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Null controllability of heat equation with switching pointwise controls
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Abstract. In [1], the author analyzed the problem of two switching pointwise controls for null controlla-
bility of the 1-d heat equation with Dirichlet’s boundary conditions and obtained sufficient conditions for
null controls satisfying switching conditions. In this article, we consider the 1-d heat equation endowed
with arbitrary number (finite) of pointwise controls and under suitable conditions on the placement of
actuators, we show that our approach allows building switching controls.
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1 Introduction

Control problems for PDEs/ODEs arise in many different contexts and ways. A classical problem is
that of controllability. Roughly speaking, it consists in observing whether the solution of the PDE/ODE
can be driven to a given final target by means of a control applied on a sub-domain of the domain or
on the boundary. More precisely, the controllability problem may be characterized as follows. Consider
an evolution system either described in terms of partial or ordinary differential equations. Given a time
interval t ∈ (0, T ), and initial and final states we have to find a control such that the solution matches
both the initial state at time t = 0 and the final one at time t = T . This is a type of exact controllability
problem. There are different type of controllability problems: when the final target is achieved to zero,
then the system is null controllable or when the set of reachable states (set of final targets) is dense in the
space where the evolution system is satisfied, then the system is approximate controllable. However, in
finite dimensions, these apparently weaker notions often coincide with the exact controllability one. For
instance, when dealing with the problem of approximate controllability, as we know the system is said
to be approximately controllable when the set of reachable states is dense in R. But, in R the only close
affine dense subspace is the whole space itself. Thus, in finite-dimension, approximate controllability and
exact controllability are equivalent notions. But this is no longer the case in the context of PDE. Indeed, in
infinite-dimensional spaces there are strict dense subspaces, while in finite-dimension they do not exist.
These are classical problems in control theory and we recommend for instance, the book by Lee and
Marcus [6] for an introduction in the context of finite-dimensional systems and the book of Lions [5] for
an introduction to the controllability of PDE, also referred to as Distributed Parameter Systems.
In this paper, our aim is to build suitable switching pointwise controls for the controllability problem
of 1-d heat equation. To do this we first introduce a new functional based on the adjoint system whose
minimizers yield the switching controls. We show that, due to the time analyticity of solutions, under
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suitable conditions on the location of the controllers, switching control strategies exist in the 1-d heat
equation.

2 Switching Pointwise Controls

In this part, we would consider the problem of null controllability of the 1-d heat equation with pointwise
controls and obtain sufficient conditions for switching controls. But firstly we consider the problem in
which three controllers act at three different points in the interval (0, 1) and then we generalize the ob-
tained result. Consider the case in which three pointwise controllers act at three different points a, b, c of
the space interval (0, 1) where the equation is satisfied:

yt − yxx = ua(t)δa + ub(t)δb + uc(t)δc, 0 < x < 1, 0 < t < T,

y(0, t) = y(1, t) = 0, 0 < t < T,

y(x, 0) = y0(x), 0 < x < 1.

(2.1)

Here, δa, δb and δc are Dirac delta functions located at points a, b and c respectively. We consider the
problem of null controllability. More precisely, given an initial datum y0 ∈ L2(0, 1) we look for controls
ua(t), ub(t), uc(t) ∈ L2(0, T ) such that y(x, T ) = 0 and the switching condition satisfies:

ua(t)ub(t) = 0, ua(t)uc(t) = 0, ub(t)uc(t) = 0, ∀i 6= j, a.e. t ∈ (0, T ). (2.2)

We know that whenever a system is controllable, the control can be built by minimizing a suitable
quadratic functional defined on the class of solutions of the adjoint system (see e.g., [2], [3]).
For ϕ0 in L2(0, 1), we consider the solution ϕ : [0, 1] × [0, T ] → C([0, T ], L2(0, 1)), of the following
backward Cauchy linear problem:

ϕt + ϕxx = 0, 0 < x < 1, 0 < t < T,

ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T,

ϕ(x, T ) = ϕ0(x), 0 < x < 1.

