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Abstract. In this paper we consider some problems of the theory of approximation of functions on inter-
val [0, 00) in the metric of Lo\ with weight sh* z. The modulus of continuity used in those problems is
constructed with the help of generalized Gegenbauer shift operator. The direct Jakson type theorems are
proved. The function spaces of Nikolski-Besov type associated with Gegenbauer differential operator D
are introduced and their descriptions in terms of best approximations are obtained.
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1 Introduction. Statement of main results

In the classical theory of approximation of functions on R = (—o0; 00) the classical shift operator f(x) —
f(z +y), z,y € R plays a central role. In the approximation theory shift operators are used in the
construction of the modulus of continuity and smoothness, which are the basic elements of the direct and
inverse theorems. Various generalizations of shift operators enable to obtain natural analogues of problems
in approximation theory. Groups and semigroups of operators on Banach spaces are generalizations of the
shift operator. Many problems of this type in approximation theory were considered in [1, 2, 5, 6, 43].
These operators may not form a group or semigroup, but the generalized module of smoothness defined
in terms of them can be better adapted for the study of relations between the smoothness properties of
functions and the best approximations of these functions in weighted function spaces. Some results on
the approximation of functions with the use of generalized shift operators can be found in [20, 34-40, 47]
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20 Generalized Gegenbauer Shift and Some Problems of the Theory of Approximation

(and the references in these). Note that most of the papers on this topic deal with the approximation of
functions by polynomials on a finite line segment.

For the half-line, most popular shift operators are the generalized Bessel and Dunkl shift operators
(see example [3, 29-33, 44, 46]). Fourier-Bessel and Fourier-Dunkl harmonic analysis, which are deal
with the Bessel and Dunkl integral transformations and their approximations, are closely connected with
the generalized Bessel and Dunkl shifts. Moreover, generalized Bessel shift is widely used in the poten-
tial theory (see example [4, 9-11]). Obtained results are analogues of the results for generalized Bessel
shift obtained the works [29, 30]. Similar questions constrained with generalized Gegenbauer shift are
considered in [12-14, 16-19]. The file of constructions of theory generalized shift operators generalize in
the theory of transformation operators (see for example [7]). The references of quoting works is far from
completion yet, perhaps essential supplement. We use only these works which have at least some relation
to this paper. In this paper we consider the generalized Gegenbauer shift and study some questions of
approximation theory of functions in the interval [0, co) with the metric of Ly ) and the weight sh*z.
We describe our results in more detail now. Let

Dy = (2% — 1)%—)‘i($2 _ 1)/\+%i
dx dx
2 . (1.1)
— (2 _ 1\ “
= (z l)de + @ + l)xdm.

be the Gegenbauer differential operator. The functions (see [8], p. 1934)

PA(a:) _ I' (a+2X) cosmA 02\
o () Do 4 X+ 1) 20422
xF(9+A g+>\+1'a+>\+l'i) (12)
2 1 2 ’2 27 ’mz .

and ([8], formulas (2.3) and (2.8), also [15] p. 1045, formulas 8.936 (1) and 8.932 (1))

a  « 1 1
—— Yt i l—a—- X\ 1.
27 2 +27 a >\7 :1/’2), ( 3)

I'(a+\)

Ny
Cal@) = 7oy Tla+ 1)

(22)" 5 Fy (
where o,z € [1,00), and A € (0, %), are eigen functions of the operator Dy, and 2 F} (o, 3; 7; ) is
Gausss hypergeometric function. Note that the functions P2 (2), c (z) are linearly independent solutions

of the equations
2

d d
{(a* - )75 + @A+ Dao —afa+2))}y(z) =0, (1.4)
and
sh2zy (chz) + 2\ + 1) chay' (chx) — a(a + 2)) y(chz) = 0. (1.5)

For the functions PO’}(chx), C’é(chx) the formulas ([8], c. 1939)

P (chxzcht — shxsht cos p)

[o]

_rex-1) A" (e —n+ DIPA+n)(2n+2) — 1)
B ETPN) Z( 2 I'(a+2X+n) (1.6)
n=0
_1
x sh™ash™t P> " (cha)CAT" (cht)C;) 2 (cos @),
C'(;\(chxcht — shxsht cos )
_rex-1 %(—1)"477’(0 —n4+ D)2\ 4n)(2n 421 — 1) (w7

I2()) I'la+2X+n)

n=0

Nl

X shn:vshntcg‘fz(chm)C;\JjZ(cht)Cgi (cos )
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are valid. Taking into account the equation ([15], c. 844)

™
0 n>1
-1 . _ ’ Z 4
/Cn 2 (cos ) (sin ) dip = { rord)
0

from (1.6) and (1.7) we obtain:

one P2 _ T +5) A o 2A-1
Aghi Pa (chr) = ———== [ Pg(chxcht — shxsht cos p)(sin p) deo
F(A)F(j)
0 (1.8)
rENMa+1) ) N R
I(a+2)) Po(cht)Ca(cha) = Pg(cht)Qa(cha),
A+ 7
Aé\htcé\(cmﬁ) = (1 ) /Cé(chmcht — shasht cos ¢)(sin @)2)‘_151@
I'(3)I'(\)
0 (1.9)
PEND@ D g s oa s
T I'(a+2)) C4(cht)Ch(chx) = Cq(cht)Qq(chx),
where Q2 (chr) = LERLEED O3 (eha).
Let ay = I'(A+ 1/2)/(I'(\)I"(1/2)). Here the functions
Aeni f(cha) = Ay, f(chz) (L.10)

T
=ax /f(chxcht — shxsht cos ¢)(sin 30)2)‘*10390
0

are generalized Gegenbauer shift operators for f € L, y,1 < p < oo (see [16]). Their existence are a
result of the L, »- boundedness (see section 2, property 5). The generalized Gegenbauer shift possesses
much analogous properties to the generalized Bessel shift from the work of Levitan [23]. These properties
are proved in Section 2. Note that the results of Sections 1 and 2 are obtained by scheme used in work
[29]. For proof of direct Jackson theorem in [30] S.S. Platonov essentially used Lemma 3.5 whose the
analogue does not take place for Gegenbauer function. Therefore we had to look for a new approach
which is distinct from the method of S. S. Platonov. For this we had to prove series of auxiliary results
of Lemmas 3.3-3.12, which present independent interest. For example in the Lemma 3.9 the formula for
resting term of Teylor-Delsart formulas, which is different from analogous of formulas for generalized
Bessel shift that is obtained by the other method of B. M. Levitan ([24], p. 124). Moreover, for proof of
Theorem 1.1 in Section 4 we had to prove Lemmas 4.1-4.4, i.e., we find the another approach. Here we
used the scheme of the proof in [30] for the results of Section 5.

Let Ry := [0, 00). We denote C(R.) and C.(R4.) the set of all even continuous functions on R and
the set of continuous functions on R with compact supports, respectively. Let C’(k)(R+) be the set of
k-times differentiable even functions on R, D(IR) be the set of infinitely differentiable even functions
on R with compact supports, and D’ (R.) be the set of all generalized even functions that is continuous
linear functional on D(R).

The value of f € D'(Ry) at ¢ € D(Ry) will be denoted by < f,¢ >. By Lo x = La x(Ry) we
denote the Hilbert space of measurable function f by Ry (defined up to their values on a set of measure
zero), such that the norm

2

oo
1fll2,x = /|f(chg:)\25h%dx
0

is finite.
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Scalar production in Lo y is determined by the formula
o0
(f,9) = /f(ch:r) g(chz) sh”‘xdaz, fr9 € Lay.
0

The space Lo  is invested in D' (R4.) if for f € Lo » and ¢ € D(R) put
oo
< f,o>:= [ f(chz) o(chz) sh? zda.
0

For any function f € Ly y with the help of generalized Gegenbauer shift, we denote the differences

Alpef (cha) == Acif(cha) = f(eha), ..., Al f(cha) = Alyy (Al fcha)) b = 2,3, ...
or
k . .
Ayt (eha) = S (~DF () Alyef (cha).
=0

For all natural k¥ we define the generalized modulus of continuity of k-order in the metric of Ly by
the formula

k
wi(f;0)2,n = sup [|[Acpifll2,n, 6> 0.
0<t<§

The best approximation function f € Ly » by functions belonging to I,, (the definition of classes 1.,
see on the page 32) is defined as

Ey(f)2,x = inf [[f —gll2,a-
g€l

We extend the action of the differential operator D) in a natural way to the space of generalized
functions D’ (R) by putting

< Dyf,p>=<f,Dyp> feD(Ry), ¢ecDRy).

