchtf‖2,λ
Cm (cht)

= lim
δ→0

‖∆mchδf‖2,λ
Cm (chδ)

=
∥∥Dmλ f∥∥2,λ .

So far as t→ 0 involves δ → 0, then

‖∆mchtf‖2,λ
Cm (cht)

∼
‖∆mchδf‖2,λ
Cm (chδ)

, t→ 0 (δ → 0),

from this it follows that

Cm (cht)
∥∥∆mchδf∥∥2,λ ∼ Cm (chδ)

∥∥∆mchtf∥∥2,λ , t→ 0 (δ → 0).

Taking into account this the following correlation (see [12], Lemma 5) is satisfied.

c1 (m,λ)
(
sh
t

2

)2m
≤ Cm (sht) ≤ c2 (m,λ)

(
sh
t

2

)2m
,

where c1 (m,λ) and c2 (m,λ) are some constants depending on m and λ. We obtain the following confir-
mation of Lemma 5.3.

Corollary from Lemma 5.3. Let f ∈ Wm
2,λ, m ∈ N . For every t ∈

(
0; 1
ν

]
the following inequality is

valid ∥∥Dmλ f∥∥2,λ ≤ c (m,λ)
(
sh
t

2

)−2m ∥∥∆mchtf∥∥2,λ . (5.2)

Taking into account the continuity of the operator Acht in Wm
2,λ, and also the correlation (see [12],

Lemma 5) Cm (cht) ∼ c (m,λ) (cht− 1)m for t → 0, where c (m,λ) = 1
m!(2λ+1)(2λ+3)...(2λ+2m−1) ,

we obtain

lim
δ→0

‖∆mchδ‖2,λ
Cm (chδ)

= lim
δ→0

∥∥∆mchδ (Dmλ f)∥∥2,λ =
∥∥Dmλ f∥∥2,λ .

If we take limit as δ → 0 in (5.1), we obtain the inequality (5.2), which is the analogue of the Nikolski-
Stechkin classical inequality (see [28, 42]).

Taking into account the obvious inequality∥∥∆mchtf∥∥2,λ ≤ 2m ‖f‖2,λ (5.3)

which follows from (2.6) to the chain∥∥∆mchtf∥∥2,λ ≤ 2
∥∥∥∆m−1cht f

∥∥∥
2,λ
≤ ... ≤ 2m ‖f‖2,λ ,
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or also the inequality sh t2 ≥
t
2 in (5.2), we have∥∥Dmλ f∥∥2,λ ≤ c (m,λ) 23mt−2m ‖f‖2,λ .

Putting t = 1
ν , we obtain ∥∥Dmλ f∥∥2,λ ≤ c (m,λ, ν) ‖f‖2,λ , (ν > 0).

From here for every fn, fm ∈ Hr
2,λ we have∥∥Dsλfn −Dsλfm∥∥2,λ =

∥∥Dsλ (fn − fm)
∥∥
2,λ
≤ c (s, λ, ν) ‖fn − fm‖2,λ . (5.4)

We show that Hr
2,λ is a Banach space with the norm

‖f‖Hr2,λ = ‖f‖2,λ + sup
δ>0

ωk (Dsλf, δ)2,λ
δr−2s

. (5.5)

For the class Hr
2,λ we are able to write

‖fn − fm‖Hr2,λ = ‖fn − fm‖2,λ + sup
δ>0

ωk (Dsλfn −D
s
λfm, δ)2,λ

δr−2s
. (5.6)

From (5.3) it follows that
ωk
(
Dsλf, δ

)
2,λ
≤ 2k

∥∥Dsλf∥∥2,λ , (5.7)

but then
ωk (Dsλf, δ)2,λ

δr−2s
≤
∥∥Dsλf∥∥2,λ . (5.8)

For δ ≥ 1 the inequality (5.8) is obvious. But for 0 < δ < 1 it is submitted to condition 2m−1 < 1
δ <

2m (evidently, m ≥ 1). Taking (5.4) and (5.8) in (5.6), we obtain

‖fn − fm‖Hr2,λ ≤ ‖fn − fm‖2,λ +
∥∥Dsλfn −Dsλfm∥∥2,λ ≤ ‖fn − fm‖2,λ . (5.9)

Let ‖fn − fm‖2,λ < ε, for n,m > N and for all ε > 0. Then from (5.9) it follows that

‖fn − fm‖Hr2,λ < ε, n,m > N.

