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1 Introduction

There a lot of cases when the needs of practice leads to problems of definition of the coefficients or the
right hand side of a differential equation according to some data from its solution. Such problems received
the name of inverse problems of mathematical physics. The inverse problems is an actively developing
second of contemporary mathematics. At present, theory of nonlocal problems is intensively developing
and is an important section of partial differential equations. In this field, the problem with nonlocal integral
conditions are of great interest. Note that in a great majority of publications devoted to problems with
nonlocal integral conditions for hyperbolic equations, spatial nonlocal are considered [1, 4, 5]. In the
paper [2], a problem with time nonlocal integral conditions considered for a hyperbolic equation. In the
suggested paper, an inverse boundary value problem with time nonlocal integral conditions is considered
for a hyperbolic equation.

2 Problem statement

Consider for the equation
utt(x, t)− uxx(x, t) = a(t)u(x.t) + f(x, t) (2.1)

in domain DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} an inverse problem with the conditions

u(x, 0) = φ(x),

ut(x, 0) = ψ(x) +

∫ T

0

M(t)u(x, t)dt (0 ≤ x ≤ 1), (2.2)

u(0, t) = ux(1, t) = 0 (0 ≤ t ≤ T ), (2.3)

and with an additional condition
u(1, t) = h(t) (0 ≤ t ≤ T ), (2.4)

where f(x, t), φ(x), ψ(x),M(t), h(t) are the given functions, u(x, t) and a(t) are the sought functions.
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Definition 2.1 Under the classical solution of the inverse boundary value problem (2.1)-(2.4) we will
understand the pair {u(x, t), a(t)} of functions u(x, t) and a(t), if u(x, t) ∈ C2(DT ), a(t) ∈ C[0, T ] and
relations (2.1)-(2.4) are fulfilled in the ordinary sense.

Consider the problem

y′′(t) = a(t)y(t) (0 ≤ t ≤ T ), (2.5)

y(0) = 0, y′(0) =

∫ T

0

M(t)y(t)dt, (2.6)

where a(t),M(t) ∈ C[0, T ] are the given functions, y = y(t) is the sought function.
We prove the following

Lemma 2.1 Let M(t) ∈ C[0, T ] , a(t) ∈ C[0, T ] such that

∥a(t)∥C[0,T ] ≤ R ≡ const. (2.7)

Furthermore, (
∥M(t)∥C[0,T ] +

1

2
R
)
T 2 < 1. (2.8)

Then problem (2.5),(2.6) has only a trivial solution.

Proof. It is easy to see that problem (2.5), (2.6) is equivalent to the integral equation

y(t) = t

∫ T

0

M(t)y(t)dt+

∫ t

0

(t− τ)a(τ)y(τ)dτ. (2.9)

Having denoted

Ay(t) = t

∫ T

0

M(t)y(t)dt+

∫ t

0

(t− r)a(τ)y(τ)dτ, (2.10)

we write (2.9) in the from

y(t) = Ay(t). (2.11)

We will investigate equation (2.11) in the space C[0, T ]

It is easy to see that the operator A is continuous in the space C[0, T ]

Show that the operator A is contractive in the space C[0, T ]. Indeed, for any C[0, T ] from the space
we have y(t), ȳ(t):

∥Ay(t)−Aȳ(t)∥C[0,T ] ≤
(
∥M(t)∥C[0,T ] +

1

2
R2
)
T 2 ∥y(t)− ȳ(t)∥C[0,T ] . (2.12)

From (2.12), allowing for (2.8) it follows that the operatorA is contractive in the spaceC[0, T ]. Therefore,
in the space C[0, T ] the operator A has a unique fixed point y(t) that is a unique solution of equation
(2.11). Thus, in C[0, T ] integral equation (2.9) has a unique solution, consequently problem (2.5), (2.6)
has also in C[0, T ] a unique solution. As y(t) = 0 is the solution of problem (2.5), (2.6) then it has only a
trivial solution.