In particular, for every function f € Ly ) generalized functions D) f, Dif, ..., belonging D'(R.)
are defined.
The following theorem is an analogue of Jackson’s direct theorem in classical approximation theory.

Theorem 1.1. Suppose that f, Dy f,..., DS f belong to Ly x. Then

VARTS. 1 e o 1
E <2 5( h7> (Dé 77) ~ 282 (D‘S ,f) . v — .
v(f)oa < sh— ) wn(DAf. o v "wn| DA, oy VT

Letr > 0 be areal number and let k and s be arbitary non-negative numbers such that 2k > r—2s > 0.
We denote by Hj , the setof all f € Ly  for which D, f, Dif, ...,D5f € Ly, and the inequality is
valid.

wi, (D3£,8), , < Aps™ ">, §>0 (1.11)

for some Ay > 0. For f € Hj , we define the seminorm h5 , (f) as

Wk (Difaé) A
th(f)z;;ug =T (1.12)

Hj , is a Banach space with the norm (see the section 5)
I fllery = Iz x +P2A ()

In the following theorem we describe the space Hj , in terms of the best approximation by functions
belonging to 7. This theorem implies that the L7  does not depend on & and s.
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We denote by C, Cs, ... positive constants that do not depend on f but they can depend on k, 7, s, A.
Theorem 1.2.1f f € Hj ), then for v > 1 the inequality

ha A (f)

Ev(fax < COxps—0; (1.13)
is valid. Conversely, if f € Ly yandv > 1
A
Ev(f)2.a < 17{, (1.14)

where Ay is a constant that does not depend on v (but depends on f) then f € H. 5 » and
15, <Ot (1720 + As) (115)

Let1 < ¢ < oo, r > 0, and let k,s be non-negative integers such that 2k > r — 2s > 0. As in [30]
we say that a function f belongs to the Nikolskii-Besov class B ,  associated with the Gegenbauer
differential operator Dy if D, f, ..., D5 f € La y and the norm

Bhaa(H =g N0 "

2,4, 2 B Wk(Diffa)g_,\
SUp — 5= for ¢g=o00.
6>0

o0 (wi(DS£,8), )" 1
f ( k A z,)\) %6) 7

is finite.
The class B3,  is a Banach space with the norm

HfHBquYA i= [[fllg x4 b2, ¢, A (1.16)
Note that Bg) o A = Hgﬁ/\.

Theorem 1.3. Let a > 1 be an arbitary number (we can take, for example, a = 2). Then f € Lo
belongs to Bg’ g, » f and only if the seminorm

~ S} an Ea/n/ q) E ’ 7
bg,q,k(f) = (ngoa ( (f)z,x) q < oo

sup anTEa" (f)Q,)\a q = 00,
nezZ

is finite, where Z = {0, 1,2, ...}. In this case the norm (1.16) in Bg, g, \IS equivalent to the norm

[ fll2,x + b5 4 2 (f) -

2 Transformations and generalized Gegenbauer shift
Here we reduce some information on Gegenbauer transformations and generalized Gegenbauer shift. The

Gegenbauer transformations of the functions P2 (cht) and Q2 (cht) are direct P-transformation called the
following integrals transformations [16]:

o0
Fp : f(cht) — fp(a / F(cht) P (cht)sh* Mtdt, 2.1
0
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inverse P-transformation
o0
-1, 7 2 A=z
. Fp(a) s f(chz) / @)Q (ch) <a - 1) da, 2.2)
1
and direct Q-transformation

Fo : f(cht) = fo(a) = / F(cht)Q(cht)sh® tdt,
0

inverse Q-transformation

~ I )\_%
b fo(@) = f(cha) / a) P (cha) <a2 - 1) do, 2.3)
1
where Q) (chz) = %WC)‘(chm) and
2%_>‘F(%)F(/\+ nr (l - ) 3+2>‘ (F € 42>‘)cos7r)\)_
Ci =
oF1(1,5 — 2/\ l)_2F1(7%_)\7 —23. 1 2,\)

For f € D(R4) the transformations (2.1) and (2.2) is defined.

We note that, if direct and inverse Bessel transformations differ only by a numerical factor (see [29]),
then the transformation (2.1) and (2.2) have different constructions. But they are natural and dictate of
formula (1.6) (ground see in [16]).

In [16] (Lemma 8) it is proved that if f € Ly x () L2, then fp(a)fQ(a) € Ly and the equality

/00 F*(cha) sh?z dx = Cx /OO J?P(OZ)J?Q(O‘) (O‘2 - 1))\_§ dov 24
0 1
is valid.

For the formula (1.10) the operator A.j; is spread for even continuous functions, in particular on the
functions in C. [0, co). We have the following

Acnf(cht)* < Acny (1f (cha) ?) @5

By Cauchy-Bunyakowski inequality we have

T 2
\Achtf(chx)|2 = |ay / f (chx cht — shx sht cos ) (sin go)”‘_l d(p’
0

™ ™
< a,\/ \f(chxcht—sh;z:shtcoscp)|2 (sin<p)2>‘_1 dap-ak/ (sincp)n_1 de
0 0

T
= aA/ |f (cha cht — sha sht cos @)|* (sin @)2)‘71 do = Acpe (\f(chx)|2> .
0
We remind that the operator A.j; is self-adjoint (see property 8). In particular, if f,g € C(R4),
moreover f € Lj  and g is bounded, then (2.9) takes place. The equality (2.9) takes place also, if

f e C(R4) and g € Ce(R4). For this, it is enough to make the sequence of the functions fn, € C(R4),
which is convergence uniformly to f on every segment and in the equality

o0 o0
/ Achtfn(chx)g(cht)sh%tdt = / fn(cht) Achtg(ch:r)sh%tdt
0 0

the limit is taken for n — oco.
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‘We note that
I Ache flign < 11 £ll2.n 2.6)

for f € Ce [0,00).
In fact, in (2.4) and (2.6) for g(chz) = 1 we have

o0
1A fIIZ 5 = / | Aop f (cha)|? shP zdz
0

o

o0
= [ (Ao tcha)) shPada < [ Ifcha)fsh®ade = 1713 5.
0 0

From inequality (2.6) it follows that the operator A.p; is continuous on C¢ [0, c0) and is a bounded
operator on L . Lasting operator we will also denote Ay, and for the inequality (2.6) remains true. The
generalized Gegenbauer shift has the following properties.

1) Linearity:

Acht{af(Chx) + bg(Chm)} = aAchtf(Chx) + bAchtg(Chx),

which follows from the integral property.
2) Positivity: Acpef(cha) > 0, if f(chz) > 0, which is obvious.
3) Achtl =1.
4)If f(cha) = 0 for z > a, then Ay, f(chx) = 0 for |z — t| > a.
In fact, chazcht — shasht cos > ch(xz —t) > |z — t|, from this it follows the property 4).

Forevery 1 < p < oo we denote by L,, 5 the space of measurable functions on R (defined up to their
1

0 P
on a set of measure zero) such that the norm || f||, » = (f |f(chx)|psh2)‘xdx> is finite. For p = oo
0

we denote by L  the set of all functions f that are uniformly continuous and bounded on [0, o). The
norm in Ly  is defined by the formula || f||oo,x := sup | f(chzx)|.
x>0

5) Ly, » boundedness of the operator Aé\ht : For an;/ f € Ly, 1 < p < oo the following inequality is
valid

||Achtpr,>\ < Hf”p,)x
Corollary. The operator Aé\ht is continuous on Ly, 5. This follows from the properties 1) and 5).
Let fn be an arbitrary sequence, such that || f, — f|l, » = 0asn — oo, (f € Ly x,1 < p < o), then

[Achtfrn — Achefllpx = 1 Acht(fn = Hllpx < I1fn = fllpx =0

as n — o0, 1.€., the operator Ay is continuous on L, y
6) Symmetry of the operator A.p;:

Achtf(Chx) = Achwf(Cht)

is obvious.
7) Commutativity of the operator A.p;: For every continuous functions f(chz), z € [0,00) and
y,t > 0 the following equality is valid

AchyAchtf(Chx) = AchtAchyf(Chx)‘ 2.7
In fact, let f(cha) = CA(chz), from (1.9) and property 6) we have
AchtAchyCa (cha) = Ay Ca (chy)Qa (cha)

= Ady Ca(cht)Qx (cha) = A, Al Ca (cha).
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For

n

on(chx) = Z akCli‘(chx) (2.8)

k=1

the equality (2.6) follows from the property 1) of the operatorA.;. If we take into account (1.3) and
(2.7) and suppose chx = u, then sum (2.7) passes to be an n— order algebraic polynomial. But then
according to the Weierstrass theorem (see for example [26], p. 19) every continuous functions one can be
approximated uniformly on any segment of sums (2.7), i.e.

nl;mQQ on(chz) = o(chx).