(2.3)

This linear system is called the adjoint system corresponding to the 1-d heat equation with Dirichlet’s
boundary condition (see, e.g. [1], [2]). Let ϕ0 has the Fourier expansion

ϕ0 =
∑
k≥1

βkωk(x), where ωk(x) =
√
2 sin(kπx)

then the solution ϕ of adjoint system is of the form

ϕ(x, t) =
∑
k≥1

βke
π2k2(t−T )ωk(x). (2.4)

As we know that the null control of 1-d heat equation could be computed by minimizing the following
quadratic functional (see, e.g. [1])

J(ϕ0) =
1

2

∫ T

0

[
|ϕ(a, t)|2 + |ϕ(b, t)|2 + |ϕ(c, t)|2

]
dt−

∫ 1

0

y0(x)ϕ(x, 0)dx

over the class H of initial data given by

H =
{
ϕ0 :

∫ T

0

|ϕ(a, t)|2 + |ϕ(b, t)|2 + |ϕ(c, t)|2dt <∞
}
,

where ϕ(x, t) is the solution of the adjoint system (3) associated to the final target ϕ0. We consider H
space endowed with the canonical norm

||ϕ0||H =
[ ∫ T

0

|ϕ(a, t)|2 + |ϕ(b, t)|2 + |ϕ(c, t)|2dt
] 1

2

constitutes a Hilbert space (see, e.g. [1]). It is easy to see that the functional J is continuous in H, and
strictly convex. Now, we give very important lemma on families of real exponentials. This lemma is
known as estimates on families of real exponentials (see e.g., [1], [3], [4]).
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Lemma 2.1 In our case, it is guaranteed that∫ T

0

∣∣∣∑
k≥1

βke
π2k2(t−T )

∣∣∣2dt ≥ c1∑
k≥1

e−2π
2k2T β2k

for a suitable positive constants c1 > 0 which is independent from {βk}k≥1.

By using this lemma, we obtain the following weighted observability inequality:

||ϕ0||2H ≥ c1
∑
k≥1

e−2π
2k2T

[
|ωk(a)|2 + |ωk(b)|2 + |ωk(c)|2

]
β2k. (2.5)

As we know that null controllability in time T implies approximate controllability in time T . This comes
form the fact that all the range of the semigroup generated by the heat equation is reachable (see e.g.,
[2]). Therefore, we first prove the approximate controllability of the heat system in time T under some
conditions. For this, we will consider new functional very similar with previous one: for any ε > 0 and
any y1 ∈ L2(0, 1)

Jε(ϕ
0) =

1

2

∫ T

0

[
|ϕ(a, t)|2 + |ϕ(b, t)|2 + |ϕ(c, t)|2

]
dt+ ε||(I − πE)ϕ0||L2(0,1)

+
∫ 1

0

ϕ0y1dx−
∫ 1

0

y0(x)ϕ(x, 0)dx,

whereE is finite dimensional subspace of L2(0, 1) and πE denotes the ortogonal projection from L2(0, 1)

over E.
Our aim is to build approximate pointwise control satisfying Dirichlet’s boundary condition. In other

words, given ε > 0 we try to find (finite) approximate controls uεa, uεb, u
ε
c such that the solution yε of heat

equation satisfies the following condition

||yε(x, T )− y1||L2(0,1) ≤ ε. (2.6)

For this to be true, the following property suffices (see e.g., [2])
If ∀t ∈ (0, T ) we have ϕ(a, t) = ϕ(b, t) = ϕ(c, t) = 0, then ϕ(x, t) ≡ 0

which is unique continuation property of the adjoint system.

Lemma 2.2 Assume that the following unique continuation property

∀t ∈ (0, T ), ϕ(a, t) = ϕ(b, t) = ϕ(c, t) = 0 =⇒ ϕ(x, t) ≡ 0 (2.7)

holds, then the heat equation (1) is approximate controllable.

Proof. For obtaining approximate controllability of (1), we should minimize Jε overH. We have already
proved that Jε is convex and continuous inH. On the other hand, in view of (7) above, one can prove that

lim
||ϕ0||L2(0,1)→∞

Jε(ϕ
0)

||ϕ0||L2(0,1)
≥ ε. (2.8)

Let us give the proof of this coercivity property. In order to prove above inequality, let {ϕ0
j} ⊂

L2(0, 1) be sequence of initial data for the adjoint sytem with ||ϕ0
j ||L2(0,1) →∞ Now normalize them by

