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Abstract. In this paper, we study the boundedness of the Marcinkiewicz operator µΩ and their commu-
tators [b, µΩ ] on local and global Morrey type spaces LMpθ,w and GMpθ,w, respectively. The problem of
boundedness of µΩ and their commutators [b, µΩ ] in local Morrey type spaces are reduced to the problem
of boundedness of the Hardy operator and general Hardy operator in weighted Lp spaces. This allows
obtaining sufficient conditions for boundedness for all admissible values of the parameters.
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1 Introduction and Notation

Morrey spaces and their properties play an important role in the study of local behavior of solutions
to elliptic partial differential equations, refer to [21,22]. The authors of [1,9] showed the boundedness in
Morrey spaces for some important operators in harmonic analysis such as Hardy-Littlewood operators,
Calderon-Zygmund singular integral operators and fractional integral operators. Guliyev in [12] defined
local Morrey type spaces and investigated the boundedness of operators above in the new class of spaces.

Let Sn−1 be the unit sphere in Rn (n ≥ 2) equipped with normalized Lebesgue measure dσ. Suppose
Ω ∈ Lq(Sn−1) with 1 < q ≤ ∞ is homogeneous of degree zero and satisfies the cancelation condition∫

Sn−1

Ω(x′)dσ(x′) = 0,

where x′ = x/|x| for any x ̸= 0. Marcinkiewicz operator µΩ is defined by

µΩf(x) =

(∫ ∞

0

|FΩ,t(x)|2
dt

t3

) 1
2

,

where
FΩ,t(x) =

∫
|x−y|<t

Ω(x− y)

|x− y|n−1
f(y)dy.

Let b be a locally integrable function on Rn, the commutator of b and µΩ is defined as follows

[b, µΩ ]f(x) =

(∫ ∞

0

|F b
Ω,t(x)|

2 dt

t3

) 1
2

,
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where
F b
Ω,t(x) =

∫
|x−y|<t

Ω(x− y)

|x− y|n−1
[b(x)− b(y)]f(y)dy.

It is well known that Marcinkiewicz operator play an important role in harmonic analysis. Benedek et al.
[10] proved that if Ω ∈ C1(Sn−1), then µΩ is bounded on Lp(Rn) for 1 < p < ∞. The corresponding
commutator [b, µΩ ] was first considered by Torchinsky and Wang in [24]. In 2002, Ding et al. [11] showed
that if Ω ∈ Lq(Sn−1), q > 1, then µΩ is bounded on Lp(Rn) for 1 < p < ∞.

Suppose 0 < p, θ ≤ ∞ and w be a non-negative measurable function on (0,∞), for any function
f ∈ Lloc

p (Rn), we denote by LMpθ,w, GMpθ,w, the local Morrey-type space, the global Morrey-type
space respectively with finite quasinorms

∥f∥LMpθ,w
= ∥w(r)∥f∥Lp(B(0,r))∥Lθ(0,∞), ∥f∥GMpθ,w

= sup
x∈Rn

∥f(x+ ·)∥LMpθ,w
.

For w(r) = r−
λ
p , 0 < λ < n we get the variant of Morrey type space GMpθ,r−λ introduced by D.R.

Adams [1], which were used by G. Lu [19] for studying the embedding theorems for vector fields of
Hörmander type. For θ = ∞, LMp,∞,w ≡ GMp,∞,w are the generalized Morrey space Mp,w(Rn)

introduced by T. Mizuhara [9]. When θ = ∞, w = r−λ/p, it is the classical Morrey space.
In 1994 the doctoral thesisis [12] by V.S. Guliyev (see, also [13–16]) introduced the local Morrey-type

space LMpθ,w. In [12] by V.S. Guliyev intensively studied the classical operators in the local Morrey-
type space LMpθ,w, see also the books V.S. Guliyev [13] (1996) and [14] (1999), where these results
were presented for the case when the underlying space is the Heisenberg group or a homogeneous group,
respectively.

The main purpose of [12] (see also in [13–16]) is to give some sufficient conditions for the bounded-
ness of fractional integral operators and singular integral operators defined on homogeneous Lie groups
in local Morrey-type space LMpθ,w. In a series of papers by V. Burenkov, H. Guliyev and V. Guliyev (see
[3]-[6]) be given some necessary and sufficient conditions for the boundedness of fractional maximal op-
erators, fractional integral operators and singular integral operators in local Morrey-type space LMpθ,w.
Recall that the global Morrey-type space GMpθ,w were introduced in [3], see also [4].