From (2.6) and (2.7) it follows that

n

AchyAchtUn(Ch‘r) = Z akAchyAchtCl?(ChI)
k=1

n
= Z akAchtAchyCl? (Chl’)
k=1

From this we have

711i>m AchyAchtJ’ﬂ(ChI) AchyAchtU(Chx)

oo
= Z akAchyAchtCI? (Chx) = AchtAchyg(Chx)-
k=1
The property 7) is proved.
8) The operator Ai,‘ht is self-adjoind (see [16], lemma 3). For f,g € L; ) the following equality is
valid

o0 o0
/ Acpy f(cha)g(cht)sh® tdt = / cntg(ch) f(cht)sh* Mdt 2.9)
0 0

for almost all z € [0, 00).

Lemma 2.1. ([16], lemma 1). Let f € L », then

(Aned ), (@) = Fr(@) QA(cht).
The convolution of functions f, g € Lq y on [0, co) is defined by the relation

(fxg) (chx) = /OO g(cht)Achtf(chx)shw‘tdt . (2.10)
0

The convolution exists for almost all 2 € [0,00), moreover f * g € L ) and in particular, if
f,g € Cc[0,0), then the convolution f * g € C¢ [0, c0).

Lemma 2.2. For f,g € C.(R4) the following equalities are valid

a) (f *g) (chz) = (g f) (chz),
b) ( f/*\g)  (cha) = fp(cha)jo(cha). 2.11)
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Proof. The property a) immediately follows from (2.8). We will prove b). From (2.1) and (2.10) we have

(f/*\Q)P (o) = /(f * g)(chm)Pé‘(chm)shg’\azdx
0
:/ /g(chu)Achzf(chu)sh”udu Pé‘(chx)sh%:rdﬂc.
0 0

By changing the order of integration we obtain

oo [/ o0

(f/*\g> , (a) = / /Ach:cf(chu)Pé‘(chx)shZ\xdm g(chu)sh* udu
0 0

~ [ et p(@datchu) s udu.
0
Taking into account Lemma 2.1, we have
(79) , (@) = Fete) [ atehu)QA(chush® udu = Fo(@)igle).
0

Lemma 2.2 is proved.

3 The functions with bounded spectrum and their properties

Definition. We call the function f € Lo \ with bounded spectrum of order v, if fp(a) =0 for a > v.
The class of such functions we denote I,,.

The functions of class I,, will be used as approximation tools. We consider some properties of these
functions.

For any functions f € Ly y and g € C. [0, 00) we define the convolution f * g and moreover

I1f*gllax < 11flla gl x s

in particular f * g € Lo . In fact, using the generalized Minkovsky inequality and the property (2.5), we
obtain

o0
1 % gllyx < / | Acti flla.x lg(cht)] sh?ede
0

oo
2\
< fllan / lo(cht)] sh?tdt = ||l » llgly»-
0

Lemma 3.1. For every f € Ly )\[1, 00) the inequality is valid.

1fp(@)] < Cxa 2| flla.n

We denote by C' a positive constant, which depend only on copied out indexes generally speaking
are different in different formulas.
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Proof. Since the appointed values of the parameters ([15], p. 1054), the Gauss’s hypergeometric function

2F1(G+AG+A+ %; a+A+1;272) > 0is convergences uniformly for all = € [1, o0), then from (1.2)

it follows that lim P2 (z) = 0 and consequently, P2 (z) accepts greatest value in the point z = 1. But
r—r 00

taking into account the equality ([15], c. 1056)

Ila+A+1)I(5 -
re+0rg+i

o [ 1
2F1(5 + A 5 + A+ giat A+ 11) =
and from (1.2) we obtain

r 2A)(2 — A A
max PA(x) = PA(1) = @2V = AcosmA_
x€[1,00) 002X\ (5 + )I(5 + 3)

Taking into account the doubling formula ([15], p. 952)
2z—1 1 1
r(2z) =2 F(m)F(x+ 7)/F(7),

we obtain

Pa(1) =

Using the relation ([15], p. 951)

we will have

i -x A
lim PA(1)al 2 = Lz~ cosm
a0 ArNI(3)

consequently
P (chz) < Cra® 71z € [0,00). (3.1
On the other hand from (1.2) we have

Pé‘(chx) < Cha! (chx)_o‘_”‘ ,x € (0, 00). 3.2)

By Holder inequality we have

1
2

el < [ @RI -0 do < 1l [ (P2 (cha)) stz do)
1 0

1/« oo
1
= Hf||2,>\( / (Pé‘ (chx))28h2>‘x dz + / (Pé‘ (chx))QshQ/\x da:) ’ (3.3)
0 1/
Using (3.1) we obtain
1/« 1/a
/ (Pé‘(chx))%h”‘m dx < C’Aa4)‘_2 / sh?z dx
0 0
< Cya 3P L < 0,02 32N = 00?0, (3.4)

«
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By using (3.2) we have

0o 00
_ sh?z dx
/(P;‘(Chx))zsh”\x dx S C’>\a2>‘ 2 / (chm)m
1/« 1./a
[ 0o
22A—2 dx 2XA—2 —2(a4A)
1/« 1/«
22—2 .
- cﬁfa . A)e”(a“)x |V < a3 (3.5)

Using (3.4) and (3.5) in (3.3), we obtain the assertion of Lemma 3.1.

Lemma 3.2. Let f € Ly xN Ly . In order the reflection g — f* g on C¢ [0, 00) to extend the continuous
reflection from Ly  into Ly » necessary and sufficient, that the functions fq(x) and fp(x) are essentially
bounded on a [1,00), i.e. fg, fp € Lo [1,00).

Proof. Since C. [0, co) is dense in the space Ly it follows that the equality b) and (2.10) is valid and for
f €Ly, g€ Ccl0,00). From equalities (2.4) and (2.10) it follows that for f, g € Ly y N Ly

oo N - N /\7%
£ +alEn= [ Fr@ir@io@iole) (a*~1)" " da. 36
1
Suppose that the reflection g — f * g from C¢ [0, 00) into Ly » continues to continuous reflection

from Ly y into Ly 5, which denote g — f* g (g € L27>\). We check that (f/*\g)P(m) = fp(l’)?j@(ﬂ?) for
all f, g € L27)\ n LL)\'

For every g € Lo ) there is a sequence gn € Cc [0, 00) which converges to g in Ly . Then f * gn —
f*gin Ly y, according to Young inequality we have

1f#gn = fxgllan =l *(gn = 9)llax < llgn = glla x 1F]l1 1 = Oasn — oo

Let f € LyxN Loy, g€ Loy gn € Cel0,00). We will show that (f*/\gn)P - (ﬁg)P in
Lo 5. By Lemma 3.1 and Young inequality we have

[(750), = (79), ], = M=),

s o o ) 00 (a2—1)/\_%
[ UG @ sada = -0 B [T —da

_ 1)>‘7

2 2 > (a2
Cxllgn —gllz.5 ||f||2,>\/1 Oﬁfmda

[N

IN

oo A—1
- 2 2 « 2da
= Cxllgn —gll3x Hsz,,\/o R

(a
r(A+s
I

(223

)T
32

2
Cxllgn —glla x 1122
From this, it follows that
[(7290) .= (79) [, , < Oxlon = gllan 17l p = 0 forn = oc.

Further, on (2.10)
(Fron) (@) = @o)p (@) Fo(a).
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—

We will show that (gn) p(a) = gp(a) as n — co. By Lemma 3.1

~ A—2
(gn)p(a) —gp(a) | < Cxa” 2 [[gn — gl  — 0 forn — oco.