Because of completeness of the space L2,λ we are able to write

‖fn − f‖Hr2,λ ≤ ‖fn − f‖2,λ < ε, n > N,

from this the completeness of the space Hr
2,λ follows.

Now we show that Br2,q,λ is a Banach space. For every ε > 0 let

‖fn − fm‖Br2,q,λ = ‖fn − fm‖2,λ +

(∫ ∞
0

ωk (Dsλfn −D
s
λfm, δ)

q
2,λ

δ(r−2s)q
dδ

δ

) 1
q

< ε,

(n,m > N, k ≥ 1; s = 1, 2, ...).

From the Lebesgue dominated convergence theorem form→∞, we obtain

‖fn − f‖Br2,q,λ = ‖fn − f‖2,λ +

(∫ ∞
0

ωk (Dsλfn −D
s
λf, δ)2,λ

δ(r−2s)q
dδ

δ

) 1
q

< ε

for n > N , that means the completeness of the space Br2,q,λ.
In Theorems 1.2 and 1.3 the description of these spaces through the best approximation of the func-

tions on Iν are reduced.
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Proof of Theorem 1.2. If f ∈ Hr
2,λ , then

ωk
(
Dsλf, δ

)
2,λ
≤ hr2,λ(f)δr−2s

and from Theorem 1.1 it follows that

Eν(f)2,λ ≤ 2−s
ωk
(
Dsλf,

1
ν

)
2,λ

ν2s
≤ 2−s

hr2,λ(f)

νr
.

For the proof of the reverse inequality, the method is coming back to Bernstein (see [27], p. 236).
Assume that inequality (1.14) holds. Consider a sequence of functions ψn ∈ I2n (n = 0, 1, 2 . . .) such
that

‖f − ψn‖2,λ ≤ A · 2
−n r.

Let ϕ0 = ψ0 and ϕn = ψn − ψn−1 for n ≥ 1.
Then the series

f =

∞∑
n=0

ϕn (5.10)

converges in L2,λ and ϕn ∈ I2n . We obtain upper bounds for the norm of the terms of (5.10) as follows:

‖ϕ0‖2,λ = ‖ψ0‖2,λ ≤ ‖ψ0 − f‖2,λ + ‖f‖2,λ ≤ ‖f‖2,λ +A . (5.11)

‖ϕn‖2,λ ≤ ‖f − ψn‖2,λ + ‖f − ψn−1‖2,λ ≤ A
(

2−nr + 2−(n−1)r
)

= A
(
1 + 2r

)
2−nr. (5.12)

Combining (5.11) and (5.12) we write

‖ϕn‖2,λ ≤ c1 2−nr
(
‖f‖2,λ +A

)
, (n = 0, 1, 2, . . .) . (5.13)

Let ` be one of the numbers 1, 2, . . . , s. From Lemma 5.1 it follows that∥∥∥D`λϕn∥∥∥
2,λ
≤
(
2n
)` (

2n + 2λ
)` ‖ϕn‖2,λ

=
(

22n + 2λ · 2n
)`
‖ϕn‖2,λ . (5.14)

From (5.13), (5.14) and the fact that r − 2` > 0 it follows that the series

∞∑
n=0

D`λϕn

converges in L2,λ. In fact, if 0 < λ < 1
2 , then from (5.14) it follows that∥∥∥D`λϕn∥∥∥

2,λ
≤ 2` · 22n` ‖ϕn‖2,λ .

But then∥∥∥∥∥
∞∑
n=0

D`λϕn

∥∥∥∥∥
2,λ

≤

∥∥∥∥∥2` ·
∞∑
n=0

22n` ‖ϕn‖2,λ

∥∥∥∥∥
2,λ

≤

∥∥∥∥∥2` · c3
(
‖f‖2,λ +A

) ∞∑
n=0

1

2n(r−2`)

∥∥∥∥∥
2,λ

=

∥∥∥∥∥2` · c3
(
‖f‖2,λ +A

)
1

1− 1
2r−2`

∥∥∥∥∥
2,λ

=

∥∥∥∥2`+1 · c3
(
‖f‖2,λ +A

)
2r−2`

2r−2` − 1

∥∥∥∥
2,λ

≤M <∞.

Since the operator Dλ is closed, then

D`λf =

∞∑
n=0

D`λϕn ∈ L2,λ .
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Let Φn = Dsλϕn , then

g =

∞∑
n=0

Φn , Φn ∈ I2n , ‖Φn‖2,λ ≤
c2

2n(r−2s)

(
‖f‖2,λ +A

)
. (5.15)

Take an arbitrary number t > 0. From the continuity of the difference operator ∆kcht it follows that

∆kcht g =

∞∑
n=0

∆kchtΦn .