Therefore, the purpose of this paper is mainly to study the boundedness of Marcinkiewicz operator
and its commutators in local Morrey space and global Morrey space for any 0 < θ ≤ ∞.

In what follows, we denote by C positive constants which are independent of the main parameters,
but it may vary from line to line.

2 Marcinkiewicz integral in local Morrey spaces

In this section, we study the boundedness of integral operators in local Morrey spaces and global Morrey
spaces. To state the main results, we first introduce some notations.

Definition 2.1 Let 0 < p, θ ≤ ∞, we denote by Ωθ the set of all functions w which are non-negative,
measurable on (0,∞), not equivalent to 0 and such that for some t > 0,

∥w(r)∥Lθ(t,∞) < ∞.

Moreover, we denote by Ωp,θ the set of all functions w which are non-negative, measurable on (0,∞),
not equivalent to 0 and such that for some t1, t2 > 0,

∥w(r)∥Lθ(t1,∞) < ∞, ∥w(r)rn/p∥Lθ(0,t2) < ∞.

In [12], the following result was shown

Lemma 2.1 Let 0 < p, θ ≤ ∞ and w be a non-negative measurable function on (0,∞), then the
following is true

1. If for all t > 0, ∥w(r)∥Lθ(t,∞) = ∞, then LMpθ,w = GMpθ,w = Θ, where Θ is the set of all
functions equivalent to 0 on Rn.
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2. If for all t > 0, ∥w(r)rn/p∥Lθ(0,t) = ∞, then any functions f ∈ LMpθ,w, continuous at 0, f(0) = 0,
and for 0 < p < ∞, GMpθ,w = Θ. Consequently, in the sequel, we always assume that either
w ∈ Ωθ or w ∈ Ωp,θ .

Let Lp,v(0,∞) be the weighted Lebesgue space of function f on (0,∞) for which ∥f∥Lp,v(0,∞) =(∫∞
0

|f(x)|pv(x)dx
)1/p

< ∞ and let H denote the Hardy operator

Hg(r) =

∫ r

0

g(t)dt, 0 < r < ∞.

Therefore, we have the following theorem

Theorem 2.1 Let Ω ∈ Lq(Sn−1), 1 < q < ∞, be a homogeneous of degree zero and satisfy the can-
cellation condition. If for any q′ < p < ∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 an dw2 ∈ Ωθ2 , suppose
that

v(r) = wθ1
1

(
r−

p
n

)
r−

p
n−1, u(r) = wθ2

2

(
r−

p
n

)
r−

p
n−θ2−1.

Assume the operator H is bounded from Lθ1,v(0,∞) to Lθ2,u(0,∞) on the cone of all non-negative non-
increasing functions ϕ on (0,∞) satisfying the condition lim

t→∞
ϕ(t) = 0, then the Marcinkiewicz operator

µΩ is bounded from LMpθ1,w1
to LMpθ2,w2

and from GMpθ1,w1
to GMpθ2,w2

( in the latter case, it is
assume that w1 ∈ Ωp,θ1 and w2 ∈ Ωp,θ2 ).

Proof. For any ball B = B(x0, r), function f(x) can be divided into two parts: f = fχ4B+fχRn\4B :=

f1 + f2, thus we have

∥µΩf∥Lp(B) ≤ ∥µΩf1∥Lp(B) + ∥µΩf2∥Lp(B) ≡ I1 + I2. (2.1)

For I1, by Lp(Rn) boundedness of µΩ in [2], we have

I1 ≤ C∥f∥Lp(4B) ≤ Cr
n
p

∫ ∞

r

∥f∥Lp(B(x,t))
dt

t
n
p +1

, (2.2)

where the constant C > 0 is independent of f .
For I2, we first estimate µΩf2(x) for any x ∈ B, since y ∈ Rn \ 4B, it has the following inequality:

|x− y| > |y − x0| − |x− x0| > 1
2 |y − x0| > 3r, therefore we obtain

|µΩf2(x)| ≤
∫
Rn

|Ω(x− y)|
|x− y|n−1

|f2(y)|

(∫
|x−y|<t

dt

t3

) 1
2

dy

= C

∫
Rn\4B

|Ω(x− y)|
|x− y|n−1

|f(y)|dy

≤
∫
Rn\B(0,3r)

|Ω(z)|
|z|n f(x− z)dz

= C

∫
Rn\B(0,3r)

|Ω(z)f(x− z)|
∫ ∞

|z|

dt

tn+1
dz

≤ C

∫ ∞

3r

∫
B(0,t)

|Ω(z)f(x− z)|dz dt

tn+1

≤ C∥Ω∥Lq(Sn−1)