From this, it follows that fQ(a) @P(a) — fQ(a) gp () and consequently (f/*\g)P(oz) = fQ(a) gp(a).
Therefore the operator multiplication by function fQ (c) is a continuous operator on a L y, for this it is
necessary that fp € Lo [1,00) fQ € Lo [1,00). Then (3.6) has the form

© 9 A1
I|.f * QH;A :/ (f * 9)p(a) ((12 — 1) do .
1

Conversely, if fp, fo € Loo [1,00), from (3.6) and equality (2.4) it follows that for g € C [0, 00)

oo R A,%
£+ al3a= [ Fr(@r(@) fol@lire) (o <1)" " do

1
2

~ ~ 7 A—
<1 Frlllifol / G (@) 3r(@) (a*-1)" " da
1

o0
N r 2 2 N r 2
= HfPHOO”fQ”OO/O g~ (chz)sh™ zdz = || fp|looll fQllc llgll2,x,

from this it follows that
If * glla,n < A/ IFpllooll Folloollgll2,x, (3.7)

where

1 /pllse = ess sup | Fp(a)l.
a€ll,00)

From (3.7) it follows that the operator g — f * g continues to the continuous operator from Lg  into
Ly ». We note that equality (2.11) remains true for any g € Ly . Lemma 3.2 is proved.

We consider the function

chx A—%
Cp(chz) = —/ 6 (ch, o) Cy_1 (o) (02 — 1) do, Co=1, k=1,2,...
1

where
pehenay = |~ @) F a1 <o <ena,
’ 0, o > chr,
chs )\_%
Ry (chs) f(cha) = / 9 (chs, o) (AsDyf) (chx) (02 - 1) do, (3.8)
1
and
chs )\_%
Ry, (chs) f(chx) = / 0 (chs,o) (Ri—1 (0) Dxf) (chx) (02 — 1) do, k=2,3,... (3.9
1

Denote by Dg\k) (0, 00) the class of functions which k-time the operator D) is applied.

Lemma 3.3. [12] If f € Df\nfl)(o, 00), then the Taylor-Delsartes formula is valid

n—1

Ry (chs) f(cha) = Acpi f(chz) — Y Cy (chs) DX f(ch) .
k=0
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From this formula we will construct the function (approximating aggregate) pYly (chx) = A1 f(chx),

n+s—1
P" f(cha) = AT f(cha) - Y G (ch%) (AZ:f_lDf\f) (chz), n=1,2,..., (3.10)
k=1

where
A f(cha) = f(cha), Al (eha) = Ay (Al ) (cha), n=1.2,... .

Further we show that the function (3.10) is a function with bounded spectrum attached to certain con-
ditions applying on the function f. For this we need some auxiliary approvals.

Lemma 3.4. Let f € Lo . Then the following equality is valid.

—

(AEnd) , (@) = Fole) (@30, k=12,

In fact, according to Lemma 2.1 we can write the next chain of equalities

—

(A’;htf)P (o) = (Acht@If)) P(a) = <A/ff;tTf> R (@) Qé (cht)

-~

- = 2 k
= (A8527) (@) (@Aent)” = ... = Fr(e) (Qa(eht)) -
Lemma 3.5. Let f and D’f\f belong to Ly , then

(D5F), () = (@la+20) Frla), k=1.2....

Proof. Using the symmetry of the operator D, from (1.5) we obtain

(D)\f)P(a) = /0 Pé‘(chx)D,\f(chx) shP zdx = /0 f(chz) (DAPS‘(chx)) sh?z dzx

o0
=a(a+2)) / f(chx) Pé‘(chx) shPzdr = a (a+2X) fp(a).
0
For k£ = 1 our approval is proved, the generalized case is proved by the induction.
Lemma3.6. Let f € I, If DY f € Loy, k=1,2,...,n+s— 1 thenand P;" f € I,,.

Proof. From (3.10) by Minkowsky inequality we have

n+s—1

IR o = |4 = 32 O (eh) (45, 087)
k=1

2,

n+s—1 1
k k
S (o) o],

n+s—1

<fllar+ D C (ch%) HDifHH, G.11)
k=1 ’

g

s

at the end we used the inequality (2.6).
Further taking into account Lemmas 3.3 and 3.4 we can write

n+s—1

(FE1)ple) = (A559) o= 3 (en) (4, 040) (o
k=1
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ot (@ (1)) oS (011 a2 (2 (1))
- nts nis-l 1 1 k
 Fol {(Qa (1)) =" 0 (o) (ala+ 20 (0 (end)) }
k=1
The assertion of Lemma 3.6 follows from (3.11) and (3.12).

Lemma 3.7. If f € D5 (0, c0), then for almost every = € (0, c0) the equality is valid.
(40 D3S) (cha) = (DX ALS ) (cha), kor = 1,2,
Proof. Let k = 1. In (2.2) we can write
) (
(DXAcnef) (cha) =

(AchtDKf ch:v):C’j‘\/o ( bt /\f) (a )Qz\y(chx)sh”ada,
) =Cx /Oo (D Achtf) (a )Qé(Chm) sh? adao.

From Lemmas 3.4 and 3.5 we get

(DA f) (@) = (o (a+20)" (A, f) pla) = (a (@ + 20)" QA (cha) fr(a).
On the other hand
(At D £) pl(@) = (D5 F) pl@) QA(cha) = (a (@ + 20))" QA (cha) Fp(a).
From (3.15) and (3.16) it follows that

—

(D Achtf> () ( cht /\f) ()
But, from (3.13) and (3.14) it follows that

(Achth\f) (chz) = (DKAChtf) (chz) (a.e.).
For k = 1 Lemma 3.6 is proved. The generalized case is proved by the induction:
(45uD5f) (ehe) = Aans (Ak DSS) (cha)
= Ay (DAL ) (cha) = (DR AT ) (cha).
Lemma 3.8. The following equality is valid.

AlghtRn (chs) f(chz) = Rn (chs) (Alghsf) (chz), k=1,2,....

Proof. By Lemmas 3.3 and 3.7 we have

n—1

Ry (chs) (Alghsf) (chzx) = Alcc,:rslf chz) Z Cy (chs) DX (Aﬁhsf) (chz)
v=0
n—1
= A’Z:Lrslf (chzx) — Z Cy (chs) A’ghs (DKf) (chx) ,

v=0

n—1
Algthn (chs) f(chzx) = Alzf;,lf chz)— Z Cy (chs) Achg (D)\f) (chx).

v=0

The assertion of Lemma 3.8 follows from (3.17) and (3.18).

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Lemma 3.9 The following equality is valid.
Ry, (chs) f(chx) = Cr, (chs) Agps DX f(chz), n=1,2,---.

Proof. Using Lemma 3.3 and the formula (3.9), we have

Ry (chs) f(chx) = Aops f(cha)— Z Ck (chs) D)\f (chz) + Cr (chs) DX f(chx)
k=0

chs N1
- / 9 (chs, o) (DyRn (o)) f(chz) (02 - 1) ? do + Oy (chs) DY f(cha).
1

Taking into account Lemma 3.8 we obtain

AchsBn (ChS) (Ch.T) =Ry, (ChS) (Achsf) (Chx)

1

2

do + Ch, (chs) Agps DX f(chx)

/ 0 (chs,o) (Rn (0) DNAs f) (chx) (02 - 1))\

1

A—41
/ 0 (chs,o) (RnAoDyf) (chx) (02 — 1) *do+ Ch, (chs) Acps DY f(chz)
1

" (chs, o) (Ae D\Rnf) (chz) (0271) 72 o+ O (chs) Ape DY f (cha)

Il
H\

= AcpsRn (chs) f (chz) — Ry (chs) f (chx) + Crn (chs) Acns DX f(chz) |
from this it follows the assertion of Lemma 3.9.

Lemma 3.10. If f € Dg\k) (0, 00), then the following equality is valid.
AR, f(chx) = Ry (chs) <Ach_slf) (cha), k=1,2,... .

Proof. For k = 1 we have

A—

chs
Ry (chs) f(chz) = /1 0 (chs,o) (AsDyf) (chx) (02 — 1) do

=

chs -1
= /1 0 (chs,o) d {(02 — 1))\ d*Aaf(Chm)}

1

2 Ata chs chs d
=0 (chs,o) (O’ — 1) d—Agf(chx) + EAgf(chs) do
1

= Acnsf(chz) = f(cha) = Acps f(cha).
Let
A]ghsf(chx) = Ry, (chs) (Alsi;lf) (chz) .