The lemma is proved.

Now let’s consider the following auxiliary inverse boundary value problem. It is required to determine
the pair {u(x, t), a(t)} of functions ū(x, t) ∈ C2(D1), a(t) ∈ C[0, T ] from (2.1)-(2.3) and

h′′(t)− uxx(1, t) = a(t)h(t) + f(1, t) (0 ≤ t ≤ T ). (2.13)

The following theorem is valid.
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Theorem 2.1 Let φ(x), ψ(x) ∈ C[0, T ], M(t) ∈ C[0, T ], h(t) ∈ C2[0, T ] (0 ≤ t ≤ T ), f(x, t) ∈
C(DT ), and

φ(1) = h(0), ψ(1) +

∫ T

0

M(t)h(t)dt = h′(0)

the argument condition be fulfilled.
Then the following statements are valid
1).Each classical solution {u(x, t), a(t)} of problem (2.1)-(2.4) is the solution of problem (2.1)-(2.3),

(2.13) as well;
2).Each solution {u(x, t), a(t)} of problem (2.1)-(2.3), (2.13) is such that is the classical solution of

problem (2.1)-(2.4) (
∥M(t)∥C[0,T ] +

1

2
∥a(y)∥C[0,T ]

)
T 2 < 1. (2.14)

Proof. Let {u(x, t), a(t)} be the solution of problem (2.1)-(2.4). Assuming h(t) ∈ C2[0, T ] and twice
differentiating (2.4), we get:

ut(1, t) = h′(t), utt(t) = h′′(t) (0 ≤ t ≤ T ). (2.15)

Plugging x = 1 into equation (2.1), we have

utt(1, t) = uxx(1, t) = a(t) u(1, t) + f(1, t) (0 ≤ t ≤ T ). (2.16)

Hence, allowing for (2.4) and (2.15) we arrive to fulfillment of (2.13).
Now, assuming that {u(x, t), a(t)} is the solution of problem (2.1)-(2.3), (2.13). Then from (2.13) and

(2.16), we find
d2

dt2
(u(1, t)− h(t)) = a(t) (u(1, t)− h(t)) (0 ≤ t ≤ T ) (2.17)

by virtue of (2.2) and φ(1) = h(0), ψ(1) +
∫ T
0
M(t)h(t)dt = h′(0) it is obvious that,

u(1, 0)− h(0) = φ(1)− h(0) = 0,

ut(1, 0)− h′(0)−
∫ T

0

M(t)(u(1, t)− h(t))dt = ψ(1) +

∫ T

0

M(t)h(t)− h′(0) = 0. (2.18)

As, by virtue of lemma 1, problem (2.17), (2.18) has only a trivial solution, then u(1, t) − h(t) = 0,

i.e. condition (2.4) is fulfilled.
The theorem is proved.

3 Investigate existence and uniqueness of the classical solution of the inverse boundary value
problem.

We will seek for the solution u(x, t) {u(x, t), a(t)} of problem (2.1)-(2.3), (2.13) in the form

u(x, t) =

∞∑
k=1

uk(t) sinλkx
(
λk =

π

2
(2k − 1)

)
, (3.1)

where

uk(t) = 2

∫ 1

0

u(x, t) sinλkxdx (k = 1, 2)

is twice continuously differentiable functions on the segment [0, T ]. Then, using formal scheme of Fourier
method from (2.1) and (2.2) have

u
′′

k (t) + λ2kuk(t) = Fk(t;u, a) (k = 1, 2...; 0 ≤ t ≤ T ), (3.2)

uk(0) = φk,
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u
′

k(0) = ψk +

∫ T

0

M(t)uk(t)dt (k = 1, 2...0 ≤ t ≤ T ), (3.3)

where

Fk(t;u, a) = fk(t) + a(t)uk(t), fk(t) = 2

∫ 1

0

f(x, t) sinλkxdx,

φk = 2

∫ 1

0

φ(x) sinλkt+ ψk = 2

∫ 1

0

ψ(x) sinλkxdx (k = 1, 2...).