∫ ∞

3r

(∫
B(0,t)

|f(x− z)|q
′
dz

) 1
q′

dt

t
n
p +1

,

since q′ < p < ∞, for any |x − x0| < r, |z| < t, it has the following inequality: |x − z − x0| ≤
|z|+ |x− x0| < 2t, hence we have

|µΩf2(x)| ≤ C∥Ω∥Lq(Sn−1)

∫ ∞

3r

(

∫
B(x0,2t

|f(y)|pdy)
1
p

dt

t
n
p +1

≤ C∥Ω∥Lq(Sn−1)

∫ ∞

r

∥f∥Lp(B(x0,t))
dt

t
n
p +1

.
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Thus for I2, we have

I2 ≤ C∥Ω∥Lq(Sn−1)r
n
p

∫ ∞

r

∥f∥Lp(B(x0,t))
dt

t
n
p +1

. (2.3)

Finally, by the definition of local Morrey space and inequalities of (2.1) − (2.3), we show

∥µΩf∥LMpθ2w2
= ∥w2(r)∥µΩf∥Lp(B(0,r))∥Lθ2

(0,∞)

≤ C∥w2(r)r
n
p

∫ ∞

r

t−n/p−1∥f∥Lp(B(0,t))dt∥Lθ2
(0,∞)

= C∥w2(r
− p

n )
1

r

∫ r

0

∥f∥
Lp(B(0,t−

p
n ))

dtr
− p

nθ2
− 1

θ2 ∥Lθ2
(0,∞).

Let g(t) = ∥f∥
Lp(B(0,t−

p
n ))

, u(r) = wθ2
2

(
r−

p
n

)
r−

p
n−θ2−1, then

∥µΩf∥LMpθ2w2
≤ C∥Hg(r)∥Lθ2,u(0,∞). (2.4)

Let v(r) = wθ1
1 (r−

p
n ) r−

p
n−1, by the weighted Lp boundedness of Hardy operator H and inequality

(2.4), we have

∥µΩf∥LMpθ2w2
≤ C∥g(r)∥

L
θ1
v (0,∞)

= C

(∫ ∞

0

∥f∥θ1Lp(B(0,r))w
θ1
1

(
r−

p
n

)
r−

p
n−1dr

) 1
θ1

= C

(∫ ∞

0

∥f∥θ1Lp(B(0,r))w
θ1
1 (r)dr

) 1
θ1

= C∥∥f∥Lp(B(0,r))w1(r)∥Lθ1
(0,∞) = C∥f∥LMpθ1w1

,

where the constant C > 0 is independent of f .
On the other hand, by the definition of global Morrey-type spaces, it only need to g(t) = ∥f∥

Lp(B(x0,t
− p

n ))
,

just like local Morrey-type spaces, we also obtain the boundedness in global Morrey spaces.

In order to obtain sufficient conditions of the Marcinkiewicz operator, we shall apply the known
necessary and sufficient conditions ensuring boundedness of the Hardy operator H from one weighted
Lebesgue space to another one for any non-negative nonincreasing function g (see, for example [7,8]).

Lemma 2.2 Let g be a non-negative nonincreasing function and u, v weight functions on (0,∞).

(a) If 1 < θ1 ≤ θ2 < ∞, then the inequality(∫ ∞

0

(Hg)θ2(t)u(t)dt

)1/θ2

≤ C

(∫ ∞

0

gθ1(t)v(t)dt

)1/θ1

(2.5)

holds if any only if

B11 := sup
t>0

(∫ t

0

u(r)rθ2dr

)− 1
θ2
(∫ t

0

v(r)dr

) 1
θ1

< ∞,

and

B12 := sup
t>0

(∫ ∞

t

u(r)dr

) 1
θ2

(∫ t

0

v(r)rθ
′
1(∫ r

0
v(ρ)dρ

)θ′
1

dr

) 1
θ′1

< ∞.

(b) If 0 < θ1 ≤ 1, 0 < θ1 ≤ θ2 < ∞, then the inequality (2.5) holds if any only if B11 < ∞ and

B22 := sup
t>0

(∫ ∞

t

u(r)dr

) 1
θ2
(∫ t

0

v(r)dr

)− 1
θ′1

< ∞.
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(c) If 1 < θ1 ≤ ∞, 0 < θ2 < θ1 < ∞, θ2 ̸= 1, then the inequality (2.5) holds if any only if

B31 :=

∫ ∞

0

(∫ t
0
u(r)rθ2dr∫ t
0
v(r)dr

) θ2
θ1−θ2

u(t)tθ2dt


θ1−θ2
θ1θ2

< ∞,

and

B32 :=

∫ ∞

0

(∫ ∞

t

u(r)dr

) 1
θ2

(∫ t

0

v(r)rθ
′
1(∫ r

0
v(ρ)dρ

)θ′
1

dr

) θ2−1
θ2


θ1θ2

θ1−θ2

× v(t)tθ
′
1(∫ t

0
v(ρ)dρ

)θ′
1

dt


θ1−θ2
θ1θ2

< ∞.