34 Generalized Gegenbauer Shift and Some Problems of the Theory of Approximation

Then we have

ASEf(cha) = Acs (Aliat ) (ch) = Ry (chs) (At ) (cha)

A3

_ /1chs 0 (chs,o) Ay Dy Ry (A];_lf) (chx) (02 _ 1) do

1
2

_ /1%89(0115,0) R (457) D (Ao = 14 ) (eha) (7 = 1) " do

chs )\,%
_ / 0 (chs, o) Ry (Afﬁ_lD)\Rl f) (chz) (02 - 1) do
1

1
A=z

+ / " (chs, o) Ry, (A§’1> Dy f(chz) (02 - 1) do
1
= Ryy1 (A’g,;;Rl f) (chz) + Ryt (A’j,;; f) (chz)
— R, (A’g,ijl f) (ch) — Cy (chs) DY (A’gh;Rl f) (ch)
+ Ry, (A’j,;l f) (cha) — Cy, (chs) DE (Afjhsl f) (ch)
= Ry, (Afhof = Al ) f(cha) = Cp (chs) DY (Al 1 = A8 r) (eha)
+ Ry (A% £) (eha) — G (chs) D (A% 1) (cha)
= Ry (Afsf ) F(cha) = By, (4851 £) (ehs) = Ci (chs) DY (4%, ) (cha)
+ C (chs) DX (Al 1) (cha) + Ry (Al f) (cha)
— Cy (chs) DY (4l 1) (cho) = Ry (Aff) (chs)
~ i (chs) D (Alyaf ) (cha) = Ry (Afaf ) (cha)
By the Principle of Mathematical Induction it follows the assertion of Lemma 3.10.

Lemma3.11.If f € Dg\k) (0, 00), then the following equality is valid.

AR, F(cha) = Oy (chs) AR, (D’jf) (cha), k=1,2,... . (3.19)

The assertion of lemma at once follows from Lemmas 3.9 and 3.10. From Lemmas 3.10 and 3.3 it
follows that

Alnif(chz) Z )" i (Z) A?htf(Chm)

k=0
n—1
= Ay f(cha) = > Cy(cht) A%y, DX f(cha). (3.20)
k=0

Lemma 3.12. If f € Dg\k) (0, 00), then the following equality is valid.
A™ DX f(cha) = DYA™ f(cha) , k=1,2,... ; m=1,2,... .
Proof. From Lemma 3.6 at m = 1 we obtain
DXAcpif(che) = DX (Acnef = f) (cha) = D Ace f (cha) — DX f (cha)

= Aen (DA (cha) — DY f(cha) = Agy DX S (cha).
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From this we have the chain of the following equalities
DY AT f(cha) = DX (Aene (Al 1)) (cha) = Acne (DX (AT ) ) (cha)
= Aot (B D} (4%21) ) (cha)

— A% (D% (4521) ) (eha) = A% DS f(cha).
Thus Lemma 3.12 is proved.

From (3.10) it follows that

n+s—1
S, n n—+s 1 n+s—
Py f(cha) — f(chz) = A" f(cha) — 3 Gy (ch;) AMETIDE f(chay . (3.21)
L k:O L

Remind ([25], Ch. VIII) that the line operator on a Hilbert space H with the off dense field of definition
D = D (A) C H is called an essential self-adjoint, if its closure A is the self-adjoint operator. Also we
note that for the self-adjoint on an essential operator of the equality A = A* is satisfied. (i.e. the closure
operator A agrees with the self-adjoint operator). The operator A is called positive, if (Ap, ) > ¢ (v, )
for all ¢ € D and some ¢ > 0.

Lemma 3.13. The Gegenbauer operator D)y, with the field of definition D = D(R4) on an essentially
self-adjoint.

Proof. In fact, integration by parts, from (1.1) we obtain

T dx dz
= (x2 _ 1))‘+2g(m) d-);(;) 1 _ /(mQ _ 1))\+% d];(;c) dgzl(;’) de
1
E— /(x2 _ 1)/\+1 dil(;C) df (@) = (@ — 1)ME f(a) dgzl(;) 1
1
+/f(m)d—{(x2 _ 1)A+% dg(yg)}dx: /f(x)(D/\g)(x)(xz C )i (3.22)
! 1

= /0 f(chx)(D,\g)(cha:)shQ)‘a:dx,

for every f,g € D(R4), i.e., D) is the self-adjoint operator.

(3.22) is valid for every f € D¢(R4) and g € 0(2)(]R+) (see also [12]), and for the self-adjoint
operator its closure is a self-adjoint operator (see for examply [41] p. 355).

We note that the operator (— D)) is positive. In fact, from the proof of Lemma 3.13 we see that

(Drf, f) = - /1 Tt o (%)2@.

From this it follows that (— D)) is positive. The operator (—D + ) is strictly positive for any > 0,
since, ((=Dx + ), f) = p(f, f) for every f € De.
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In fact,

((_Dk+u)7f)_ﬂ(f7f):(_D)\fvf)+“(f7f)_ﬂ(f7f)

:(_Dkfvf)z()@((_D/\_'_u)af)Z.u“(fvf)

It is clear that the operator D) is self-adjoint in essential if and only if the operator (—Dy + p) is
self-adjoint in essential.

For strictly positive symmetric operator A the criterion of self-adjoint exists (see [41], Theorem 26):
A is self-adjoint in essential if and only if KerA* = {0}. To prove that the operator (—Dj + p) an
essential is self-adjoint it’s enough to show that Ker (—Dy + u)* = {0}.

Let

(-Dyx+p)"u=0, ueD(D}) . (3.23)

So far as the field of definition of operator D) equals D(R) then the equality (3.32) is equivalent to
the following equality

(=Dx+p) u=0, u€ Ly, (3.24)

where the product is in the sense of theory of generalized functions, i.e., for any function f € D(R4)
probably the equality is carry out:

/OO u(chz) (=Dy + p) f(chx) sh?zdz =0
0

or

/00 u (chx) (Dyf) (chx) sh?zdx = L /00 u (chx) f (chx) sh? z da. (3.25)
0 0

Since, the differential operator (—D, + ) is elliptic on the interval [0, co), from theorems of regu-
larity it follows that the function u (chz) is probably smooth (of classes C°) even function on R \ {0}
and is the solution of equation Dy u = pw in classical means. On the interval (0, c0) the aggregate of
all solutions of the equation Dy u = pw set of functions u (chz) = ciui(chz) + caua(chzx), where
uq (chx) and ug (chz) are fundamental systems of solutions, but c; and cg are arbitary constans. As in the
capacity of fundamental systems of solutions one may take the functions P2 (chz) and Q) (cha) defined
by formulas (1.2) and (1.3). From (1.3) it follows that u; (chz) = Qé(chx) is even smooth function on
the substantial line R. We show that w1 (chz) doesn’t provide of equality (3.25).

In fact, from (1.5) it follows that

Dy QA(cha) = a (o + 2X) Qi (chx). (3.26)
On the other hand ([8], ¢. 1935)
d
2. Qa(@) =20 (@). (3.27)

We take any function f € D(R4).
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Let supp f € [1, a]. Then, taking into account (3.26) and (3.27) we obtain

/1 T @ (DA @)@ — 1) Fde

- / QAa) i [(@? ~ 3D,
1

= (@ ~ 1) QM) f(x)

- /1 @~ ) LA @) L fa)de

__ / @~ ML QA @) ()
1

=~ - )M @) Qiﬂ(x))(j+/f(x)DAQ3(x)(x2 — )b

1

= —2(0® - M2 f(0)Q)T (0) + alor +23) / Qr@)f(@) (2" = 1) 2 da
1

=ci(o, A\a) + ala+ QA)/Qé(x)f(x)(ﬁ . 1),\_%%7
0

where
c1(a, A, a) = —2x(a? — VM2 F(a)QA L (a).
In this way,
/Qg (chm)(DAf)(chx)shQ)‘xdac =c1(a, A\ a) + ala+ 2)\)/Qé(chx)f(chw)sh”xdm.
0 0

Consequently, (3.25) non fulfills, if ¢; # 0 but therefore u (cha) = ¢1Qa(cha) = 0 for ¢ = 0.
By analogy it is proved that ug(x) non fulfills (3.25). Twice integrating of parts we obtain

(oo}

[ @ Oan @ -0 s = [T e -2 L )]
1
= @ = ) o) o) - | @0 ) (e

o0
= @ - M @]+ [ 1@ (D) @6 17
1
2 A+d d > 2 -1
=—(a"-1) +§f(a)d*u2(a) +/ f(@) (Dyuz(z)) (z° —1)7 2 da.
z 1
The formula (3.27) is valid and for Pa)‘(x) and that’s why from (1.2) we have
d _d oo A+l
%ug(a) = dea (a) = 2AP.75 (a).
Thus

/OO Pz (cha)(Dyf)(cha)sh™ zdx
0

oo
=c2(a, \ya) + ala + 20) / f(chx)Pé‘ (chas)sh”‘asd:v7
0
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where
eaa, A a) = —2X(a® — 1) 2 fa) P

Consequently, (3.25) non fulfills, if ¢ # 0, but therefore us(chz) = co P} (cha) = 0 for ¢z = 0.
Thus, we prove that

u(chz) =0,
from where the assertion of Lemma 3.13 follows.