By solving problem (3.2), (3.3) we find

uk(t) = φk cosλkt+
1

λk

(
ψk +

∫ T

0

M(t)uk(t)dt

)
sinλkt

+
1

λk

∫ t

0

Fk(τ ;u, a) sinλk(t− τ)dτ (k = 1, 2, ...). (3.4)

For determining the first component u(x, t) of the solution of problem (2.1)-(2.3), (2.13), taking into
account relation (3.4), from (3.1) we get

u(x, t) =

∞∑
k=1

{
φk cosλkt+

1

λk

(
ψk +

∫ T

0

M(t)uk(t)dt

)
sinλkt

+
1

λk

∫ T

0

F (τ ;u, a) sinλk(t− τ)dτ

}
sinλkx. (3.5)

Now, from (2.13), allowing for (3.1), we get

a(t) = h−1(l)

{
h′′(t)− f(1, t) +

∞∑
k=1

(−1)k+1λ2kuk(t)

}
. (3.6)

In order to obtain an equation for the second component a (t) of the solution {u (x, t) , a (t)} of prob-
lem (2.1)-(2.3), (2.13) we substitute the expression (3.4) into (3.6):

a (t) = h−1 (t)

{
hn (t)− f (1, t) +

∞∑
k=1

λ2k (−1)k+1 [φk cosλkt

+
1

λk

(
ψk +

∫ T

0

M (t)uk (t) dt

)
sinλkx+

1

λk

∫ t

0

F (τ ;u, a) sinλk (t− τ) dt

]}
. (3.7)

Thus, the solution of problem (2.1)-(2.3), (2.13) was reduced to the solution of system (3.5), (3.7)
with respect to unknown function u (x, t) and a (t). For studying the uniqueness of the solution of problem
(2.1)-(2.3), (2.13) the following lemma is of great importance.

Lemma 3.1 If {u (x, t) , a (t)} is any classic solution of problem (2.1)-(2.3), (2.13), then the functions
uk (t) = 2

∫ 1
0
u (x, t) sinλkxdx (k = 1, 2, ...) satisfy system (3.4).

Proof. Let {u (x, t) , a (t)} side be any solution of problem (2.1)-(2.3), (2.13). Then having multiplied the
both parts of the equation by the function 2 sinλkx(k = 1, 2, ...), integrating the obtained inequality with
respect to x from zero to unit, and using the relation

2

∫ 1

0

utt (x, t) sinλkxdx =
d2

dx2

(
2

∫ 1

0

u (x, t) sinλkxdx

)
= u′′k (t) ,

2

∫ 1

0

uxx (x, t) sinλkxdx = −λ2k
(
2

∫ 1

0

u (x, t) sinλkxdx

)
= −λ2kuk (t) ,

k = 1, 2, ..., we get that equation (3.2) is satisfied.
In the same way from (2.2) we get that condition (3.3) is fulfilled.
Thus, uk (t)(k = 1, 2, ...), is the solution of problem. Hence it directly follows that the functions (3.2),

(3.3) satisfy system uk (t) (k = 1, 2, ...) .
The lemma is proved.
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Remark 3.1 From lemma 2 it follows that for proving the uniqueness of the solution of problem (2.1)-
(2.3), (2.13) it suffices to prove uniqueness of the solution of problem (3.5), (3.7).

For studying problem (3.5),(3,7) we consider the following spaces.
Denote by B3

2,T [3] the set of all functions u (x, t) of the form

u (x, t) =

∞∑
k=1

uk (t) sinλkx,
(
λk =

π

2
(2k − 1)

)
.

Considered in DT , where each of the functions uk (t) (k = 1, 2, ...), is continuous on [0, T ],

IT (u) =

( ∞∑
k=1

(
λ3k ∥uk (t)∥C[0,T ]

)2) 1
2

< +∞.

We define the norm in this set in the form ∥u (x, t)∥B3
2,T

= IT (u).