Take a non-negative integer N such that

2−N ≤ t < 2−(N−1) (5.16)

(if t ≥ 1 , then (5.16) contains only the left-hand inequality). Then

∆kcht g =

N−1∑
n=0

∆kchtΦn +

∞∑
n=N

∆kchtΦn. (5.17)

(if N = 0, then (5.17) contains only the second sum). Estimate the terms in (5.17). For n ≤ N − 1 by
using Lemma 5.2 and inequalities (5.15) and (5.16), we obtain∥∥∥∆kchtΦn∥∥∥

2,λ
≤
(
2nt
)2k ‖Φn‖2,λ ≤ c3 (‖f‖2,λ +A

)
2n(2s+2k−r) · 2−2(N−1)k.

By using (5.16) we have∥∥∥∥∥
N−1∑
n=0

∆kchtΦn

∥∥∥∥∥
2,λ

≤
c4

(
‖f‖2,λ +A

)
22k(N−1)

N−1∑
n=0

2(2s+2k−r)n

=
c4

(
‖f‖2,λ +A

)
22k(N−1)

· 2(2s+2k−r)N − 1

2(2s+2k−r) − 1
≤ c5

(
‖f‖2,λ +A

)
tr−2s. (5.18)

For n ≥ N we use the inequality (5.3).
Then from (5.15) we have∥∥∥∥∥

∞∑
n=N

∆kchtΦn

∥∥∥∥∥
2,λ

≤ 2k · c2
(
‖f‖2,λ +A

) ∞∑
n=N

2−(r−2s)n

= 2k · c2
(
‖f‖2,λ +A

)
2−N(r−2s)

(
1− 2(2s−r)

)−1
≤ c6

(
‖f‖2,λ +A

)
tr−2s. (5.19)

From (5.18) and (5.19) it follows that∥∥∥∆kcht g ∥∥∥
2,λ
≤ c7tr−2s

(
‖f‖2,λ +A

)
,

from this
ωk ( g , δ)2,λ ≤ c7

(
‖f‖2,λ +A

)
δr−2s , δ > 0

and
hr2,λ(f) ≤ c7

(
‖f‖2,λ +A

)
.

Hence, f ∈ Hr
2,λ and inequality (1.13) holds.

Let
h̃r2,λ(f) : = sup

ν≥1
νrEν(f)2,λ.
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It follows from Theorem 1.2 that f ∈ L2,λ belongs to Hr
2,λ if and only if h̃r2,λ(f) <∞, and the norm

in Hr
2,λ is equivalent to the norm

1 ‖f‖Hr2,λ := ‖f‖2,λ + h̃r2,λ(f).

In particular, if k and s are as 2k > r − 2s > 0, then the spaces Hr
2,λ coincide and their norms are

equivalent.
In the following theorem the various equivalent norms in the spacesBr2,q,λ will be obtain. In particular

the Theorem 1.3 will follow. As in section 1, r > 0 and a > 1 are real numbers, and k and s are arbitrary
non-negative integers such that 2k > r − 2s > 0. We shall say that a function f belongs to the space
jBr2,q,λ , j = 1, 2, 3, 4 if f ∈ L2,λ and the seminorm jbr2,q,λ is finite, where 1br2,q,λ := br2,q,λ (the
definition of br2,q,λ can be found in Section 1)

2br2,q,λ (f) : =


(
a∫
0

(
ωk(D

s
λf,δ)2,λ

)q
δ(r−2s)q

dδ
δ

) 1
q

1 ≤ q <∞ ,

sup
0<δ≤a

δ−(r−2s)ωk (Dsλf, δ)2,λ q =∞ ;

3br2,q,λ (f) : =


(
∞∑
j=0

ajrq
(
Eaj (f)2,λ

)q) 1
q

1 ≤ q <∞ ,

sup
j∈Z+

ajrEaj (f)2,λ q =∞ ;

4br2,q,λ (f) : =


inf

(
∞∑
j=0

ajrq ‖Qaj‖
q
2,λ

) 1
q

1 ≤ q <∞ ,

inf sup
j∈Z+

ajr ‖Qaj‖2,λ q =∞ ;

where the infimum is taken over all representations series of the form

f(x) =

∞∑
j=0

Qaj (x) , Qaj (x) ∈ Iaj

which is convergent in L2,λ from functions with bounded spectrum. The spaces jBr2,q,λ are Banach
spaces concerning to the norms

‖f‖jBr2,q,λ : = ‖f‖2,λ +j br2,q,λ . (5.20)

Theorem 5.1. The spaces jbr2,q,λ, j = 1, 2, 3, 4 coincide and their norms (5.20) are equivalent.