Corollary 3.4. If the functions f and Dy f € Ly  , then there exists fn, € D(R4.), such that fn — f and
Dy fn — Dxfin La .

Really, from the definition of the couplinged operator D} it follows that f € D (D3) and g = D} f

ifand only if g = D, f in meaning of the theory of generalized functions. It remains to reproduce locking
operator D) is agree to D3.

4 Direct theorems of Jackson type
In this section we will prove the Theorem 1.1. Firstly we will prove a particular case of this theorem.

Theorem 4.1. For f € Ly ) the following inequality is valid

1
Ev(f)2.n < wg (f; *) .

v/2,\
Proof. From (3.20) and (3.21) for s = 0 we have

2

2 oo k=1 ,
POy fH2 - / AL fleha) =Y ¢ (ch%) AR-LDL f(cha)| sh*da
’ 0 g i=0 v
k 2 1 2
k—i (k )
= IS0 () b = (e (513),,)
P

Hence the assertion of Theorem 4.1 follows.

Denote through W;\WL)LQ’ » the class of functions which is m-time applied the operator D), moreover

Dfelyy, m=1,2,....

Lemmad4.1.If f € W;\m)L2,>\7 then the following inequality is valid

1 chl —1\"™
on (53),, = (T5T) 197120

Proof. From Lemma 5 in [12] we have

cht

<
| Re(cht)fllo 0 (2A+1

) HD,\fuzA, k=1,2,.

Hence, for k£ = 1 we get

Jatir],, = 1t < (Gt ) P4 2

Now,

cht —1
|zt = |40 (an25)] | < (2A ) |ans a2
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h ht—1\"
s(‘;; )HACM 03], --.s<‘;;+1) D57 25 - @1

hence it follows that . m
1 chs —1 m
on (1:3),,= (o5t ) 19551 2

Thus Lemma 4.1 is proved.

This lemma admittances the following amplification.

Lemmad4.2.If f € W)(\m)LQ’)\ , then the following inequality is valid

(ch%fl)m m
(£ )2)\<(m!(?)\+1)...(2/\+2m_1) D5 £[] 2.1 -

Proof. In (3.19), taking into account (2.6) and Lemma 5 in [12] we obtain ,

1A% f . < Comleht) Al (AZDRF)]|, | < Com(cht) [ DX F]] 21

(cht —1)™ m
= (m! (2>\+1)...(2)\—|—2m—1)) DX f]] 21

hence the assertion of Lemma 4.2 follows.

Lemmad4.3.If f € W)(\m)LQ’)\ , then

k
1 chl —1 k. 1
R < v . .
Wtk (f’ 1/)2)\ - ( 22 +1 ) wn (Dkf’ 1/)2)\

Proof. From (4.1) and, Lemmas 3.11 and 3.12 we have

k
k Cht— 1 k
Jasita], = ]lak (amn)],, < (QHI) | Pkt 2
cht — 1 k
= (2)\+1> HAcht D,\f)H 2,75

hence the assertion of Lemma 4.3 follows.

Lemmadd.If f € W)(\")LQ’A , then

w (fl) < (Ch%_l)k w (Dkfl)
RS o S NR @Y F D)@+ 2m—1) ] TP\ L e

)

In fact, from (2.6), Lemmas 3.10 and 3.11, and also from Lemma 5 in [12] we have

|asits, , = Ak (amen)], , < Crtert) [AfeDh AT 2

Nk
< (k! (2A+§§Iiijt..(2lx)+2k— 1)) HA?’”(D%H 220

hence the assertion of Lemma 4.4 follows.

Proof of Theorem 1.1. From (3.20) and (3.21) we have

n+s
Z (71)n+5_k(2+5)A§h% f

k=0

1

[P f — f”Q,,\ = S Wnts (f; ;)2,,\'
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From this, taking into account Lemmas 4.3, we obtain

B < (D) en (D35:2)
WA=\ 1 ) “r\Ay 2,7
2 1\* ( s 1) —s 1 2s s 1
< —_— - < - —
< (2sh 2u> Wn D)\f,y - <2 (shy) UJn(D)\,V)27)\

as, sh- < %sht for a > 1, (see further (5.32)).

t
a

5 Nikolski-Besov Space associated with the Gegenbauer operator and their description
approximation

For proof of inverse theorems of approximation theory the inequalities of Bernsteint’s type are used.

Lemma 5.1. (The inequality of Bernsteint’s type). For every f € I, the following equality is valid

D5 fllon < (v 4+ 20) 5| fll2,x -

Proof. Using the equality (2.3) and Lemma 3.4, we obtain

o0
IDYF3. / (DX f) (cha) |2 sh® edx
0

< (Wl + 2% /1 Fr@)fola) (@ — ) }da

o0
= (w(v+21)*" / F2(cha)sh™ z dz = (v(v +20)** | fII5 1,
0
hence the assertion of Lemma 5.1 follows.

Lemma 5.2. For ¢ € I, and t > 0 the following equality is valid

k
HA’;M@HQ < (u (v + 20\)F (cht — 1)) 1215 5 -

Proof. From Lemma 3.11, Lemmas 2 and 5 in [12] we have

|Abue|, = Cu (chs) ||k (Dho)

s

.

< Cy (chs)

DYo < C (chs) (v (v +20)" @]l
(D3e)], ,

< W @+20)" (cht —1) @],y -

Thus Lemma 5.2 is proved.
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We have defined the spaces Hj , and B, , , in Section 1. Now we will show that these spaces are
Banach spaces. For this we need to prove some auxiliary results. The following lemma and the corollary
are the analogues of the classical Boas inequality ([45], p. 266).

Lemma 5.3. Let v > 0 be an arbitary number and f € ng&. For every number § and t such that
0<d<t< % the following inequality is valid

5 —2m ¢ —om
(shg) 1A% S0 < cmX) (shs) (1AL, - (5.1)
Proof. Using (3.19) we obtain
|| ::T}LquHQ)\ =Cm (Ché) H g}lus (Dg\nf)||27/\7 m=12 .,

HA:T,‘waZA = Cyn (cht) || A}, (DX'f) ||2’A, m=12,...

From continuity of the operator A, in W3"\ (see [12], Corollary 1 and Lemma 7) we will have

- Akt fllon - 1Azsfllon 12|
t=0 Cm (cht) 550 Cm(chd) — 172 7l2a

So far as t — 0 involves § — 0, then

1A fllan  [1ACks fll2 5
Cm (cht) Cm (chd) '’

t—0 (6 —0),

from this it follows that
Chm (cht) HAQ}”M;fHZ/\ ~ Ch, (chd) HAZ;Ltf”M, t—0 (8§ —0).

Taking into account this the following correlation (see [12], Lemma 5) is satisfied.
2m

c1 (my ) (sh%)zm < Cm (sht) < ca (m, A) (sh%) ,

where ¢; (m, \) and ¢z (m, \) are some constants depending on m and A. We obtain the following confir-
mation of Lemma 5.3.