ϕ̃0
j =

ϕ0
j

||ϕ0
j ||L2(0,1)

so that ||ϕ̃0
j ||L2(0,1) = 1. On the other hand, let ϕ̃j be the solution of adjoint system with initial data ϕ̃0

j .
Then we would have

Jε(ϕ
0
j )/||ϕ

0
j ||L2(0,1) =

1

2
||ϕ0

j ||L2(0,1)

∫ T

0

[
|ϕ̃j(a, t)|2 + |ϕ̃j(b, t)|2 + |ϕ̃j(c, t)|2

]
dt

+ ε||(I − πE)ϕ̃0
j ||L2(0,1) +

∫ 1

0

ϕ̃0
jy

1dx−
∫ 1

0

y0(x)ϕ̃j(x, 0)dx.

The following two cases may occur:
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1. lim infj→∞
∫ T
0

[
|ϕ̃j(a, t)|2 + |ϕ̃j(b, t)|2 + |ϕ̃j(c, t)|2

]
dt > 0. In this case we have

Jε(ϕ
0
j )/||ϕ

0
j ||L2(0,1) →∞.

2. lim infj→∞
∫ T
0

[
|ϕ̃j(a, t)|2 + |ϕ̃j(b, t)|2 + |ϕ̃j(c, t)|2

]
dt = 0.

For the last case, since ϕ̃0
j is bounded in L2(0, 1), by extracting a subsequence we can guarantee that

ϕ̃0
j ⇀ ψ0 weakly in L2(0, 1) and so weakly in H, moreover

ϕ0 7−→
∫ T

0

[
|ϕ(a, t)|2 + |ϕ(b, t)|2 + |ϕ(c, t)|2

]
dt

is lower semi-continuous in the weak topology of H.
Therefore we would obtain∫ T

0

[
|ψ(a, t)|2 + |ψ(b, t)|2 + |ψ(c, t)|2

]
dt ≤ lim inf

j→∞

∫ T

0

[
|ϕ̃j(a, t)|2 + |ϕ̃j(b, t)|2 + |ψ(c, t)|2

]
dt,

where ψ is the solution of adjoint system with given initial data ψ0. Therefore we obtain the following
condition

∀t ∈ (0, T ), ψ(a, t) = ψ(b, t) = ψ(c, t) = 0.

From (7) we conclude that ψ ≡ 0. Therefore ψ0 = 0 and ϕ̃0
j ⇀ 0 weakly in L2(0, 1) and consequently∫ 1

0

y0(x)ϕ̃j(x, 0)dx→ 0,

and ∫ 1

0

ϕ̃0
jy

1dx→ 0.

Furthermore, E is being finite-dimensional, πE would be compact operator and then πEϕ̃0
j → 0 strongly

in L2(0, 1). Consequently,
||(I − πE)ϕ̃0

j ||L2(0,1) → 1

as j →∞. At the end, we obtain our coercivity property

lim inf
j→∞

Jε(ϕ
0
j )

||ϕ0
j ||
≥ lim inf

j→∞

[
ε+

∫ 1

0

ϕ̃0
jy

1dx−
∫ 1

0

y0(x)ϕ̃j(x, 0)dx
]
= ε.

Therefore Jε admits an unique minimizer ϕ̂0 ∈ H. That means, for any ψ0 ∈ L2(0, 1) and h ∈ R we have
Jε(ϕ̂

0) ≤ Jε(ϕ̂0 + hψ0). Namely,

Jε(ϕ̂
0 + hψ0)− Jε(ϕ̂0) =

∫ T

0

h
[
ϕ̂(a, t)ψ(a, t) + ϕ̂(b, t)ψ(b, t) + ϕ̂(c, t)ψ(c, t)

]
dt

+
∫ T

0

h2
[
ψ(a, t)2 + ψ(b, t)2 + ψ(c, t)2

]
dt

+ ε
[
||(I − πE)(ϕ̂0 + hψ0)||L2(0,1) − ||(I − πE)ϕ̂

0||L2(0,1)

]
+
∫ 1

0

hψ0y1dx−
∫ 1

0

hψ(x, 0)y0(x)dx ≥ 0.

We know from triangular inequality that[
||(I − πE)(ϕ̂0 + hψ0)||L2(0,1) − ||(I − πE)ϕ̂

0||L2(0,1)

]
≤ |h|||((I − πE)ψ0||L2(0,1). (2.9)
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Now, let us define

A def
=

∫ T

0

[
ϕ̂(a, t)ψ(a, t) + ϕ̂(b, t)ψ(b, t) + ϕ̂(c, t)ψ(c, t)

]
dt.