(d) If 1 = θ2 < θ1 < ∞, then the inequality (2.5) holds if any only if

B41 :=

∫ ∞

0

(∫ t
0
u(r)rdr∫ t

0
v(r)dr

) 1
θ1−1

u(t)tdt


θ1−1
θ1

< ∞,

and B42 := supt>0

[( ∫ t
0 u(r)rdr+t

∫∞
t u(r)dr∫ t

0 v(r)dr

)θ′
1−1

×
(∫∞

t
u(r)dr

)
dt

]θ′
1

< ∞.

(e) If 0 < θ2 < θ1 = 1, then the inequality (2.5) holds if any only if

B51 :=

∫ ∞

0

(∫ t
0
u(r)rθ2dr∫ t
0
v(r)dr

) θ2
1−θ2

u(t)tθ2dt


1−θ2
θ2

< ∞,

and

B52 :=

∫ ∞

0

(∫ ∞

t

u(r)dr

) θ2
1−θ1

(
inf

0<s<t

1

s

∫ s

0

v(ρ)dρ

) θ2
θ2−1

× u(t)dt


1−θ2
θ2

< ∞.

(f) If 0 < θ2 < θ1 < 1, then the inequality (2.5) holds if any only if B31 < ∞ and

B62 :=

∫ ∞

0

sup
0<s≤t

s
θ1θ2

θ1−θ2(∫ s
0
v(ρ)dρ

) θ2
θ1−θ2

(∫ ∞

t

u(r)dr

) θ1θ2
θ1−θ2

× u(t)dt


θ1−θ2
θ1θ2

< ∞.

(g) If 0 < θ1 ≤ 1, θ2 = ∞, then the inequality (2.5) holds if any only if

B7 := ess sup
0<s≤t

su(t)(∫ s
0
v(r)dr

) 1
θ1

< ∞.

(h) If 1 < θ1 < ∞, θ2 = ∞, then the inequality (2.5) holds if any only if

B8 := ess sup
t>0

u(t)

(∫ t

0

rθ
′
1−1∫ r

0
v(s)

dr

) 1
θ1

′

< ∞.
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(i) If θ1 = ∞, 0 < θ2 < ∞, then the inequality (2.5) holds if any only if

B9 :=

∫ ∞

0

∫ t

0

dr

ess sup
0<y<r

v(y)

θ2

u(t)dt


1
θ2

< ∞.

(j) If θ1 = θ2 = ∞, then the inequality (2.5) holds if any only if

B10 := ess sup
t>0

u(t)

∫ t

0

dr

ess sup
0<y<r

v(y)
< ∞.

From Theorem 2.1 and Lemma 2.2, we obtain the following result.

Corollary 2.1 Let Ω ∈ Lq(Sn−1), for any q′ < p < ∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 and w2 ∈ Ωθ2 ,
suppose that any of condition (a)− (j) is satisfied, then the Marcinkiewicz operator µΩ is bounded from
LMpθ1,w1

to LMpθ2,w2
and from GMpθ1,w1

to GMpθ2,w2
( in the latter case, it assumes that w1 ∈ Ωp,θ1

and w2 ∈ Ωp,θ2 ).

Note that if θ1 = θ2 = ∞, that is, condition (j) is satisfied, then the operator µΩ is bounded from gen-
eralized Morrey space Mp,ω1 to generalized Morrey space Mp,ω2 , which extend to the result of Guliyev
et al. in [17].

3 Commutators of Marcinkiewicz integral in Local Morrey spaces

In this section, we consider the commutators generalized by the singular integral operator, Marcinkiewicz
operator and BMO function. A local integrable function f ∈ Lloc(Rn), if it satisfies

∥b∥∗ ≡ sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|dy < ∞,

where B(x, r) is ball centered at x and radius of r and bB(x,r) =
1

|B(x,r)|
∫
B(x,r)

b(y)dy, then b belongs
to BMO, and ∥ · ∥∗ is the norm in BMO. Meantime, it has the following equivalent condition

sup
x∈Rn,r>0

(
1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|
pdy

) 1
p

< ∞

for any 1 < p < ∞. Besides this equivalent property, the following estimate is very convenient in appli-
cations.