Note that from the equivalency of the Banach spaces 1Br2,q,λ and 3Br2,q,λ Theorem 1.3 follows. For
brevity we use the notation jBr := jBr2,q,λ, jb : = jbr2,q,λ, EN (f) : = EN (f)2,q,λ, ‖f‖ : = ‖f‖2,λ
and so on. The expression V1 ↪→ V2 means that the Banach space V1 is embedded in the Banach space
V2.

Proof. The general scheme conforms to the scheme of the proof of analogues theorems in [27] for usual
modulus of continuity. We will assume everywhere that q <∞.

10. The embedding 1B → 2B is obvious. We prove that 2B ↪→ 3B. Let f ∈ 2B, then

(
2b(f)

) q
=

a∫
0

(
ωk
(
Dsλf, δ

)) q
2,λ

δ(2s−r)q−1dδ =

∞∑
j=0

∫ a1−j

a−j

(
ωk
(
Dsλf, δ

))q
2,λ

δ(2s−r)q−1dδ. (5.21)
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Using the monotony of the modulus of continuity ωk (f, δ)2,λ and δ by Theorem 1.1 we obtain that∫ a1−j

a−j

(
ωk
(
Dsλf, δ

)) q
2,λ

δ(2s−r)q−1dδ

≥
(
ωk

(
Dsλf, a

−j
)) q

2,λ

(
a1−j

)(2s−r)q−1 (
a1−j − a−j

)
≥ c1ajrq (Eaj (f)) q2,λ , (5.22)

where the constant c1 is independent of f and j . From (5.21) and (5.22) it follows that(
2b(f)

) q
≥ c1

(
3b(f)

) q
,

from this the inequality 3b(f) ≤ c22b(f) and the embedding 2B ↪→ 3B follow.
30. Prove that 3B ↪→ 4B. Let f ∈ 3B. For every j ∈ Z+ take the function gaj ∈ Iaj , satisfied the

condition
‖f − gaj‖ ≤ 2Eaj (f).

Let Qa0 = ga0 , Qaj = gaj − gaj−1 for j ≥ 1. Then the series f =
∞∑
j=0

Qaj converges in L2,λ,

since Eaj (f)→ 0 as j →∞.
We note that

‖Qa0‖ ≤ ‖f‖+ ‖f − ga0‖ ≤ ‖f‖ + 2Ea0(f) ≤ 3 ‖f‖ ,

‖Qaj‖ ≤ ‖ gaj − f‖+ ‖f − gaj−1‖ ≤ 4Eaj−1(f) , j ≥ 1.

Using these inequalities we obtain that(
4b(f)

)q
≤
∞∑
j=1

aiqr ‖Qaj‖
q ≤ 3q ‖f‖q +

∞∑
j=1

4qajqr (Eaj−1(f))q ,

and then it follows that

4b(f) ≤ c3

‖f‖+

 ∞∑
j=0

ajrq (Eaj (f))q

 1
q

 = c3 ‖f‖3B .

From the last inequality the embedding 3B ↪→ 4B follows.
40. Prove that 4B ↪→ 1B . Let f ∈ 4B , ε > 0 , then one can present f as the sum

f =

∞∑
j=0

Qaj , Qaj ∈ Iaj ,

moreover  ∞∑
j=0

ajqr ‖Qaj‖
q

 1
q

≤ 4b(f) + ε. (5.23)

We check that the series
∞∑
j=0

DsλQaj converges in L2,λ. According to Lemma 5.1 we can write

∥∥DsλQaj∥∥ ≤ ajs(aj + 2λ)s ‖Qaj‖

= a−(r−2s)jajr
(

1 +
2λ

aj

)s
‖Qaj‖ ≤ 2sajr · a−(r−2s)j ‖Qaj‖ .