Corollary from Lemma 5.3. Let f € W3, m € N. For every t € (0; %] the following inequality is
valid

t —2m
DXl < ctmn) (sh3) AT - (5.2)
Taking into account the continuity of the operator A_p; in W{‘A, and also the correlation (see [12],

Lemma 5) Cp, (cht) ~ ¢ (m, A) (cht — 1) for t — 0, where ¢ (m, \) =
we obtain

1
A1) (2A13).. (2 +2m—1)°

EH .
lim oy = dim (4% (DX 1)1, 5 = D37,

If we take limit as 6 — 0 in (5.1), we obtain the inequality (5.2), which is the analogue of the Nikolski-
Stechkin classical inequality (see [28, 42]).
Taking into account the obvious inequality

[AGheS Nl < 27 1F 12,0 (5.3)

which follows from (2.6) to the chain

[4%eflo < 2450 1] < <2 W
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or also the inequality sh > 2 in (5.2), we have
1D5 £ 0 < €m X) 25472 | £l 5.
Putting ¢t = -, we obtain
D5 5.0 < € (mah 1) [ fllg x> (v > 0).
From here for every fn, fim € Hg, » We have
||D§\fn - Difmuz))\ = HDf\ (fn — fm)szA <c(s,\v)[[fn— fm||2,>\ :
We show that Hy , is a Banach space with the norm

Wi (Dif7 6)2 A
Hf”H;A = ||f||2,)\+§1>1%5,,‘T~

For the class Hj , we are able to write

Wi (Difn - Difmafs)z A
Ifr = frllgg = fn = frnlla\ + sup 52 :

From (5.3) it follows that
Wk (Diﬂ 5)2)\ <2 ”Disz,)\’
but then

wi (D3 £.0),, |
TSH < [[D3Fl,0 -

For § > 1 the inequality (5.8) is obvious. But for 0 < § < 1 it is submitted to condition oam—1 <

2™ (evidently, m > 1). Taking (5.4) and (5.8) in (5.6), we obtain

1fn = Frnllmy < Mo = Fmllax + [[D3Fn = D3 fmlly \ < 10 = Fnlla x-

Let ||fn — fmlly x <&, forn,m > N and for all € > 0. Then from (5.9) it follows that
| fro — fm”H;)\ <e, n,m> N.
Because of completeness of the space Lo » we are able to write
[ fr — f”Hg,,\ <|lfn — f||2,)\ <& n>N,

from this the completeness of the space H 57 » follows.
Now we show that Bj , ) is a Banach space. For every £ > 0 let

1
20 wy (D5 fn — D5 fm, )3 d6> .

| frn — fm”B;qu =|[lfn— meQ,A + </0 5(r—2s)q : S

(n,m>N, k>1;s=1,2,...).

From the Lebesgue dominated convergence theorem form — oo, we obtain

1
%y (D3 o — D3, 0)gs a5\
I = Sl =n = Pl + ([ )

for n > N, that means the completeness of the space 32

5.4

(5.5)

(5.6)

5.7

(5.8)

1
5 <

(5.9)

In Theorems 1.2 and 1.3 the description of these spaces through the best approximation of the func-

tions on I, are reduced.
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Proof of Theorem 1.2.1f f € Hj , , then

Wk (Df\fa 6)27)\ < hg,)\(f)dr_Qs
and from Theorem 1.1 it follows that

1
wi, (DA, E)Q,A <95 s (f)

v2s — T

Ey(f)an<27°

For the proof of the reverse inequality, the method is coming back to Bernstein (see [27], p. 236).
Assume that inequality (1.14) holds. Consider a sequence of functions ¢, € Ion (n=0,1,2...) such
that

If =tnllpp < A-27""

Let w9 = 9o and pn, = Yy — Yp—1 forn > 1.
Then the series

o0
f= Z Pn (5.10)

n=0
converges in Lo » and ¢p, € I2n. We obtain upper bounds for the norm of the terms of (5.10) as follows:
lleolla,n = IYolla x < llvbo = Fllax + 1 Fll2x S N fll2n + A (.11

lenllan <IF = wnllon + 1 =¥n-tllon 4 (277 +27 ) A (1427) 277 G12)
Combining (5.11) and (5.12) we write

lpnllyy < c127™" (||f||zA " A) , (n=0,1,2,...) . (5.13)
Let ¢ be one of the numbers 1, 2,...,s. From Lemma 5.1 it follows that
’ ‘
|Den|, < @ @ +23)  Ienllz,s
2n n ¢
- (2 F2N-2 ) lonllaz - (5.14)
From (5.13), (5.14) and the fact that » — 2¢ > 0 it follows that the series
o0
Z Dg\@n
n=0

converges in Lo . In fact,if 0 < A < %, then from (5.14) it follows that

4 4 2nt
|DSen|, <22 lenllan -
2.2 ’

But then

(oo} (oo} o0 1

4 4 2nt 4

S DSen|| < 25> 2 lenllan]| < |25 es (||f||2,)\ +A) > =20

n=0 2,2 n=0 2,A n=0 2,2

¢ 1 041 or—2¢
=12"¢c3 (HfHQ,AJFA)i ‘2 -3 <‘|f“2,>\+*’4)m <M < oo

or—2¢ 2.\ 2,

Since the operator D) is closed, then

o0
¢ ¢
Dif=)_ Dign€ Ly,

n=0
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Let &, = D3¢n, then

c2
P T S S PR gy (10 +4) - (5.15)
n=0

Take an arbitrary number ¢ > 0. From the continuity of the difference operator Afht it follows that

cht g Z Achté’ﬂ

Take a non-negative integer N such that
27N <t <o~ (V=D (5.16)

(if t > 1, then (5.16) contains only the left-hand inequality). Then

N-1
Acht g = Z Achtén + Z Acht¢n (517)
n=0 n=N

(if N = 0, then (5.17) contains only the second sum). Estimate the terms in (5.17). Forn < N — 1 by
using Lemma 5.2 and inequalities (5.15) and (5.16), we obtain

HAchtdan 2n ) 2k 1Ballsy < 3 (Hng,,\ +A) gn(2s+2k—r) o—2(N-1)k

By using (5.16) we have

N-1
< (Hf”2 At A) Z o(2s+2k—r)n
ehePn = 92k(N—1
2.\ n=0

e (\|f||27/\ + A) H(254+2k—rIN _ | .
T 92k(N—1) | 9(@s+2k—1) _1 S (HfHQ,/\ + A) L (5.18)

For n > N we use the inequality (5.3).
Then from (5.15) we have

o0
budn| <2 e (Il +A) DD 272
2, n=N
1
— ok g (\|f||27/\ + A) 9~ N(r—2s) (1 - 2<2H>) < cg (||f\|2_’A + A) {2, (5.19)

From (5.18) and (5.19) it follows that
)‘Alghtg H2 \ < ept" 28 (||f||2,>\ + A) ;

from this
wi (9.8)p0 < et (Iflon+4) 8772, 6> 0

and

B < er (Ifllap+A4)

Hence, f € Hg, » and inequality (1.13) holds.
Let

hy A(f) i = sup " Ey(f)2x-
v>1
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It follows from Theorem 1.2 that f € Ly  belongs to Hj , if and only if ﬁé A (f) < oo, and the norm
in Hj , is equivalent to the norm

g, = Wl + BEAC):

In particular, if k and s are as 2k > r — 2s > 0, then the spaces Hj , coincide and their norms are
equivalent.

In the following theorem the various equivalent norms in the spaces By , 5 will be obtain. In particular
the Theorem 1.3 will follow. As in section 1, » > 0 and a > 1 are real numbers, and k and s are arbitrary
non-negative integers such that 2k > r — 2s > 0. We shall say that a function f belongs to the space
jBQ,M ,j = 1,2,3,4if f € Ly and the seminorm jbg,%/\ is finite, where 1b§7q7>\ = by, (the
definition of b5 , 5 can be found in Section 1)

1
a (wk(Dif,&)z,A)q as \ ¢
2b7- L <f §(r—2s)q e 1<¢g¢g<oo,
2.q () 1= 0 ") .
sup ¢ wi (DXf,6)5. 5 q=00;
0<é<a

q

<§ alrd (Eaj(f)z,A)q) 1<g<oo,
5=0

sup a’" Ey;(f)2,x g=00;
Jj€Z

gbg,q,)\ (.f) =

0o q
A o inf Za]m HQang’)\ 1<¢g<oo,
by (f) 1= §=0

inf sup o’ Qs (PN qg=00;
Jj€Z

where the infimum is taken over all representations series of the form
o0

f(m) = Z Qa-7 (33) ) Qaj (33) €1y
=0

which is convergent in Ly  from functions with bounded spectrum. The spaces ng g¢,» are Banach
spaces concerning to the norms

1l 2= 1 ll2x +7 Bhgn - (5.20)

Theorem 5.1. The spaces jb£7q7)\, j =1,2,3,4 coincide and their norms (5.20) are equivalent.

Note that from the equivalency of the Banach spaces 1857 g,x and 335) ¢, Theorem 1.3 follows. For
brevity we use the notation / B” := jBQqVA, Ip .= ijq,A, EN(f) := En(Ha.gx IFI 2= [1fll2x
and so on. The expression V; — V> means that the Banach space V; is embedded in the Banach space
Vs.