Lemma 3.1 Let b ∈ BMO(Rn). Suppose 1 ≤ p < ∞, x ∈ Rn, and R > 2r > 0, there exist constant
C > 0, such that

|bB(x,R) − bB(x,r)| ≤ C ln
R

r
∥f∥BMO.

These lemmas are obvious, we omit here, reader can consult [15].
In the discussion of boundedness of Marcinkiewicz operator in local Morrey-type space, we use the

Lp,w boundedness of the Hardy operator. However, when we consider its commutator, it is not enough
to the weighted Lp boundedness of the Hardy operator. In the following, we introduce a general Hardy
operator.

Definition 3.1 We will say that K is a general Hardy-type operator if it has the form

Kg(x) :=

∫ x

0

k(x, t)g(t)dt,

where the kernel k(x, y) satisfies

(i) k(x, t) ≥ 0, 0 < t < x;
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(ii) k(x, t) is increasing in x and decreasing in t;
(iii) k(x, t) ≈ k(x, z) + k(z, t), 0 < t < z < x.

Such kernels are called Oinarov kernels.

Remark 3.1 k(x, t) ≡ 1, then K is the classical Hardy operator; k(x, t) = Φ
(
x
t

)
, where Φ satisfies

Φ(ab) ≈ Φ(a) + Φ(b), 0 < a < b < ∞, meets the demands.

Therefore, we get the following theorem

Theorem 3.1 Let Ω ∈ Lq(Sn−1), for any q′ < p < ∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 , w2 ∈ Ωθ2 and
b ∈ BMO, and

v(r) = wθ1
1

(
r−

p
n

)
r−

p
n−1, u(r) = wθ2

2

(
r−

p
n

)
r−

p
n−θ2−1.

If the Marcinkiewicz operator µΩ is bounded from Lθ1,v(0,∞) to Lθ2,u(0,∞), then the commutator
[b, µΩ ] is bounded from LMpθ1,w1

to LMpθ2,w2
and from GMpθ1,w1

to GMpθ2,w2
( in the latter case, it

is assume that w1 ∈ Ωp,θ1 and w2 ∈ Ωp,θ2 ).

Proof. For any ball B = B(x0, r), function f(x) can be divided into two parts: f = fχ4B+fχRn\4B :=

f1 + f2, thus, we have

∥[b, µΩ ]f∥Lp(B) ≤ ∥[b, µΩ ]f1∥Lp(B) + ∥[b, µΩ ]f2∥Lp(B) ≡ J1 + J2. (3.1)

For J1, by Lp(Rn) boundedness of [b, µΩ ] in [3], we have

J1 ≤ C∥f∥Lp(4B) ≤ Cr
n
p

∫ ∞

3r

∥f∥Lp(B(x,2t))
dt

t
n
p +1

, (3.2)

where the constant C > 0 is independent of f .
For J2, observe that for any x ∈ B, since y ∈ Rn \ 4B, it has the following inequality: |x − y| >

|y − x0| − |x− x0| >
1

2
|y − x0| > 3r, therefore we obtain

|[b, µΩ ]f2(x)| ≤
∫
Rn\4B

Ω(x− y)

|x− y|n |b(x)− b(y)| |f(y)|dy

≤
∫
Rn\B(0,3r)

|Ω(z)|
|z|n |b(x)− b(x− z)| |f(x− z)|dz

= C

∫
Rn\B(0,3r)

|Ω(z)| |b(x)− b(x− z)| |f(x− z)|
∫ ∞

|z|

dt

tn+1
dz

≤ C

∫ ∞

3r

∫
B(0,t)

|Ω(z)| |b(x)− bB | |f(x− z)|dz dt

tn+1

+ C

∫ ∞

3r

∫
B(0,t)

|Ω(z)| |bB(x0,2t) − bB | |f(x− z)|dz dt

tn+1

+ C

∫ ∞

3r

∫
B(0,t)

|Ω(z)| |b(x− z)− bB(x0,2t)| |f(x− z)|dz dt

tn+1

:= K1 +K2 +K3, (3.3)
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since q′ < p < ∞, for any |x − x0| < r, |z| < t, it has the following inequality: |x − z − x0| ≤
|z|+ |x− x0| < 2t, hence we have

K1 ≤ C|b(x)− bB |
∫ ∞

3r

∫
B(0,t)

|Ω(z)f(x− z)|dz dt

tn+1

≤ C|b(x)− bB |
∫ ∞

3r

(∫
B(0,t)

|Ω(z)|qdz

) 1
q
(∫

B(0,t)

|f(x− z)|q
′
dz

) 1
q′

dt

tn+1

≤ C|b(x)− bB |∥Ω∥Lq(Sn−1)