By the Hölder inequality we obtain

∞∑
j=0

∥∥DsλQaj∥∥ ≤ 2s
∞∑
j=0

a−(r−2s)jajr ‖Qaj‖
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≤ 2s

 ∞∑
j=0

a−(r−2s)p

 1
p
 ∞∑
j=0

airq ‖Qaj‖
q

 1
q

≤ c4(4b(f) + ε). (5.24)

Consequently, the series
∞∑
j=0

DsλQaj converges in L2,λ. From closeness of the operator Dλ it implies that

Dsλf =

∞∑
j=0

DsλQaj ∈ L2,λ. (5.25)

We note also that from (5.24) and (5.25) it follows that∥∥Dsλf∥∥ ≤ c4(4b(f) + ε). (5.26)

From (5.7) and (5.26) we have∫ ∞
1

(ωk(Dsλ f, δ)2,λ)qδ−(r−2s)q−1dδ ≤ 2kq
∥∥Dsλf∥∥q ∫ ∞

1

δ−(r−2s)q−1dδ

=
2kq

(r − 2s)q

∥∥Dsλf∥∥q ≤ c5(4b(f) + ε). (5.27)

For every naturally N we can write the equality

∆kcht(D
s
λf) =

N∑
j=0

∆kcht(D
s
λQaj ) +

∞∑
j=N+1

∆kcht(D
s
λQaj ) .

Using Lemmas 5.1 and 5.2 we obtain that∥∥∥∆kcht(Dsλf)
∥∥∥ ≤ (cht− 1)k

N∑
j=0

(aj(aj + 2λ))k+s ‖Qaj‖

+2k
∞∑

j=N+1

(aj(aj + 2λ))s ‖Qaj‖ . (5.28)

Taking into account the inequality (a+ b)s ≤ 2s(as + bs), for s ≥ 1 we have (0 < λ < 1
2 )

ajs(aj + 2λ)s ≤ 2sajs(ajs + 1) ≤ 2s+1 · a2js

and
aj(k+s) (aj + 2λ)k+s ≤ 2k+s+1 a2j(k+s).

Taking into account these inequalities in (5.28) we obtain∥∥∥∆kcht(Dsλf)
∥∥∥ ≤ 2s+1+k

(
2sh2

t

2

)k N∑
j=0

a2j(k+s) ‖Qaj‖+ 2k+s+1
∞∑

j=N+1

a2js ‖Qaj‖ .

Then we get
ωk(Dsλf, a

−N ) = sup
0<t<a−N

∥∥∥∆kcht(Dsλf)
∥∥∥

≤ 22k+s+1
(
sh

1

2aN

)2k N∑
j=0

a2j(k+s) ‖Qaj‖+ 2k+s+1
∞∑

j=N+1

a2js ‖Qaj‖ . (5.29)

Making the substitution δ = a−u we have

1∫
0

(ωk(Dsλf, δ))
qδ−(r−2s)q−1dδ = log a

∞∫
0

(ωk(Dsλf, a
−u))qaq(r−2s)udu
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= log a

∞∑
N=0

∫ N+1

N

aq(r−2s)u(ωk(Dsλf, a
−u))qdu

≤ log a

∞∑
N=0

(ωk(Dsλf, a
−N ))qaq(r−2s)(N+1) ≤ c6τ1 + c7τ2 , (5.30)

where

τ1 =

∞∑
N=0

aq(r−2s−2k)N · a2kqN
(
sh

1

2aN

)2kq N∑
j=0

a2j(k+s) ‖Qaj‖

q ,
τ2 =

∞∑
N=0

aq(r−2s)N

 ∞∑
j=N+1

a2js ‖Qaj‖

q . (5.31)

We prove the inequality

sh
t

a
≤ 1

a
sht a ≥ 1. (5.32)

Consider the function ϕ(t) = 1
asht− sh

t
a . From this

ϕ′(t) =
1

a
cht− 1

a
ch
t

a
=

1

a
(cht− ch t

a
) ≥ 0.

Consequently the function ϕ(t) increases and takes the least meaning for t = 0 and ϕ(0) = 0, that is
ϕ(t) ≥ 0, from this it follows that (5.32) is satisfied.

Applying (5.32) we will have

a2kqN
(
sh

1

2aN

)2kq
≤ a2kqN

(2aN )2kq
(sh1)2kq =

(sh1)2kq

4kq
=

(
e− e−1

4

)2kq

< 1.