Then using above inequality and after considering the cases: h > 0, h < 0 and taking h → 0 at the end,
we would get the following inequality:∣∣∣A+

∫ 1

0

ψ0y1dx−
∫ 1

0

ψ(x, 0)y0(x)dx
∣∣∣ ≤ ε[||((I − πE)ψ0||L2(0,1)

]
. (2.10)

Now, if we take ua(t) = −ϕ̂(a, t), ub(t) = −ϕ̂(b, t), uc(t) = −ϕ̂(c, t), and multiplying the heat equation
(2.1) with initial data y0(x) ∈ L2(0, 1) by ψ which is the solution of adjoint system (2.3) with initial data
ψ0 and integrating by parts we finally get

A =

∫ 1

0

ψ(x, 0)y0(x)dx−
∫ 1

0

ψ0y(x, T )dx.

By combining these two and letting E = 0,1 we finally get∣∣∣ ∫ 1

0

ψ0(y(x, T )− y1)dx
∣∣∣ ≤ ε||ψ0||L2(0,1)

for every ψ0 ∈ L2(0, 1) which is equivalent to

||y(x, T )− y1||L2(0,1) ≤ ε. (2.11)

Therefore for every ε > 0, by using variational approach, we obtain the following approximate controls
uεa(t) = −ϕ̂ε(a, t),
uεb(t) = −ϕ̂ε(b, t),
uεc(t) = −ϕ̂ε(c, t).

(2.12)

Now, to get null controls, we should prove that uεa(t), uεb(t), u
ε
c(t) are uniformly bounded in L2(0, T ). We

know that the space of null controllable initial data is the dual oneH
′
. Therefore, to get null controllability

of (1), we should put some conditions on the Fourier coefficients {y0k}k≥1 of initial datum y0.

Lemma 2.3 Assume that the Fourier coefficients {y0k}k≥1 of initial datum y0 of (1) satisfy the finiteness
property ∑

k≥1

e2π
2k2T

|ωk(a)|2 + |ωk(b)|2 + |ωk(c)|2
|y0k|

2 <∞. (2.13)

Then, y0 ∈ H
′

which is the dual one of H and our approximate controls uεa(t), uεb(t), u
ε
c(t) would be

uniformly bounded in L2(0, T ).

Proof. Using (5) and Cauchy-Schwarz (CS) inequality (see e.g., [8]), we would get the following∣∣∣∑k≥1 y
0
kβk

∣∣∣
||ϕ0||H

≤ C

∣∣∣∑k≥1 y
0
kυkβkυ

−1
k

∣∣∣∣∣∣∑k≥1(βkυ
−1
k )2

∣∣∣ 12
CS
≤ C

∣∣∣∑k≥1(y
0
kυk)

2
∣∣∣ 12 ∣∣∣∑k≥1(βkυ

−1
k )2

∣∣∣ 12∣∣∣∑k≥1(βkυ
−1
k )2

∣∣∣ 12
≤ C

[∑
k≥1

e2π
2k2T

|ωk(a)|2 + |ωk(b)|2 + |ωk(c)|2
|y0k|

2
] 1

2
<∞,

1 In this case, finite approximate controllability turns out to be approximate controllability of (1)
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where

υk =
∣∣∣ e2π

2k2T

|ωk(a)|2 + |ωk(b)|2 + |ωk(c)|2
∣∣∣ 12 .

As a result we get y0 ∈ H
′
.

Now, we will prove that our approximate controls uεa(t), uεb(t) and uεc(t) satisfy uniform boundedness
in L2(0, T ). Note that uεa(t) = −ϕ̂ε(a, t), uεb(t) = −ϕ̂ε(b, t), uεc(t) = −ϕ̂ε(c, t) where ϕ̂ε(x, t) solves
adjoint system (3) with initial data ϕ̂0

ε at time t = T obtained by minimizing the functional Jε when
E = 0 and y1 = 0. At the minimizer ϕ̂0

ε , we have Jε(ϕ̂0
ε ) ≤ Jε(0) = 0. This implies that

1

2

∫ T

0

[
|ϕ̂ε(a, t)|2 + |ϕ̂ε(b, t)|2 + |ϕ̂ε(c, t)|2

]
dt ≤

∣∣∣ ∫ 1

0

y0(x)ϕ̂ε(x, 0)dx
∣∣∣.