Denote by E3
T a space consisting of topological product B3

2,T × C [0, T ].
The norm of the element z = {u, a} is determined by the formula

∥z∥E3
T
= ∥u (x, t)∥B3

2,T
+ ∥a (t)∥C[0,T ] .

It is known that B3
2,T and E3

T are Banach spaces.
Now consider in the space E3

T operator

Φ (u, a) = {Φ1 (u, a) , Φ2 (u, a)} ,

where

Φ1 (u, a) = ũ (x, t) =

∞∑
k=1

ũ (t) sinλkx, Φ2 (u, a) = ã (t) ,

ũk (t)(k = 1, 2, ...) and ã (t) are equal to right sides of (3.4) and (3.7) respectively.
It is easy to see that{ ∞∑

k=1

(
λ3k ∥ũk (t)∥C[0,T ]

)2} 1
2

≤
√
5

( ∞∑
k=1

(
λ3k |φk|

)2) 1
2

+
√
5

( ∞∑
k=1

(
λ2k |ψk|

)2) 1
2

+
√
5 ∥M (t)∥C[0,T ]T

( ∞∑
k=1

(
λ3k ∥uk (t)∥C[0,T ]

)2) 1
2

+
√
5T

(∫ T

0

∞∑
k=1

(
λ2k |fk (τ)|

)2
dτ

) 1
2

+
√
5T ∥a (t)∥C[0,T ]T

( ∞∑
k=1

(
λ3k ∥uk (t)∥C[0,T ]

)2) 1
2

, (3.8)

∥ã (t)∥C[0,T ] ≤
∥∥∥h−1 (t)

∥∥∥
C[0,T ]

∥∥h′′ (t)− f (1, t)
∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2
k

) 1
2
[( ∞∑

k=1

(
λ3k |φk|

)2) 1
2

+

( ∞∑
k=1

(
λ2k |ψk|

)2) 1
2

+ T ∥M (t)∥C[0,T ]

( ∞∑
k=1

(
λ3k ∥u (t)∥C[0,T ]

)2) 1
2

+
√
T

(∫ T

0

∞∑
k=1

(
λ2k |fk (τ)|

)2
dτ

) 1
2

+ T ∥a (t)∥C[0,T ]

( ∞∑
k=1

(
λ3k ∥uk (t)∥C[0,T ]

)2) 1
2

 . (3.9)

Suppose that the data of problem (2.1)-(2.3), (2.13) satisfy the following conditions

1. φ (x) ∈ C2 [0, 1] , φ
′′′

(x) ∈ L2 (0, 1) , φ (0) = φ′ (1) = φ
′′
(0) = 0.
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2. ψ (x) ∈ C1 [0, 1] , ψ
′′′

(x) ∈ L2 (0, 1) , ψ (0) = ψ′ (1) = 0.

3. f (x, t) , fx (x, t) ∈ C (DT ) , fxx (x, t) ∈ L2 (DT ) ,

f (0, t) = fx (1, t) = 0 (0 ≤ t ≤ T )

4. M (t) ∈ C [0, T ] , h (t) ∈ C2 [0, T ] , h (t) ̸= 0 (0 ≤ t ≤ T ).

Then from (3.8) and (3.9) we have:

∥ũ (x, t)∥B3
2,T

≤ A1 (T ) +B1 (T ) ∥u (x, t)∥B3
2,T

(
∥a (t)∥C[0,T ] + 1

)
, (3.10)

∥ã (t)∥C[0,T ] ≤ A2 (T ) +B2 (T ) ∥u (x, t)∥B3
2,T

(
∥a (t)∥C[0,T ] + 1

)
, (3.11)

where
A1(T ) =

√
5
∥∥φ′′′(x)

∥∥
L2(0,1)

+
√
5
∥∥ψ′′(x)

∥∥
L2(0,1)