From this it follows that

τ1 ≤
∞∑
N=0

aq(r−2s−2k)N

 N∑
j=0

a2j(k+s) ‖Qaj‖

q . (5.33)

For expressions (5.31) and (5.33) (in [27] see p. 260 the formulas (17),(18)) the estimates

τ1 ≤ c8
∞∑
j=0

ajrq ‖Qaj‖
q , (5.34)

τ2 ≤ c9
∞∑
j=0

ajrq ‖Qaj‖
q . (5.35)

are obtained.
Finally from (5.27), (5.30) and (5.35) it follows that∫ ∞

0

(ωk(Dsλf, δ)2,λ)qδ−(r−2s)q−1dδ ≤ C10(4b(f) + ε)q,

but from this we get
1b(f) ≤ C4

10b(f),

that proves the embedding 4B → 1B. As a result of these the chain of embedding is obtained

1B ↪→ 2B ↪→ 3B ↪→ 4B ↪→ 1B,

that complete the proof of the Theorem 5.1 for 1 ≤ q <∞.
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Now consider the case when q =∞.
a) The embedding 1B ↪→ 2B is obvious. We prove that 2B ↪→ 3B. Let f ∈ 2B, then

sup
0<δ≤a

ωk(Dsλf, δ)

δr−2s
≥ sup

1
2a

−j<δ≤a−j

ωk(Dsλf, δ)

δr−2s

≥
ωk(Dsλf,

1
2a
−j)

a−j(r−2s)
≥ 2s(2aj)2saj(r−2s)E2aj (f)

= 23sajrE2aj (f) = 23s−r(2aj)rE2aj (f), (5.36)

here we use the monotony of ωk(f, δ) and Theorem 1.1. From (5.36) it follows that 3b(f) ≤ c11b(f) and
the embedding 2B ↪→ 3B is valid.

b) We prove that 3B ↪→ 4B. Let f ∈ 3B. For every j ∈ Z+ take the function gaj ∈ Iaj such that the
condition

‖f − gaj‖ ≤ 2Eaj (f)

is satisfied.
Let Q0 = g0. Qaj = gaj − gaj−1 , j ≥ 1. Then f =

∞∑
j=0

Qaj , the series converges in L2,λ, so

Eaj (f)→ 0 as j →∞.
Note that

‖Qa0‖ ≤ ‖ga0 − f‖+ ‖f‖ ≤ ‖f‖+ 2Ea0(f) ≤ 3‖f‖,

‖Qaj‖ ≤ ‖gaj − f‖+ ‖f − gaj−1‖ ≤ 4Eaj−1(f), j ≥ 1.

From these inequalities it follows that

4b(f) ≤ 3‖f‖+ 4ajrEaj−1(f), j = 1, 2, ...

≤ c11
(
‖f‖+ ajrEaj (f)

)
= c12‖f‖3B , j = 0, 1, ...

from this the embedding 3B ↪→ 4B follows.
Now we prove that 4B ↪→ 1B. Let f ∈ 4B, ∀ε > 0, then f can be present as the form

f =

∞∑
j=0

Qaj , Qaj ∈ Iaj ,

moreover for every ε > 0

ajr‖Qaj‖ ≤
4b(f) + ε. (5.37)

We verify that the series
∞∑
j=0

DsλQaj converges in L2,λ. For Lemma 5.1 we can write

‖DsλQaj‖ ≤ a
js(aj + 2λ)s‖Qaj‖

= a−(r−2s)jajr
(

1 +
2λ

aj

)s
‖Qaj‖ ≤ a

−(r−2s)jajr‖Qaj‖.

From here, taking into account (5.37) we obtain

∞∑
j=0

‖DsλQaj‖ ≤
∞∑
j=0

a−(r−2s)jajr‖Qaj‖



50 Generalized Gegenbauer Shift and Some Problems of the Theory of Approximation

≤
(
4b(t) + ε

) ∞∑
j=0

a−(r−2s)j ≤ c13
(
4b(f) + ε

)
, (5.38)

consequently the series
∞∑
j=0

DsλQaj converges in L2,λ.

From closeness of the operator Dλ it implies that

Dsλf =

∞∑
j=0

DsλQaj ∈ L2,λ. (5.39)

Now note that from (5.38) and (5.39) the inequality is valid.

‖Dsλf‖ ≤ c14
4b(f). (5.40)

From (5.8) and (5.40) it follows that

1b(f) ≤ c144b(f),

hence the embedding 4B ↪→ 1B is proved.
Thus for q =∞ the chain of the embedding is also obtained,

1B ↪→ 2B ↪→ 3B ↪→ 4B ↪→ 1B,

that completes the proof of Theorem 5.1.
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