From (5), we have

∫ T

0

|ϕ̂ε(a, t)|2 + |ϕ̂ε(b, t)|2 + |ϕ̂ε(c, t)|2dt ≤
Ĉ
∣∣∣ ∫ 1

0
y0(x)ϕ̂ε(x, 0)dx

∣∣∣2∣∣∣∑k≥1 β
2
kυ
−2
k

∣∣∣
for suitable Ĉ > 0 which is independent from {βk}k≥1.
Since {ωk(x)}k≥1 form orthogonal basis in L2(0, 1) after some simplification, we have

∣∣∣ ∫ T

0

|ϕ̂ε(a, t)|2 + |ϕ̂ε(b, t)|2 + |ϕ̂ε(c, t)|2dt
∣∣∣ ≤ Ĉ

∣∣∣∑k≥1 y
0
kβk

∣∣∣2∣∣∣∑k≥1 β
2
kυ
−2
k

∣∣∣ .
But applying Cauchy-Schwarz inequality, we obtain

Ĉ
∣∣∣∑k≥1 y

0
kβk

∣∣∣2∣∣∣∑k≥1 β
2
kυ
−2
k

∣∣∣ =
Ĉ
∣∣∣∑k≥1 y

0
kυkβkυ

−1
k

∣∣∣2∣∣∣∑k≥1(βkυ
−1
k )2

∣∣∣
CS
≤
Ĉ
∣∣∣∑k≥1(y

0
kυk)

2
∣∣∣∣∣∣∑k≥1(βkυ

−1
k )2

∣∣∣∣∣∣∑k≥1(βkυ
−1
k )2

∣∣∣ = Ĉ
∑
k≥1

(y0kυk)
2.

Hence, at the end we get the following result∣∣∣ ∫ T

0

|ϕ̂ε(a, t)|2 + |ϕ̂ε(b, t)|2 + |ϕ̂ε(c, t)|2dt
∣∣∣ ≤ C̃∑

k≥1
|υk|2|y0k|

2 <∞, (2.14)

where C̃ > 0 is independent from {βk}k≥1. Since we know that

||uεa(t)||2L2(0,T ) ≤
∫ T

0

|ϕ̂ε(a, t)|2 + |ϕ̂ε(b, t)|2 + |ϕ̂ε(c, t)|2dt,

and similarly, the above inequality is valid for uεb and uεc.
Now, using (14) we conclude that ∀ε > 0, uεa(t), uεb(t) and uεc(t) are uniformly bounded in L2(0, T ).

Therefore, by using Lemma 2.3, we conclude that under the assumption of finiteness property, uεa(t),
uεb(t) and uεc(t) are uniformly bounded in L2(0, T ) and so, by extracting subsequences, we have uεa ⇀ ua,
uεb ⇀ ub and uεc ⇀ uc weakly in L2(0, T ). Using the continuous dependence of the solution of the
heat equation, we can show that yε(x, T ) converges to y(x, T ) weakly in L2(0, T ) which implies that
y(x, T ) = 0 (easily seen by letting y1 = 0 in (6)), i.e., the limit controls ua, ub and uc fulfil the null
controllability requirement.

However, we check that our null controls do not fulfil the switching condition (2) in general (see e.g.,
[1]). Therefore, we realize that minimizing J over H just solves the problem of null controllability of
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heat system, but we still have no switching controls. For getting switching controls, we will consider the
following functional Js, which is a variant of our functional J , with the same coercivity properties, allows
building switching controllers:

Js(ϕ
0) =

1

2

∫ T

0

max
{
|ϕ(a, t)|2, |ϕ(b, t)|2, |ϕ(c, t)|2

}
dt−

∫ T

0

y0(x)ϕ(x, 0)dx. (2.15)

The functional Js : H −→ R is well defined, continuous thanks to well-poseness of adjoint system (3)
and convexity comes from the following inequality: for given a1, a2, b1, b2 ∈ R,

max((a1 + a2)
2, (b1 + b2)