∫ ∞

3r

(∫
B(x0,2t)

|f(y)|q
′
dy

) 1
q′

dt

t
n
q′ +1

≤ C|b(x)− bB |∥Ω∥Lq(Sn−1)

∫ ∞

3r

∥f∥Lp(B(x0,2t))
dt

t
n
p +1

,

thus, we obtain

∥K1∥Lp(B) ≤ C∥Ω∥Lq(Sn−1)

(∫
B

|b(x)− bB |pdx
) 1

p
∫ ∞

r

∥f∥Lp(B(x0,t))
dt

t
n
q′ +1

≤ C∥b∥∗∥Ω∥Lq(Sn−1)r
n
p

∫ ∞

3r

∥f∥Lp(B(x0,2t))
dt

t
n
p +1

. (3.4)

Next, we consider the third part of K3, for any q′ < p < ∞ and some 1 < s < pq
p+q , we have

K3 ≤ C

∫ ∞

3r

(∫
B(0,t)

|b(x− z)− bB(x0,2t)|
s′dz

) 1
s′
(∫

B(0,t)

|Ω(z)f(x− z)|sdz

) 1
s

dt

tn+1

≤ C

∫ ∞

3r

(∫
B(x0,2t)

|b(y)− bB(x0,2t)|
s′dy

) 1
s′

×

(∫
B(0,t)

|Ω(z)|qdz

) 1
q
(∫

B(0,t)

|f(x− z)|
sq

q−sdz

) q−s
qs

dt

tn+1

≤ C∥Ω∥Lq(Sn−1)∥b∥∗
∫ ∞

3r

∥f∥Lp(B(x0,2t))
dt

t
n
p +1

. (3.5)

Finally, for the second part of K2, by the lemma 3.1, we obtain

K2 ≤ C∥b∥∗
∫ ∞

3r

∫
B(0,t)

|Ω(z)f(x− z)|dz ln
(
2t

r

)
dt

tn+1

≤ C∥b∥∗∥Ω∥Lq(Sn−1)

∫ ∞

3r

(∫
B(0,t)

|f(x− z)|q
′
dz

) 1
q′

ln
(
t

r

)
dt

t
n

q′+1

≤ C∥b∥∗∥Ω∥Lq(Sn−1)

∫ ∞

3r

(∫
B(x0,2t)

|f(y)|q
′
dy

) 1
q′

ln
(
t

r

)
dt

t
n
q′ +1

= C∥b∥∗∥Ω∥Lq(Sn−1)

∫ ∞

3r

∥f∥Lp(B(x0,2t)) ln
(
t

r

)
dt

t
n
p +1

. (3.6)

Therefore, by the inequalities (3.1)-(3.6), we show

∥[b, µΩ ]f∥Lp(B) ≤ C∥b∥∗∥Ω∥Lq(Sn−1)

∫ ∞

3r

∥f∥Lp(B(x0,2t)) ln
(
t

r

)
dt

t
n
p +1

≤ C∥b∥∗∥Ω∥Lq(Sn−1)

∫ ∞

r

∥f∥Lp(B(x0,t)) ln
(
t

r

)
dt

t
n
p +1

,
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where the constant C > 0 is independent of f .
Thus, by the definition of local Morrey space, we have

∥[b, µΩ ]f∥LMpθ2w2
= ∥w2(r)∥[b, µΩ ]f∥Lp(B(0,r))∥Lθ2

(0,∞)

≤ C∥w2(r)r
n
p

∫ ∞

r

t−n/p−1∥f∥Lp(B(0,t)) ln
(
t

r

)
dt∥Lθ2

(0,∞)

= C∥w2

(
r−

p
n

)
1

r

∫ r

0

∥f∥
Lp(B(x0,t

− p
n ))

ln
(
t

r

)
dtr

−p
nθ2

− 1
θ2 .