+
√
5 ∥fxx(x)∥L2(0,T ) ,

B1(T ) =
√
5
(
∥M(t)∥C[0,T ] + 1

)
T,

A2(T ) =
∥∥∥h−1(t)

∥∥∥
C[0,T ]

+
{∥∥h′′(t)− f(l, t)

∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

)1/2 [∥∥φ′′′(x)
∥∥
L2(0,1)

+
∥∥φ′′(x)

∥∥
L2(0,1)

]
+ ∥fxx(x)∥L2(DT )

]}
B2(T ) =

∥∥∥h−1(t)
∥∥∥
C[0,T ]

(
∥M(t)∥C[0,T ] + 1

)
T.

From inequalities (3.10), (3.11) we conclude that

∥ũ(x, l)∥B3
2,T

≤ A(T ) +B(T ) ∥u(x, t)∥B3
2,T

(
∥a(t)∥C[0,T ]+1

)
, (3.12)

where A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ).

We can prove the following theorem:

Theorem 3.1 Let 1-4 and
(A(T ) + 2)(A(T ) + 3)B(T ) < 1 (3.13)

be fulfilled.
Then problem (2.1)-(2.3), (2.13) has a unique solution in the ball k = kR

(
∥z∥E3

T
≤ R = A(T ) + 2

)
of the space E3

T .

Proof. In the space E3
T consider the equation

z = Φz, (3.14)

where z = {u, a} are the components Φi(u, a) (l = 1, 2) of the operator Φ(u, a) determined by the right
sides of equations (3.5), (3.7).

Consider the operator Φ(u, a) in the ball k = kR from E3
T . Similar to (3.12) we get that for any

z, z1, z2 ∈ kR the following estimations are valid

∥Φz∥E3
t
≤ A(T ) +B(T ) ∥u(x, l)∥B3

2,T

(
∥a(t)∥c[0,T ] + 1

)
(3.15)

≤ A(T ) +B(T )(A(t) + 2)(A(T ) + 3),

∥Φz1 − Φz2∥E3
t
≤ B(T )(R+ 1)

(
∥u1(k, t)− u2(x, t)∥B3

2,T
+ ∥a1(t)− a2(t)∥C[0,T ]

)
. (3.16)

Then allowing for (3.13), from estimations (3.15) and (3.16), it follows that the operator Φ acts in
the ball k = kR and is contractive. Therefore in the ball k = kR the operator Φ has a unique fixed point
{u, a}, that is unique solution of equation (3.14) in the ball k = kR i.e. {u, a} is a unique solution of
system (3.5), (3.7) in the ball k = kR.
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The function u(x, t) as an elements of the space B3
2,T is continuous, and has continuious derivatives

ux(x, t) and uxx(x, t) in DT .
Now from (3.2) we have:( ∞∑

k=1

(
λk

∥∥∥u′′

k (t)
∥∥∥
C[0,T ]

)2
)1/2

≤
√
2

( ∞∑
k=1

(
λ3

k
∥uk(t)∥C[0,T ]

)2)1/2

+
√
2
∥∥∥∥a(t) + fx(x, l)∥C[0,T ]

∥∥∥
L2(0,1)

.

Hence it follows that utt(x, t) is continuous DT .
It is easy to check that equation (2.1) and conditions (2.2), (2.3),(2.13) are satisfied in the ordinary

sense. Consequently, {u (x, t) , a (t)} is the solution of problem (2.1)-(2.3), (2.13). By lemma 2, this
solution is unique. The theorem is proved.

By means of theorem 1 we can prove

Theorem 3.2 Let all the conditions of theorem 2 and

φ(1) = h(0), ψ(1) +

∫ T

0

M(t)h(t)dt = h′(0),

(
∥M(t)∥C[0,T ] +

1

2
(A(T ) + 2)(A(T ) + 3)

)
T < 1

be fulfilled. Then in the ball k = kR

(
∥z∥E3

T
≤ R = A(T ) + 2

)
of the space E3

T , problem (2.1)-(2.4) has
a unique classical solution.
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