2) ≤ max(a21, b
2
1) + 2max(a1a2, b1b2) + max(a22, b

2
2). (2.16)

Same as before, we consider the problem of approximate controllability, i.e., for all ε > 0 we could
find (finite) approximate controls uεa(t), uεb(t) and uεc(t) such that the solution yε of heat equation satisfies
(6). For obtaining approximate controls, we should consider the following new functional very similar
with (15): for any ε > 0 and any y1 ∈ L2(0, 1)

Jεs(ϕ
0) =

1

2

∫ T

0

max
{
|ϕ(a, t)|2, |ϕ(b, t)|2, |ϕ(c, t)|2

}
dt+ ε||(I − πE)ϕ0||L2(0,1)

+
∫ 1

0

ϕ0y1dx−
∫ 1

0

y0(x)ϕ(x, 0)dx,

where E is finite dimensional subspace of L2(0, 1) and πE denotes the orthogonal projection from
L2(0, 1) over E. Observe that when y1 = 0 and E = 0 we would obtain our previous functional Js.

Lemma 2.4 Assume that the following unique continuation property

µ{t ∈ (0, T ) : |ϕ(a, t)| = |ϕ(b, t)| = |ϕ(c, t)|} > 0⇒ ϕ ≡ 0 (2.17)

holds. Then, the heat equation (1) is approximate controllable.

Proof. We skip the proof of that lemma which is closely related with Lemma 2.2 (see e.g., [1]).

Hence, from Lemma 2.4, we know that for getting approximate controllability of (1), we need to have
(17). Since we know that

{t ∈ (0, T ) : |ψ(a, t)| = |ψ(b, t)| = |ψ(c, t)|} ⊂ {t ∈ (0, T ) : |ψ(a, t)| = |ψ(b, t)|},
{t ∈ (0, T ) : |ψ(a, t)| = |ψ(b, t)| = |ψ(c, t)|} ⊂ {t ∈ (0, T ) : |ψ(b, t)| = |ψ(c, t)|},
{t ∈ (0, T ) : |ψ(a, t)| = |ψ(b, t)| = |ψ(c, t)|} ⊂ {t ∈ (0, T ) : |ψ(c, t)| = |ψ(a, t)|}.

Therefore, we obtain that

Iba
def
= {t ∈ (0, T ) : |ψ(a, t)| = |ψ(b, t)|},

Icb
def
= {t ∈ (0, T ) : |ψ(b, t)| = |ψ(c, t)|},

Iac
def
= {t ∈ (0, T ) : |ψ(c, t)| = |ψ(a, t)|},

are of positive measure. Now using again the Fourier representation of solution of (3) we have

ϕ(a, t)± ϕ(b, t) =
∑
k≥1

βke
π2k2(t−T )(ωk(a)± ωk(b)).

The function ϕ(a, t)±ϕ(b, t) are time analytic for t ≤ T (see e.g., [1]). Consequently, if they vanish for a
set of time instants of positive measure, then they vanish for all t ≤ T . It is then easy to see, by multiplying
above identity by the real exponentials e−η

2(t−T ) successively, starting from η = 1 and taking limits as
t→ −∞, that

βk(ωk(a)± ωk(b)) = 0, ∀k ≥ 1.

To conclude that βk = 0 for all k ≥ 1, it is sufficient to show that

ωk(a)± ωk(b) = sin(kπa)± sin(kπb) 6= 0 ∀k ≥ 1.
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This holds if and only if
a± b 6= m/k, ∀k ≥ 1, m ∈ Z. (2.18)

Similarly, we have

b± c 6= m/k, ∀k ≥ 1, m ∈ Z. (2.19)

c± a 6= m/k, ∀k ≥ 1, m ∈ Z. (2.20)

As a result, under irrationality conditions (18), (19), and (20) we have the unique continuation property.
Observe that if the unique continuation property satisfies, then for ϕ0 6= 0, we have Iba, Icb , I

a
c and I are

of measure zero. Now define

Sa
def
= {t ∈ (0, T ) : |ϕ(a, t)| > max(|ϕ(b, t)|, |ϕ(c, t)|)}

Sb
def
= {t ∈ (0, T ) : |ϕ(b, t)| > max(|ϕ(a, t)|, |ϕ(c, t)|)}

Sc
def
= {t ∈ (0, T ) : |ϕ(c, t)| > max(|ϕ(b, t)|, |ϕ(a, t)|)}.