Proof. The general scheme conforms to the scheme of the proof of analogues theorems in [27] for usual
modulus of continuity. We will assume everywhere that ¢ < co.
1°. The embedding ! B — 2B is obvious. We prove that 2B < 3B. Let f € 2B, then

a oo -3

()" = [ (o (D3£.0)) 5,8 s =3 /

 (wk (D31.9))5 837 s (5.21)
0 j=0"e"’
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Using the monotony of the modulus of continuity wy, (f, ) y and § by Theorem 1.1 we obtain that

1—3j

[ G (Dira) g6 s

> (w (D3f.077))! (alﬂ‘)(zH)H (a7 ) 2 e (B (S . G2

2,2
where the constant c¢; is independent of f and j . From (5.21) and (5.22) it follows that

(otn) " 2 e (*n) "

from this the inequality 3b(f) < ¢52b(f) and the embedding 2B < B follow.
39. Prove that B — *B. Let fe 3B. For every j € Z4 take the function g,; € I,;, satisfied the
condition

||f_ gai” < 2Ea7(f)

o0
Let Quo = 940, Qui = Yai — gai—1  forj > 1. Then the series f = > Q,; converges in Ly y,
7=0
since E; (f) — 0 as j — oc.
We note that

[Qaoll < NI+ IIf = gaoll < IFIl +2Eq0(f) <31l
HQaJH < H 9ai — fH + Hf _gaj_lH < 4Eaj_1(f)7 j= 1L

Using these inequalities we obtain that

(0n)" < D@ IQus 1 < 3717+ 30 4% (B (£))°

j=1 j=1
and then it follows that
1
q

) <es [IFI+ | D" (B ()] | =esllflsp -

Jj=0

From the last inequality the embedding B < *B follows.
4° Prove that*B < 'B .Let f € *B, &> 0, then one can present f as the sum

F=> Qu Qu €1, ,

Jj=0

moreover N

q

DA Qull? | < b(f) +e. (5.23)
j=0

o0
We check that the series ) D3Q,, converges in Ly y. According to Lemma 5.1 we can write
7=0

D3 Qus || < a”*(a” +2X)° 1 Qus |

—(r—25)j 22\° i —(r—2s)j
=2 (142 1Qul <20 a0 Q.

By the Holder inequality we obtain

oo

STDQu || < 20 D am I Q|

=0 Jj=0
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[ele] P 0o q
STam TR (NG Qu 1T < ea*b(f) +e) (5.24)
o]
Consequently, the series ) D5Q,; converges in Ly . From closeness of the operator D) it implies that
j=0
o0
D3f = D5Qaj € Lo x. (5.25)
7=0

‘We note also that from (5.24) and (5.25) it follows that
D3]] < ea*b(f) +). (5.26)
From (5.7) and (5.26) we have

> oo
/ (@k(D3 £, 6)2,2)7%6 29 Nds < 2quDf\qu/ §mr=2)a1gs
! 1
2ka

- (r —2s)q

For every naturally N we can write the equality

|DXF]|* < es(Mb(f) + ). (5.27)

Al (D3 ) = ZAW (D3 Qui) + Z Abpt(D3Qus) -

j=N+1
Using Lemmas 5.1 and 5.2 we obtain that
N
| A8 (D3| < (eht = 1) Z T 20))5 Qi
2k Z T4 20)° [|Qus - (5.28)

Jj=N+1

Taking into account the inequality (a + b)* < 2°(a® + b%), for s > 1 we have (0 < X < 2)
ajs(aj + 2)\)5 S 2saj5(ajs + 1) S 2S+1 . a2js

and
oI (k+s) (aj i 2)\)k+s < okts+1l 2j(k+s)

Taking into account these inequalities in (5.28) we obtain

oo

e N
s+1+k 2t 2j(k+s k+s+1 2;
|abwoip|| <27 F (28025) Y T IQ 2 3D 0 Q)
j:

J=N+1

Then we get

5 -N k
w(D3f, ™) = sup ||l (031
0<t<a—N

[ee]

<2 (oho s N) Z 2D Q i | + 257571 ST a0 Q. (5.29)

j=N+1

Making the substitution § = a~* we have

1 o0
/ Wk D)\f 9) q5 (r—2s)q— 1d5 = loga/ Wi DAf a” ))qaq(r—2s)udu
0 0
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o0 N+1
=loga Z / aq<r72s)u(wk(D§\f, a” ") du
N=0"N
o0
<loga Y (wp(D§f,a ")) 1atC 72N < gory 4 ey, (5.30)
N=0

where
q

S (r—25—2k)N _ 2kqN 12k (& 2 (k+s)
n=3y a N (shoe ) (3@ Qull |
N=0

2aN ;
7=0
= a®TTEIN LN Gy | (5.31)
N=0 j=N+1
We prove the inequality
sht < Yant a1 (5.32)
a a

Consider the function o(t) = Lsht — shé. From this

~a
o (t) = lcht — 1chE = 1(cht — chz) > 0.
a a a a a

Consequently the function ¢(t) increases and takes the least meaning for ¢ = 0 and ¢(0) = 0, that is
©(t) > 0, from this it follows that (5.32) is satisfied.
Applying (5.32) we will have

2kq 2kqN 2kq 1\ 2kq
g2kaN (sh 1 ) < ai(shl)qu: (sh)™ _fe—e <1
2aN = (2aN)2kae 4kq 4

From this it follows that

q

0o N
D DT el [~ 1 p B (5.33)
N=0 Jj=0

For expressions (5.31) and (5.33) (in [27] see p. 260 the formulas (17),(18)) the estimates

o0

mn<es Y aQul, (5.34)
§=0
s .

T2 <eo Y " Qu (5.35)
§=0

are obtained.
Finally from (5.27), (5.30) and (5.35) it follows that

o0
/ (@(D3f, 8)20) 8~ 2997145 < Cro(Yb(f) + 21,
0

but from this we get
"(f) < Clob(f),

that proves the embedding B — 1 B. As a result of these the chain of embedding is obtained
!B 2B 3B 1B 1B,

that complete the proof of the Theorem 5.1 for 1 < ¢ < oo.
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Now consider the case when ¢ = co.
a) The embedding ' B — 2B is obvious. We prove that 2B < 3B. Let f € 2B, then

wi (D3 f,6) wi (D3 [, 0)

or—2s 2 gr—2s

sa~i<6<a~d

sup
0<d<a

wk(Di.ﬂ %a_j)

a—J(r—2s) > (2aj)2saj(r72S)E2aj ()

= 20" By (f) = 2% (207) By (£), (5.36)

here we use the monotony of wy,(f, §) and Theorem 1.1. From (5.36) it follows that 3b(f) < ¢11b(f) and
the embedding B < B is valid.

b) We prove that *B < “B. Let f € ®B. For every j € Z take the function g,; € I,,; such that the
condition

Hf_gajH < 2Ea] (f)

is satisfied.

o0
Let Qo = g0- Qui = Gai — Gai-1-J > 1. Then f = > Q,;, the series converges in Ly », so
7=0
E,i(f) > 0asj— oo.
Note that

1Qaoll < llgao — FIl + I < 1FIl + 2E40 (f) < 3IIfII,

1Qaill < llgai — FII+[If = gai-1 Il € 4Eqi-1(f), j = 1.
From these inequalities it follows that
4 Jr .
b(f) <3| fll +4a” Egi-1(f), §=1,2,..

< (ISl 4+ B () = cizlfllsp, 5 =0,1,.

from this the embedding B < * B follows.
Now we prove that 4B < 1B. Let fe 4B, Ve > 0, then f can be present as the form

oo
f= ZQaJa Qui € Lyss
=0
moreover for every € > 0

"1 Qus |l < *b(f) +e. (5.37)

(o]
We verify that the series > D3Q,; converges in Ly . For Lemma 5.1 we can write
7=0

1D5Qus | < (0 +20)°1Qus
—(r—28)] i 22\ —(r—28)j j
= a0 (14 22) Qu Il < a2 a7 |Qul

From here, taking into account (5.37) we obtain

oo oo

o

S TID3Qu 1 <> a” T, |
7=0

Jj=0
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< (4b(t) + 5) i a~ 72907 < o4 (4b( )+ 5), (5.38)

J=0

&)
consequently the series > D3Q,; converges in L .
7=0
From closeness of the operator D) it implies that

o0
D3f =) DiQu € Lo (5.39)
=0

Now note that from (5.38) and (5.39) the inequality is valid.
IDSfIl < c1a *b(f). (5.40)

From (5.8) and (5.40) it follows that

() < crab(f),

hence the embedding * B < ! B is proved.
Thus for ¢ = oo the chain of the embedding is also obtained,

B ?B3B 4B 1B,
that completes the proof of Theorem 5.1.
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