Let g(t) = ∥f∥
Lp(B(0,t−

p
n ))

, u(r) = wθ2
2

(
r−

p
n

)
r−

p
n−θ2−1 and k(r, t) = ln r

t , for any 0 < t < r, then

∥[b, µΩ ]f∥LMpθ2,w2
≤ C∥Kg(r)∥Lθ2,u(0,∞). (3.7)

Let v(r) = wθ1
1

(
r−

p
n

)
r−

p
n , by the weighted Lp boundedness of general Hardy operator K and inequal-

ity (3.7), we have

∥[b, µΩ ]f∥LMpθ2w2
≤ C∥g(r)∥Lθ1,v(0,∞)

= C

(∫ ∞

0

∥f∥
Lp(B(0,r−

p
n ))

wθ1
1

(
r−

p
n

)
r−

p
n−1dr

) 1
θ1

= C

(∫ ∞

0

∥f∥θ1Lp(B(0,r))w
θ1
1 (r)dr

) 1
θ1

= C∥∥f∥Lp(B(0,r))w1(r)∥Lθ1
(0,∞)

= C∥f∥LMpθ1,w1
,

where the constant C > 0 is independent of f .
On the other hand, by the definition of global Morrey-type spaces, it only need to g(t) = ∥f∥

Lp(B(x0,t
− p

n ))
,

just like local Morrey-type spaces, we also obtain the boundedness in global Morrey spaces.

Note that, in the proof of Theorem 3.1, we assume k(r, t) = ln
(
r
t

)
, 0 < t < r. According to [16], it

has known the necessary and sufficient conditions on the weight functions u and v which ensured that(∫ ∞

0

|(Kf)(x)|θ2u(x)dx
)θ2

≤ C

(∫ ∞

0

|f(x)|θ1v(x)dx
)θ1

(3.8)

holds. Next, it supposes the kernel k(r, t) = ln
(
r
t

)
, 0 < t < r, we have the following lemma

Lemma 3.2 Let g be a non-negative function and u, v weight functions on (0,∞).

(i) If (θ1, θ2) ∈ D1 ≡ {(θ1, θ2) : 1 < θ1 ≤ θ2 < ∞}, then the inequality (3.8) holds if and only if

B11 = sup
t>0

(∫ ∞

t

(
ln

s

t

)θ2
u(s)ds

)1/θ2 (∫ t

0

v1−θ′
1(s)ds

)1/θ1

< ∞,

and

B12 = sup
t>0

(∫ ∞

t

u(s)ds

)1/θ2 (∫ t

0

(
ln

t

s

)θ′
1

v1−θ′
(s)ds

)1/θ1

< ∞,

(ii) If (θ1, θ2) ∈ D2 ≡ {(θ1, θ2) : 1 < θ2 < θ1 < ∞} , 1
r = 1

θ2
− 1

θ1
, then the inequality (3.8) holds if

and only if

B2
1 =

{∫ ∞

0

(∫ ∞

t

(
ln

s

t

)θ2
u(s)ds

)r/θ2 (∫ t

0

v1−θ′
1(s)ds

)r/θ′
2

v1−θ′
1(t)dt

}1/r

< ∞,

and

B22 =

{∫ ∞

0

(∫ ∞

t

u(s)ds

)r/θ1 (∫ t

0

(
ln

t

s

)θ′
1

v1−θ′
1(s)ds

)r/θ′
1

u(t)dt

}1/r

< ∞.
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(iii) Let (θ1, θ2) ∈ D3 ≡ {(θ1, θ2) : 0 < θ2 < 1 < θ1 < ∞}, 1
r = 1

θ2
− 1

θ1
, if B2

1 < ∞, then the
inequality (3.8) holds. Conversely if (3.8) holds, then

B32 =

(∫ ∞

0

(∫ ∞

t

(
ln

s

t

)θ2
u(s)ds

)θ′
1/θ2

v1−θ′
1(t)dt

)1/θ′
1

< ∞.

Moreover, if g is a non-negative nonincreasing function, for parameter: 0 < θ1 ≤ 1, θ1 ≤ θ2 < ∞, we
have the following lemma

Lemma 3.3 Let g is a non-negative nonincreasing function, and u, v weight functions on (0,∞), for
(θ1, θ2) ∈ D4 ≡ {(θ1, θ2) : 0 < θ2 ≤ 1, θ1 ≤ θ2 < ∞}, the inequality (3.8) holds if and only if

sup
r>0

(∫ ∞

r

tθ2u(t)dt

)1/θ2 (∫ r

0

v(t)dt

)−1/θ1

< ∞.

Note that Lemma 3.2 and Lemma 3.3 were proved in [18] (see theorem 2.10, 2.15, 2.17 and corollary
6.15). Now, from Theorem 2 and Lemmas 4 and 5, we have the following result.

Corollary 3.1 Let Ω ∈ Lq(Sn−1), 1 < q < ∞, for any q′ < p < ∞, (θ1, θ2) ∈ D1 ∪ D2 ∪ D3 ∪
D4, w1 ∈ Ωθ1 and w2 ∈ Ωθ2 , suppose that any of condition of Lemma 3.2 or Lemma 3.3 is satisfied.
Then for any b ∈ BMO, the commutator [b, µΩ ] is bounded from LMpθ1,w1

to LMpθ2,w2
and from

GMpθ1,w1
to GMpθ2,w2

( in the latter case, it is assume that w1 ∈ Ωp,θ1 and w2 ∈ Ωp,θ2 ).