We know that Jεs admits an unique minimizer ϕ̂0 ∈ H. Namely, for any ψ0 ∈ L2(0, 1) and h ∈ R
sufficiently small, we would have Jεs(ϕ̂0) ≤ Jεs(ϕ̂

0 + hψ0). Hence by using variational approach, for all
ε > 0, we obtain the following approximate switching controls

uεa(t) = −χSa
ϕ̂ε(a, t), uεb(t) = −χSb

ϕ̂ε(b, t), uεc(t) = −χSc
ϕ̂ε(c, t),

where χSi
is the characteristic function defined on the set Si which gets 1 in Si and 0 otherwise for

i = a, b, c. Using Lemma 2.3, as ε→ 0, we obtain the null switching controls. In conclusion, we have the
following result

Theorem 2.1 Assume that points a, b, c in the interval (0,1) are such that the irrationality conditions hold
( i.e., a ± b, b ± c, c ± a 6= m/k). Let the initial datum y0 be in H′ which is the dual one of the space
H. More precisely, assume that Fourier coefficients of y0 satisfying (13). Then, for all T > 0, there exist
switching controls

ua(t) = −ϕ̂(a, t)χSa
, ub(t) = −ϕ̂(b, t)χSb

, uc(t) = −ϕ̂(c, t)χSc
,

satisfying switching condition (2) and that the solution of heat equation (1) satisfies

y(x, T ) = 0,

i.e, null controllability are satisfied. These switching controls obtained by minimizing the functional (15)
over H.

In general, we could examine the case in which n ∈ N, pointwise controllers act at n different points
(ai)

i=n
i=1 of the space interval (0, 1).
Consider the heat system

yt − yxx =
∑n
i=1 uai(t)δai(x), 0 < x < 1, 0 < t < T,

y(0, t) = y(1, t) = 0, 0 < t < T,

y(x, 0) = y0(x), 0 < x < 1.

(2.21)

Here now, given an initial datum y0 ∈ L2(0, 1) we are looking for controls {uai(t)}i=ni=1 ∈ L
2(0, T ) such

that null controllability of heat equation holds, i.e, y(x, T ) = 0 and switching condition satisfies:

uai(t)uaj (t) = 0, ∀i 6= j, a.e. t ∈ (0, T ). (2.22)

At first, we consider the approximate controllability problem. To obtain approximate switching con-
trols, one should minimize an appropriate quadratic functional over suitable Hilbert space, and under
some conditions on the Fourier coefficients of y0, we will get our desired null switching controls satisfy-
ing switching property. Consequently, we obtain following general new result for switching controls:
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Theorem 2.2 Assume that points {ai}i=ni=0 in the interval (0,1) are such that the irrationality conditions
hold ( i.e, ai ± aj , are irrationals ∀i 6= j ). Let the initial datum y0 be in H ′n which is the dual space of
class of initial data of adjoint system (3)

Hn = {ϕ0 :

∫ T

0

n∑
i=1

|ϕ(ai, t)|2dt <∞}.

More precisely, let y0 be of the form

y0 =
∑
k≥1

y0kωk(x) with
∑
k≥1

e2π
2k2T∑i=n

i=1 |ωk(ai)|2
|y0k|

2 <∞.

Then, for all T > 0, there exist switching controls {uai(t)}i=ni=1 ∈ L
2(0, T ) satisfying (22) and that the

solution of heat equation satisfies
y(x, T ) = 0,

i.e, null controllability are satisfied. These switching controls are

uai(t) = −ϕ̂(ai, t), uaj (t) = 0 for j 6= i, in Sai ∀i ∈ {1, 2, ..., n},

where
Sai =

{
t ∈ (0, T ) : |ϕ(ai, t)| > max

1≤j≤n
j 6=i

{|ϕ(aj , t)|}
}
,

and ϕ̂0 = ϕ̂(x, T ) is the minimizer of the functional

Jns (ϕ
0) =

1

2

∫ T

0

max
1≤i≤n

{|ϕ(ai, t)|2}dt−
∫ 1

0

y0(x)ϕ(x, 0)dx,

where ϕ̂(x, t) is the solution of (3) with initial data ϕ̂0.
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