Acknowledgements. The authors would like to express their gratitude to the referees for his very
valuable comments and suggestions.

References

1. Adams, D.R.: A note on Riesz potentials, Duke Math. J., 42, 765-778 (1975).
2. Alvarez, J., Bagby, R.J., Kurtz, D.S., Perez C.: Weighted estimates for commutators of linear operators. Studia Math.

104, 195-209 (1993).
3. Burenkov, V.I., Guliyev, H.V.: Necessary and sufficient conditions for boundedness of the maximal operator in the local

Morrey-type spaces, Studia Math., 163 (2), 157-176 (2004).
4. Burenkov, V.I., Guliyev, H.V., Guliyev, V.S.: Necessary and sufficient conditions for boundedness of the fractional max-

imal operators in the local Morrey-type spaces, J. of Comt. Appl. Math. 208 (1), 280-301 (2007).
5. Burenkov, V.I., Guliyev, V.S.: Necessary and sufficient conditions for the boundedness of the Riesz operator in local

Morrey-type spaces, Potential Anal. 30 (3), 211-249 (2009).
6. Burenkov, V.I., Guliyev, V.S., Serbetci, A., Tararykova, T.V.: Necessary and sufficient conditions for the boundedness of

genuine singular integral operators in local Morrey-type spaces, Eurasian Math. J. 1 (1), 32-53 (2010).
7. Carro, M., Pick, L., Soria, J., Stepanov, V.D.: On embeddings between classical Lorentz spaces. Math. Inequal. Appl. 4

(3), 397-428 (2001).
8. Carro, M., Gogatishvili, A., Martin, J., Pick, L.: Weighted inequalities involving two Hardy operators with applications

to embeddings of function spaces. J. Operator Theory 59(2), 309-332 (2008).
9. Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. 7, 273-279 (1987).

10. Benedek, A., Calderon, A.P., Panzone, R.: Convolution operators on Banach space valued functions, Proc. Natl. Acad.
Sci. USA 48, 356-365 (1965).

11. Ding, Y., Lu, S., Yabuta, K.: On commutators of Marcinkiewicz integrals with rough kernel, J. Math. Anal. Appl. 275,
60-68 (2002).

12. Guliyev, V.S.: Integral operators on function spaces on the homogeneous groups and on domains in Rn, Doctor’s degree
dissertation, Moscow, Mat. Inst. Steklov, 1-329 (1994) (Russian).

13. Guliyev, V.S.: Integral operators, function spaces and questions of approximation on Heisenberg groups. Baku. 1-200
(1996) (Russian).

14. Guliyev, V.S.: Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some appli-
cations. Baku. 1-332 (1999) (Russian).

15. Guliyev, V.S., Mustafayev, R.Ch.: Integral operators of potential type in spaces of homogeneous type, Dokl. Akad. Nauk,
Matematika, 354 (6), 730-732 (1997) (Russian).

16. Guliyev, V.S., Mustafayev, R.Ch.: Fractional integrals in spaces of functions defined on spaces of homogeneous type, J.
Anal. Math., 24 (3), 181-200 (1998) (Russian).

17. Guliyev, V.S., Aliyev, S.S., Karaman, T.: Boundedness for a class of sublinear operators and their commutators on
generalized Morrey spaces, Abstr. Appl. Anal. Article ID 356041, 18 p. (2011).

18. Kufner, A., Persson, L.E.: Weighted inequalities of Hardy type. World Sci. Pub. Co. Ltd. (2003).



94 Marcinkiewicz integral and its commutators on local Morrey type spaces

19. Lu, G.: Embedding theorems on Campanato-Morrey spaces for vector fields and applications. C.R.Acad. Sci. Paris. 3
(320), 429-434 (1995).

20. Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis, ICM 90
Statellite Proceedings, Springer, Tokyo. 183-189 (1991).

21. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43, 126-
166 (1938).

22. Peetre, J.: On the theory of Mp,λ, J. Funct. Anal. 4, 71-87 (1969).
23. Softova, L.: Singular integrals and commutators in generalized Morrey spaces. Acta Math. Appl. Sin. Engl. Ser., 22 (3),

757-766 (2006).
24. Torchinsky, A, Wang, S.: A note on the Marcinkiewicz integral. Colloq. Math. 60 (61), 235-243 (1990).


